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Abstract

We revisit empirical Bayes in the absence of a
tractable likelihood function, as is typical in
scientific domains relying on computer sim-
ulations. We investigate how the empirical
Bayesian can make use of neural density esti-
mators first to use all noise-corrupted obser-
vations to estimate a prior or source distri-
bution over uncorrupted samples, and then
to perform single-observation posterior in-
ference using the fitted source distribution.
We propose an approach based on the di-
rect maximization of the log-marginal like-
lihood of the observations, examining both
biased and de-biased estimators, and com-
paring to variational approaches. We find
that, up to symmetries, a neural empirical
Bayes approach recovers ground truth source
distributions. With the learned source dis-
tribution in hand, we show the applicability
to likelihood-free inference and examine the
quality of the resulting posterior estimates.
Finally, we demonstrate the applicability of
Neural Empirical Bayes on an inverse prob-
lem from collider physics. �

1 Introduction

The estimation of a source distribution over latent ran-
dom variables x which give rise to a set of observations
y, after undergoing a potentially non-linear corrup-
tion process (i.e., a pushforward), is an inverse prob-
lem frequently of interest to the scientific and engi-
neering communities. The source distribution, p(x),
may represent the distribution of plausible measure-
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ments, or intermediate random variables in a hierar-
chical model, prior to corruption by a measurement or
detection apparatus. The source distribution is of sci-
entific interest as it allows comparison with theoretical
predictions and for posterior inference for subsequent
observations. Notably, in many scientific domains, the
relationship between the source and observed distri-
butions is encoded in a simulator that provides an ap-
proximation of the corruption process and generates
samples from the likelihood p(y|x). However, as is typ-
ical with computer simulations, the likelihood function
is implicit and rarely known in a tractable closed form.

Formally, we state the problem of likelihood-free
source estimation as follows. Given a first dataset
Y = {yi}

N
i=1

of N noise-corrupted observations yi

and a second dataset {xj ,yj}
M
j=1

of matching pairs
of source data and observations, with xj ⇠ ⇡(x)
drawn from an arbitrary proposal distribution ⇡(x)
and yj ⇠ p(y|xj), our aim is to learn the source dis-
tribution p(x), not necessarily equal to ⇡(x), that has
generated the observations Y. For the class of prob-
lems we consider, we may assume that the dataset of
(xj ,yj) pairs is generated beforehand using a simula-
tor of the stochastic corruption process.

The source distribution estimation problem is closely
related to likelihood-free inference (LFI, Cranmer
et al., 2020), though there are notable di↵erences in
problem statements. First, in Bayesian LFI, the ob-
jective is the computation of a posterior given a known
prior and an implicit likelihood function. In our prob-
lem statement, the primary objective is rather to iden-
tify an unknown prior or source distribution that, once
identified, then enables likelihood-free inference. Sec-
ond, we only assume access to a pre-generated dataset
of pairs of simulated source data and observations. In
many settings, simulators are highly complex, with
long run times to generate data. As such, sequential
methods based on active calls to the simulator, as of-
ten found in the LFI literature, would be impractical.

In this work, we follow an empirical Bayes (EB, Rob-
bins, 1956; Dempster et al., 1977) approach to address
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this challenge, using modern neural density estima-
tors to approximate both the intractable likelihood
and the unknown source distribution. Our method,
which we call Neural Empirical Bayes (NEB), proceeds
in two steps. First, using simulated pairs {xj ,yj}

M
j=1

,
we use neural density estimation to learn an approxi-
mate likelihood. Second, by modeling the source dis-
tribution with a parameterized generative model, the
log-marginal likelihood of the observations is approx-
imated with Monte Carlo integration, and the pa-
rameters of the source distribution learned through
gradient-based optimization. While our estimator of
the log-marginal likelihood is biased, it is consistent
and the use of deep generative models allows for fast
and parallelizable Monte Carlo integration to mitigate
its bias. Nonetheless, we also examine de-biased and
variational estimators for comparison. Finally, once a
source distribution and likelihood function are learned,
we demonstrate that posterior inference for new ob-
servations may be performed with suitable sampling-
based methods.

We first review EB and describe our NEB approach in
Section 2, followed by an examination of log-marginal
likelihood estimators in Section 3. Related work is dis-
cussed in Section 4. In Section 5, we present bench-
mark problems that explore the e�cacy of NEB and
provide comparison baselines, as well as a demonstra-
tion on a real-world application to collider physics.
Further discussion and a summary are in Section 6.
In addition, we provide a summary of the notations in
Appendix A.

2 Empirical Bayes

Methods for EB (Robbins, 1956; Dempster et al.,
1977) are usually divided into two estimation strate-
gies (Efron, 2014): either modeling on the x-space,
called g-modeling; or on the y-space, called f -
modeling.

Here, we revisit g-modeling to learn a source distri-
bution that regenerates the observations Y. Specifi-
cally, we parameterize the source distribution as q✓(x)
which, when passed through the likelihood p(y|x), re-
sults in a distribution q✓(y) over noisy observations.
The log-marginal likelihood of the observations Y is
expressed as

log q✓(Y) =
NX

i=1

log q✓(yi)

=
NX

i=1

log

Z
p(yi|x)q✓(x)dx, (1)

and its direct maximization with respect to the param-
eters ✓ leads to a solution for the source distribution.

The maximization of the log-marginal likelihood is
equivalent to the minimization of the Kullback–Leibler
divergence KL(p(y)||q✓(y)) = Ep(y) [� log q✓(y)]+�C ⇡

�
1

N

PN
i=1

log q✓(yi). Therefore, as Y increases, an op-
timal solution will correspond to a source distribu-
tion that exactly reproduces the observed distribu-
tion when passed through the corruption process. We
note however that the maximization of Eq. 1 is an
ill-posed problem: distinct source distributions may
result in the same distribution over observations when
folded through the corruption process. As a result, the
learned source distribution may di↵er from the ground
truth, for instance missing modes, but still reproduce
the observed distribution. We discuss approaches to
mitigate these undesired behaviors e↵ects when a pri-
ori known properties of the source distribution are
available.

In the likelihood-free setting, the likelihood function
p(y|x) is only implicitly defined by the simulator which
prevents the direct estimation of Eq. 1. However, a
dataset {xj ,yj}

M
j=1

can be generated beforehand by
drawing uncorrupted samples xj from a proposal dis-
tribution ⇡(x) and running the simulator to generate
corresponding noise-corrupted observations yj . Sim-
ilarly to Diggle and Gratton (1984) and D’Agostini
(1995) who built likelihood function estimators with
kernels or histograms, we use the generated dataset
to train a surrogate q�(y|x) of the likelihood function,
but we make use of modern neural density estimators
such as normalizing flows (Tabak et al., 2010; Rezende
and Mohamed, 2015). After the upfront simulation
cost of generating the training data, no additional call
to the simulator is needed.

We optimize the parameters � by maximizing the total
log-likelihood

PM
m=1

log q�(ym|xm) with mini-batch
stochastic gradient ascent. Again, for large M , this
is equivalent to minimizing E⇡(x)KL(p(y|x)||q�(y|x))
and given enough capacity the surrogate likelihood is
guaranteed to be a good approximation of p(y|x) in
the support of the proposal distribution ⇡(x). As a
consequence, the support of ⇡(x) should be chosen to
cover the full range of plausible source data values.
For example in the simulation-based inference setting,
⇡(x) may be the distribution obtained from a simula-
tor.

3 Log-marginal likelihood estimation

In Section 3.1 (resp. 3.2) we build a biased (resp. unbi-
ased) estimator of the log-marginal likelihood log q✓(y)
with a generative model G✓(·) : E �! X that defines
a di↵erentiable mapping from a base distribution p(✏)
to q✓(x). Then, in Section 3.3, we show how to use
variational estimators of log q✓(y) for NEB.
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3.1 Biased estimator

Given a likelihood function p(y|x) or its surrogate
q�(y|x) we define an estimator LK(✓) of the log-
marginal likelihood. This estimator can be plugged
in Eq. 1 to optimize the source distribution parame-
ters ✓ by stochastic minibatch gradient ascent. Based
on Monte Carlo integration, the estimator is defined
as:

log q✓(y) = logEq✓(x) [p(y|x)]

= logEp(✏) [p(y|G✓(✏))]

⇡ log
1

K

KX

k=1

p(y|G✓(✏k))

= logSumExp [log p(y|G✓(✏k))]� C

=: LK(✓), (2)

where ✏k ⇠ p(✏), C is a constant independent of ✓, and
the log-sum-exp trick is used for numerical stability.
While a large number K of samples may be needed
for good Monte Carlo approximation, this di�culty is
alleviated by the ease of generating large samples of
source data with the neural sampler G✓.

We study and prove properties of the estimator LK(✓)
in Appendix B. Using the Jensen’s inequality, we first
show that LK(✓) is biased. We demonstrate however
that both its bias and its variance decrease at a rate
of O( 1

K ). Then, similarly to Burda et al. (2016), we
show that LK(✓) is monotonically non-decreasing in
expectation with respect to K, i.e.

E [LK+1(✓)] � E [LK(✓)] . (3)

As K ! 1, we finally show that the estimator is
however consistent:

lim
K�!1

LK(✓) = log q✓(y). (4)

3.2 Unbiased estimator

Using the Russian roulette estimator (Kahn, 1955), we
de-bias the log-marginal likelihood estimator LK(✓) as

L̂K(✓) := LK(✓) + ⌘(✓), (5)

where ⌘(✓) is a random variable – whose expectation
corrects for the bias – defined as

⌘(✓) =
JX

j=0

LK+j+1(✓)� LK+j(✓)

P (J � j)
, (6)

with J ⇠ P (J). Similarly to Luo et al. (2020) in
their study of Importance Weighted Auto-Encoders
(IWAEs, Burda et al., 2016), we prove in Appendix B.5

that L̂K is an unbiased estimator as long as P (J) is a
discrete distribution such that P (J � j) > 0, 8j > 0.
Ideally, the distribution P (J) should be chosen such
that it adds only a small computational overhead,
while providing a finite-variance estimator. In our ex-
periments, we reduce the computational overhead by
re-using the same Monte Carlo terms used for LK+j

to compute LK+j+1.

3.3 Variational empirical Bayes

For EB in high-dimension, Wang et al. (2019) proposed
to build upon Kingma and Welling (2014) and to intro-
duce a variational posterior distribution q (x|y) whose
parameters  are jointly optimized with the parame-
ters ✓ of the source distribution by maximizing the
evidence lower bound (ELBO):

log q✓(y) � log q✓(y)�KL(q (x|y)||p(x|y))

= Eq (x|y) [log p(y|x)]

�KL(q (x|y)||q✓(x))

=: LELBO. (7)

When L
ELBO is optimized with stochastic gradient de-

scent, an unbiased estimator can be obtained with
Monte Carlo integration – usually only one Monte
Carlo sample is used which yields a tractable objec-
tive. While being tractable, the ELBO is a lower
bound (and biased estimator) of the log-marginal like-
lihood. A common approach (Rezende and Mohamed,
2015) to tighten the bound is to model q (x|y) from a
large distribution family so that it can closely match
the posterior distribution, i.e. e�ciently minimize
KL(q (x|y)||p(x|y)). Close to our work, IWAEs trade
o↵ computational complexity to obtain a tighter log-
likelihood lower bound derived from importance sam-
pling. Specifically, IWAEs are trained to maximize

L
IW

K (✓, ) = log
1

K

KX

k=1

p(y|xk)w(xk), (8)

where w(xk) = q✓(xk)

q (xk|y) and xk ⇠ q (x|y). IWAEs

are a generalization of the ELBO based on importance
weighting (setting K = 1 retrieves the ELBO objec-
tive). Nowozin (2018) showed that the bias and vari-
ance of this estimator vanish for K �! 1 at the same
rate O( 1

K ) as LK .

By design, LELBO and L
IW require the evaluation of

the density of new data points under the source model,
whereas LK and L̂K only require the e�cient sam-
pling from the source model. Which method to use
should therefore depend on the downstream usage of
the source distribution. While the evaluation of den-
sities required by L

ELBO and L
IW limits the range of
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models that can be used and makes the introduction
of inductive bias more di�cult, LK and L̂K can be
used with any generative model. In the rest of the
manuscript we refer indistinguishably to the source
distribution as q✓(x) although the generative models
used with LK and L̂K may not allow its evaluation.
In that case, we mean the pushforward distribution
implied by G✓(x).

4 Related work

Empirical Bayes In the most common forms of g-
modeling, the likelihood function and the prior distri-
bution are chosen such that the marginal likelihood
can be computed and maximized iteratively or ana-
lytically. More recent approaches model the prior dis-
tribution analytically but assume both the x�space
and y�space are finite and discrete (Narasimhan and
Efron, 2016; Efron, 2016). Then, given a known likeli-
hood function encoded in tensor form, the distribution
parameters are optimized by maximum marginal like-
lihood estimation. Similarly to this latter approach,
we do not require a likelihood function in closed-form,
but we build a continuous surrogate that allows its
direct evaluation rather than discretizing it.

While Wang et al. (2019) only theoretically proposed
using Eq. 7 in EB, we show experimentally in the next
section the applicability of this method. Concurrent
work (Dockhorn et al., 2020) also used this approach to
solve a density deconvolution task on Gaussian noise
processes. Our work di↵ers as we show the applicabil-
ity of these methods on much more complicated black-
box simulators, including a real inverse problem from
collider physics. Black-box simulators imply that a
neural network surrogate replaces the likelihood func-
tion, and thus, learning ✓ and  requires to backprop-
agate through the surrogate.

Finally, in the context of likelihood-free inference,
Louppe et al. (2019) used adversarial training for
learning a prior distribution such that, when corrupted
by a non-di↵erentiable black-box model, reproduces
the empirical distribution of the observations. This
can be seen as g-modeling EB where a prior distribu-
tion is optimized based on observations.

Unfolding Approximating a source distribution
p(x) given corrupted observations is often referred to
as unfolding in the particle physics literature (for re-
views see Cowan, 2002; Blobel, 2011; Adye, 2011).
A common approach (Richardson, 1972; Lucy, 1974;
D’Agostini, 1995) is to discretize the problem and re-
place the integral in Eq. 1 with a sum, resulting in a
discrete linear inverse problem. The surrogate model
q�(y|x) of the likelihood function is encoded in tensor

form while q✓(x) is modeled with a histogram. These
approaches are typically limited to low dimensions.
In order to scale to higher dimensions, preliminary
work by Cranmer (2018) explored the idea of modelling
q�(y|x) and q✓(x) with normalizing flows to approxi-
mate the integral in Eq. 1 with Monte Carlo integra-
tion. Aiming to the same objective, Andreassen et al.
(2019b) replaced the sum in discrete space with a full-
space integral using the likelihood ratio which is used
for re-weighting. Bellagente et al. (2020) used invert-
ible neural networks for learning a posterior that can
be used for unfolding while our EB approach focuses
on learning a source distribution at inference time.

Likelihood-free inference The use of a surrogate
model of the likelihood function that enables inference
as if the likelihood was known is not new. Since Dig-
gle and Gratton (1984), kernels and histograms have
been vastly used for 1D density estimation. More re-
cently, several Bayesian likelihood-free inference al-
gorithms (Papamakarios et al., 2019; Papamakarios
and Murray, 2016; Lueckmann et al., 2017; Greenberg
et al., 2019; Hermans et al., 2020; Durkan et al., 2020)
have been developed to carry out inference when the
likelihood function is implicit and intractable. These
methods all operate by learning parts of the Bayes’
rule, such as the likelihood function, the likelihood-to-
evidence ratio, or the posterior itself, and all require
the explicit specification of a prior distribution. By
contrast, the primary objective of our work is to learn
a prior distribution from a set of noise-corrupted obser-
vations which, once it is identified, then enables any of
the aforementioned Bayesian LFI algorithms for pos-
terior inference. We refer the reader to Cranmer et al.
(2020) for a broader review of likelihood-free inference.

5 Experiments

We present three studies of NEB. In Section 5.1, we
analyze the intrinsic quality of the recovered source
distribution for the estimators discussed in Section 3.
In Section 5.2, we explore posterior inference with the
learned source distribution. Finally, in Section 5.3 we
show the applicability of NEB on an inverse problem
from collider physics. All experiments are repeated 5
times with q�(y|x) and q✓(x) relearned in each exper-
iment. Means and standard deviations are reported.

5.1 Source estimation

We evaluate NEB on three benchmark problems: (a) a
toy model with a simple likelihood but complex poste-
rior (SLCP) introduced by Papamakarios et al. (2019),
(b) the two-moons model of Greenberg et al. (2019),
and (c) an inverse kinematics problem (IK) proposed
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Simulator K LK L̂K

SLCP

10 0.82±0.01 0.65±0.04

128 0.57±0.01 0.59±0.02

256 0.55±0.02 0.54±0.00

1024 0.53±0.01 0.52±0.01

Two-moons

10 0.69±0.02 0.56±0.02

128 0.53±0.01 0.57±0.06

256 0.52±0.01 0.52±0.02

1024 0.52±0.01 0.53±0.01

IK

10 0.80±0.13 0.67±0.08

128 0.65±0.04 0.67±0.12

256 0.66±0.02 0.71±0.09

1024 0.66±0.03 0.62±0.03

Table 1: ROC AUC between the observed dis-
tribution p(y) and the regenerated distributionR
p(y|x)q✓(x)dx. The closer to 0.5, the better the esti-

mation in y-space. NEB successfully identifies source
distributions that result in distributions over noise-
corrupted observations that are almost indistinguish-
able from the ground truth. When K is low, de-biasing
leads to substantial improvements.

by Ardizzone et al. (2018). See Appendix C for com-
plementary experimental details. We use datasets of
M = 15000 samples to train surrogate models q�(y|x)
for each simulator. All density models are parameter-
ized with normalizing flows made of four coupling lay-
ers (Dinh et al., 2015, 2017). Further architecture and
optimization details can be found in Appendix D. The
source distributions q✓(x) are optimized on N = 10000
observations y and we show further results with only
one or two observations in Appendix E. The ground
truth source distributions p(x) are U(�3, 3)5 for SLCP,
U(�1, 1)2 for two-moons and N (0,Diag( 1

4
, 1

2
, 1

2
, 1

2
))

for IK.

Biased vs. unbiased estimator We first com-
pare the biased and unbiased estimators LK and
L̂K . Table 1 reports the ROC AUC scores of
a classifier trained to distinguish between noise-
corrupted observations from the ground truth p(y)
and noise-corrupted observations from the marginalR
p(y|x)q✓(x)dx obtained by passing source data from

q✓(x) into the exact simulator. For both estima-
tors, the table shows that we successfully identify a
source distribution q✓(x) resulting in a distribution
over noise-corrupted observations which is almost in-
distinguishable from the ground truth p(y). When K
is low, de-biasing the estimator leads to significant im-
provements. When K increases, the bias of LK drops
quickly, and de-biasing, which introduces variance,
does not significantly improve the results. Therefore,
we recommend using the de-biased estimator when K

is constrained to be low, e.g., when the GPU memory
is limited. In the following, we set K = 1024 and only
consider the biased estimator LK(✓).

Monte Carlo vs. variational methods We evalu-
ate the quality of LK , LELBO and L

IW

K . For a fair com-
parison, we use an Unconstrained Monotonic Neural
Network autoregressive flow (UMNN-MAF, Wehenkel
and Louppe, 2019) to parameterize the prior for all
losses. The recognition network q (x|y) for the vari-
ational approaches is modeled with the same archi-
tecture as the prior, but is conditioned on y. We use
K = 128 for LIW

K due to GPU memory constraints. We
show in Appendix F that simpler implicit generative
models can be used with the Monte Carlo estimators
LK and L̂K , e↵ectively reducing inference time and
allowing to use higher values of K.

Table 2 shows the ROC AUC of a classifier trained to
discriminate between samples from the ground truth
source distribution p(x) and samples from the source
distribution q✓(x) identified by each of the di↵erent
methods. A ROC AUC score between 0.5 and 0.7
is often considered poor discriminative performance,
therefore indicating good source estimation. The esti-
mator L1024 leads to the most accurate source distri-
butions on these three tasks. In particular, the source
distribution found for the two-moons problem is al-
most perfect. At the same time, the results for SLCP
and IK are marginally acceptable, and largely better
than for the variational methods (LIW

K and L
ELBO).

Figures 1 and 2 illustrate for L1024 how the exact and
learned sources distributions are visually similar.

Table 2 also reports the discrepancy between the cor-
rupted data from the identified source distributions
and the ground truth distribution of noise-corrupted
observations. While LELBO does not give good results
for SLCP, tightening the evidence lower-bound with
L
IW
128

yields good results on all problems. While L1024

has similar performance to L
IW
128

on SLCP and two-
moons, it is performing worse for IK, due to the dif-
ficulty of approximating

R
p(y|x)p(x)dx from Monte

Carlo integration since the likelihood function for this
problem is almost a Dirac function (see Appendix C
for more details).

After observing the di↵erent estimators’ reconstruc-
tion quality, the superiority of L1024 on source esti-
mation over variational methods may be surprising at
first glance. However, the variational methods require
learning both a source distribution and a recognition
network that are consistent with the likelihood func-
tion and the observations. This means that a wrong
recognition network may prevent learning the correct
source distribution as they must be consistent with
each other. In the three experiments analyzed here,
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Simulator
x-space y-space x-space (symmetric prior)

LELBO LIW

128
L1024 LELBO LIW

128
L1024 LELBO LIW

128
L1024

SLCP 1.00±0.00 0.82±0.09 0.75±0.03 0.92±0.04 0.50±0.00 0.53±0.01 0.99±0.01 0.59±0.05 0.81±0.02

Two-Moons 0.75±0.00 0.75±0.00 0.55±0.02 0.50±0.01 0.50±0.00 0.52±0.01 0.51±0.01 0.50±0.01 0.51±0.02

IK 1.00±0.00 0.95±0.05 0.74±0.03 0.51±0.01 0.50±0.01 0.62±0.03 0.97±0.01 0.72±0.02 0.66±0.04

Table 2: Source estimation for the benchmark problems. ROC AUC between q✓(x) and p(x) (x-space), and
between the observed distribution p(y) and the regenerated distribution

R
p(y|x)q✓(x)dx (y-space).

Figure 1: Source estimation results for L1024 on SLCP
(top) and IK (bottom). The source distribution p(x)
are shown in blue against the estimated source distri-
bution q✓(x) in black (the 68-95-99.7% contours are
shown). The identified source distributions are similar
to the unseen source distributions.

the prior distribution is a simple unimodal continu-
ous distribution, whereas the posteriors are discontin-
uous and multimodal. In these cases, learning only
the source distribution is simpler than learning both a
source and posterior distributions.

Symmetric source distribution As mentioned
before, multiple optimal solutions may co-exist when
the inverse problem is ill-posed. On close inspection,
figures 1 and 2 show that NEB successfully recovers the
domain of the source data but fails to exactly repro-
duce the ground truth source distribution. Indeed, for
all problems considered here, the passage of x through
the corruption process results in a loss of information
in y, which may lead to multiple solutions. We observe
this in Figure 2, where we plot the quantities |x1+x2|

Figure 2: Source estimation results for L1024 on the
two-moons problem. The source distribution p(x) is
shown in blue against the estimated source distri-
bution q✓(x) in black (the 68-95-99.7% contours are
shown). As shown on the right, up to the symme-
tries of the problem, the identified source distribution
matches the unseen source distribution.

and �x1 + x2 that are su�cient statistics of x for es-
timating y. We see that the distribution over these
intermediate variables is nearly equal for the ground
truth distribution and the identified source distribu-
tion. This indicates that, up to symmetries, NEB re-
covers the ground truth source distribution.

A reasonable way to encourage learning a good source
distribution is to enforce a priori known properties
such as its domain, symmetries, or smoothness. This
type of useful inductive biases can be embedded in the
neural network to constrain the solution space. As
such, we modify the UMMN-MAF networks q✓(x) so
that the generated distributions are one-to-one sym-
metric, i.e. q✓([x1, ..., xd]) = q✓([±x1, ...,±xd]) (these
modifications are detailed in Appendix G). Table 2
shows that the symmetric distributions are more simi-
lar to the unseen distributions p(x) in all but one case.
For example, all methods learn to approximately iden-
tify the exact source distribution on the two-moons de-
spite the simulator’s destructive process. Results for
L1024 on SLCP are worse because the regularization
pushes the learned distribution to a solution that still
reproduces the observed distribution with high accu-
racy (the ROC AUC between the observed distribu-
tion and the regenerated one drops to 0.51±0.01), but
that moves away from the unseen source distribution.
Further inductive bias should therefore be introduced;
for example, the learned distribution can be bounded
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Figure 3: Posterior inference for IK. The plot shows
the per-parameter calibration curves obtained with re-
jection sampling using the learned likelihood q (y|x)
and the identified source distribution q✓(x) with L1024.
The curves indicate a reasonably well calibrated poste-
rior distribution.

using specific activation functions in the last layer of
G✓(·). We note here that the non-variational methods
are generally better suited for inductive bias as their
architecture designs are less constrained.

5.2 Likelihood-free posterior inference

In the context of Bayesian posterior inference, the
source distribution we retrieve with NEB can used as
a prior distribution. Therefore, the learned prior q✓(x)
together with the surrogate likelihood q�(y|x) unlock
the subsequent likelihood-free estimation of the poste-
rior p(x|y) – for which the fidelity will depend on both
the correctness of the source distribution and the likeli-
hood. There is an ongoing debate in the EB literature
regarding the use of the data twice for posterior infer-
ence in this approach (Gelman, 2008; Darnieder, 2011;
Gelman et al., 2017). When few prior knowledge are
available, EB allows to learn insights from the data,
and we believe it is valuable to incorporate those in-
sights in the prior rather than, for instance, choosing
a wide prior and especially in high dimensions where
the prior choice is important (Gelman et al., 2017).

As we have used normalizing flows with LK and L̂K ,
state-of-the-art Markov Chain Monte Carlo (MCMC)
methods such as Hybrid Monte Carlo (HMC) can be
used for sampling the posterior. Other generative
models that do not allow density evaluation could be
used in our empirical Bayes setup but would not per-
mit the usage of MCMC. In this section, we focus on
rejection sampling, rather than MCMC, as the source
distribution model allows fast parallel sampling which
makes the algorithm e�cient even when the accep-
tance rate is low. We perform rejection sampling as fol-
lows: given u ⇠ U(0, 1), we accept samples x ⇠ q✓(x)

Figure 4: Posterior distribution obtained from MCMC
with the exact source distribution and the exact like-
lihood function on SLCP in blue against the posterior
distribution obtained with q�(y|x) and q✓(x) learned
from L1024 in black (the 68-95-99.7% contours are
shown). Generating source sample x are indicated in
red. The approximated posterior distribution closely
matches the ground truth.

such that u < q�(y|x)
M where M > q�(y|x), 8x is de-

termined empirically. On the other hand, variational
approaches (LELBO and L

IW

K ) directly learn a posterior
q (x|y) as a function of the single observation y, which
enables immediate per-event posterior inference. For
L
IW

K , Cremer et al. (2017) suggest using importance
sampling.

We assess the goodness of the posterior distributions
with a calibration test. Inspired by Bellagente et al.
(2020), for multiple observations yi, we approximate
the 1D posterior distributions and report the fraction
of events as a function of the quantile to which the
generating source data xi fall. Figure 3 reports cali-
bration curves associated with L1024 for the IK prob-
lem, indicting reasonably well calibrated posteriors.
We should note however that this observation is a nec-
essary but not su�cient condition for well-calibrated
posterior distributions. More details and quantitative
results are given in Appendix H.

Finally, we show in Figure 4 an example of posterior
distribution obtained with rejection sampling using
q✓(x) and q�(y|x) as learned with L1024, against the
ground truth posterior obtained with Markov Chain
Monte Carlo using the exact likelihood and source
data distribution. We emphasize that NEB can re-
cover nearly the exact posterior with no access to the
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(a) (b) (c)

Figure 5: Neural Empirical Bayes for detector correction in collider physics. (a) The source distribution p(x) is
shown in blue against the estimated source distribution q✓(x) in black. (b) Posterior distribution obtained with
rejection sampling, with generating source sample x indicated in red. (c) Calibration curves for each jet property
obtained with rejection sampling on 10000 observations. In (a) and (b), contours represent the 68-95-99.7% levels.

likelihood function or to the prior distribution. To the
best of our knowledge, this is the first work to show
posterior inference is possible in this extreme setting.

5.3 Detector correction in collider physics

At colliders like the LHC, the distribution of particles
produced from an interaction and incident on detec-
tors can be predicted from theoretical models. Thus
measurements of such distributions can be used to di-
rectly test theoretical predictions. However, while de-
tectors measure the energy and momentum of parti-
cles, they also induce noise due to the stochastic na-
ture of particle-material interactions and of the sig-
nal acquisition process. Thus a key challenge in com-
paring measurements to theoretical predictions is to
correct noisy detector observations to obtain exper-
imentally observed incident particle source distribu-
tions. This is frequently done by binning 1D or 2D
distributions and solving a discrete linear inverse prob-
lem. Instead we apply NEB for estimating the multi-
dimensional source distribution. We use the publicly
available simulated dataset (Andreassen et al., 2019a)
of paired source and corrupted measurements of prop-
erties of jets, or collimated streams of particles produce
by high energy quarks and gluons. Simulation details
are found in Appendix I.

Surrogate training was performed using one source
simulator as a proposal distribution. The same sur-
rogate architecture and hyperparameters as in the toy
experiments were used (see Appendix D for details).
We assess NEB in a dataset with the source distri-
bution produced by a di↵erent simulator of the same

physical process. Both datasets for surrogate train-
ing and source distribution learning contain approxi-
mately 1.6 million events. This is an example setting
where sequential inference methods cannot be used as
only a fixed dataset is available and not the simulator.

LELBO LIW

128
L1024

x-space 0.99±0.02 0.63±0.06 0.57±0.05

y-space 0.87±0.08 0.51±0.01 0.50±0.01

Table 3: Source estimation in collider physics. ROC
AUC between q✓(x) and the unseen source distri-
bution p(x) (x-space), and between the observed
distribution p(y) and the regenerated distributionR
q�(y|x)q✓(x)dx.

Source estimation We focus on the L1024 estima-
tor for source distribution learning although we also
report results with the other estimators. Optimiza-
tion is done with Adam using default parameters and
an initial learning rate of 10�4. We train for 10 epochs
with minibatches of size 256. The density estimator
for the source distribution comprised 6 coupling lay-
ers, with 3-layer MLPs with 32 units per layer and
ReLU activations used for the scaling and translation
functions. Parameters were determined with a hyper-
parameter grid search using a held out validation set
from the dataset on which the surrogate is trained.
The learned source distribution is observed to closely
match the true simulated source distribution, as seen
in Figure 5a. Table 3 reports the ROC AUC between
the learned and ground truth distributions, indicating
only small discrepancies between them.
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Likelihood-free posterior inference Figure 5b
shows the learned posterior distribution against the
generating source data. Plots are scaled to the prior-
space. The model learns nicely a region of plausible
values for the generating source data. To assess the
quality of the posterior inference on more data, Figure
5c shows the fraction of events as a function of the
quantile to which the generating source data belongs
under the learned posterior distribution. Results indi-
cate reasonably well calibrated posterior distributions.

6 Summary and discussion

In this work, we revisit g-modeling empirical Bayes
with neural networks to estimate source distributions
from non-linearly corrupted observations. We pro-
pose both a biased and de-biased estimator of the log-
marginal likelihood, and examine variational methods
for this challenge. We show that we can successfully
recover source distributions from corrupted observa-
tions. We find that inductive bias is highly beneficial
for solving ill-posed inverse problems and can be em-
bedded in the structure of the neural networks used
to model the source distribution. Although the ex-
plored approaches are general, we specifically study
the likelihood-free setting, and we successfully perform
posterior inference without direct access to either a
likelihood function or a prior distribution.

Future work In this work we have mainly exam-
ined low-dimensional settings. We believe that further
analysis of these methods for high-dimensional data
such as images and time series could be of strong in-
terest from both a theoretical and practical point of
view. In particular, assessing the computational chal-
lenges of each method and the importance of inductive
bias in this challenging setting are promising directions
towards improvements in solving high-dimensional in-
verse problems.
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