
Supplementary to Non-parametric kernel clustering

A Equivalence between Kernel-based data clustering and Kernel-
based density clustering.

A.1 Proof of Lemma 1

Lemma 1 (MMD between components is closely related to kernel evaluations between
input data.). Given any sample X ∈ Rd, let the component kde distributions (ψi) be defined in the
usual way. For all xi, xj ∈ X,

ρ2(ψi, ψj) = Cβ,ζ,d(1− g(xi, xj))

where Cβ,ζ,d is a constant dependent on the bandwidths β, ζ and the input dimension d.

Proof. Squared MMD ρ2(ψi, ψj) with respect to the Gaussian kernel gζ can be decomposed as follows:

ρ2(ψi, ψj) = ||µψi ||2Hgζ + ||µψj ||2Hgζ − 2〈µψi , µψj 〉Hgζ , (1)

where µψj denotes the kernel mean embedding of ψi with respect to the Gaussian kernel function gζ
which can be computed in closed form as shown in (2).

µψj (·) =

∫
Rd

1

(2πβ2)d/2
exp

(
−‖x− ·‖2

ζ

)
exp

(
−‖xj − ·‖2

2β2

)
dx

= (
ζ

ζ + 2β2
)d/2 exp

(
−‖xj − ·‖

2

2β2 + ζ

) (2)

By means of theorem 1 which provides a spectral characterization of the Gaussian RKHS and the
inner-product within, we compute 〈µψi , µψj 〉Hgζ , ∀i, j ∈ [n]. The computation uses the closed form

expressions of Fourier transforms of the kernel function and the kernel mean embeddings of the
component kde distributions given in (3). The closed form expression for the inner product between
the kernel mean embeddings of any two component kde distributions is given in Equation (4).

F [gζ ](ω) = (
ζ

2
)d/2 exp

(
−‖ω‖2 ζ

4

)
.

F [µψi ](ω) = (
ζ

2
)d/2 exp

(
−‖ω‖2 (2β2 + ζ)

4

)
exp

i
∑
l∈[d]

xliω
l

, (3)
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where i denotes the imaginary unit and satisfies i2 = −1.

〈µψi , µψj 〉Hgζ =
1

(2π)d/2

∫
F [µψi ](ω)F [µψi ](ω)

F [gζ ](ω)
dω

=

(
ζ

4β2 + ζ

)d/2
exp

(
−‖xi − xj‖2

4β2 + ζ

) (4)

Substituting the values of 〈µψi , µψj 〉Hgζ for any i, j ∈ [n] we obtain

ρ2(ψi, ψj) = 2

(
ζ

4β2 + ζ

)d/2
(1− g(xi, xj)) (5)

The following result given by Kimeldorf et al. (1970) and Wendland (2004) provides a spectral
characterization of the RKHS corresponding to any translation-invariant kernel.

Theorem 1 (Spectral characterization of RKHS. (Kimeldorf et al., 1970; Wendland,
2004)). Let k be a translation-invariant kernel on Rd such that k(x, y) := ψ(x − y) where Φ ∈
C(Rd) ∩ L1(Rd). Then the corresponding RKHS H is given by

H =

{
f ∈ L2(Rd) ∩ C(Rd) : ‖f‖2Hg =

1

(2π)d/2

∫
|F [f ](ω)|2

F [ψ](ω)
dω <∞

}
, (6)

where | · | denotes the magnitude of the enclosed quantity and F [f ](ω) denotes the Fourier transform of

the function f . The inner product on H is defined as 〈f, g〉H = 1
(2π)d/2

∫ F [f ](ω)F [g](ω)
F [ψ](ω) dω, f, g ∈ H,

where F [g](ω) denotes the complex conjugate of F [g](ω).

A.2 Proof of Theorem 4

Theorem 4 immediately follows from Lemma 1. For any data clustering algorithm with respect
to the Gaussian kernel η > 0, decompose η into any two positive quantities β, ζ > 0 satisfying
η = 4β2 + ζ. Due to Lemma 1, the kernel clustering algorithm equivalently defines a clustering of
the component kde distributions {ψi}ni=1 .

B Algorithms

For completeness, we briefly describe the kernel-based clustering algorithms (AKMN, ACTR, AFFK,
and ALNK) here. In each of the algorithms, we describe the standard kernel data clustering procedure
as well as the equivalent kernel density clustering procedures (see Theorem 4). The component kde
distributions are defined in the usual way with respect to the bandwidth parameter β > 0 and ρ is
defined with respect to the Gaussian kernel with bandwidth parameter ζ > 0.
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B.1 Kernel k-means (AKMN)

Algorithm - Kernel k-means

• Given: A sample X = {x1, x2, · · ·xn} ⊂ Rd and for some β, ζ > 0 the Gaussian kernel function
g : Rd × Rd → R with bandwidth parameter 4β2 + ζ.

• Find the partition

σ̂ = arg max
σ:[n]→[K]

∑
k∈[K]

∑
i,j∈ck

g(xi, xj) = arg min
σ:[n]→[K]

∑
k∈[K]

∑
i∈ck

ρ(µψi ,
1

|ck|
∑
j∈ck

µψj )
2 (7)

B.2 FFk-means++ (AFFK)

Algorithm - Farthest first Kernel k-means ++

Phase one: Initializing the centers

• Given: A sample X = {x1, x2, · · ·xn} ⊂ Rd and for some β, ζ > 0 the Gaussian kernel function
g : Rd × Rd → R with bandwidth parameter 4β2 + ζ.

• Choose an initial center c1 uniformly at random and set C = {c1} .

• While t < K :

– let C = {c1, c2, · · · ct−1} be the current set of centers,

– for each x ∈ X, compute d(x) = min
c∈C

k(x, c) = max
c∈C

ρ(ψx, ψc)

– pick the new center ct = arg max
x∈X

d(x), and set C = C ∪ {ct} .

• For each k ∈ [K] :

– set
Ck = {x ∈ X : k(x, ck) ≥ k(x, ck′) ∀k 6= k′ ∈ [K]}

=
{
x ∈ X : ρ(ψx, ψck) ≤ ρ(ψx, ψc′k) ∀k 6= k′ ∈ [K]

}
Phase two: Standard kernel k-means algorithm

1. For each k ∈ [K], set Ck = {x ∈ X : condition (8) holds}

1

|Ck|2
∑

y,z∈Ck

k(x, z)− 1

|Ck|
∑
y∈Ck

k(y, x) ≤ 1

|Cl|2
∑
y,z∈l

k(y, z)− 1

|Cl|
∑
y∈Cl

k(y, x) ∀l 6= k ∈ [K]. (8)

(8) ⇐⇒ ρ(ψx,
1

|Ck|
∑
x′∈Ck

ψx′) ≤ ρ(ψx,
1

|Cl|
∑
x′∈Cl

ψx′) ∀l 6= k ∈ [K]. (9)

2. Repeat step (1) until convergence, that is, the set of centers C do not change anymore.
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B.3 Kernel K-center(ACTR)

Algorithm - Kernel K-center

• Given: A sample X = {x1, x2, · · ·xn} ⊂ Rd and for some β, ζ > 0 the Gaussian kernel function
g : Rd × Rd → R with bandwidth parameter 4β2 + ζ.

• Find the partition

σ̂ = arg max
σ:[n]→[K]

inf
l∈[n]

−1

|clk|2
∑
i,j∈clk

k(xi, xj) +
1

|clk|
∑
i∈clk

k(xi, xl)

= arg min
σ:[n]→[K]

max
i∈[n]

ρ(ψi, γ̂σ(i),σ)

B.4 Agglomerative hierarchical clustering (ALNK)

Given a sample X = {x1, x2, · · ·xn} ⊂ Rd and a similarity function S : Rd × Rd → R, hierarchical
clustering algorithms seek to generate a cluster tree (dendrogram) establishing a hierarchy of
relationships between the elements of the sample. Aggolomerative methods, in contrast to divisive
methods, seek a bottom up approach, starting out with each point as its own cluster and progressively
combining them into larger clusters until there is a single cluster that contains all the elements of
the sample X. The criterion for merging hinges on the underlying similarity function, which in our
case is the kernel matrix computed on the sample for a given kernel function k : Rd × Rd → R. We
discuss two of the popular hierarchical clustering algorithms that exist in literature: single linkage
and complete linkage methods. The distinguishing factor across the two methods is the choice of
the criterion C used to merge any two clusters c, c′ ⊂ X (c ∩ c′ = ∅), which are given below in 10.

C(c, c′) = max
x∈c,y∈c′

k(x, y) = min
x∈c,y∈c′

ρ(ψx, ψy)︸ ︷︷ ︸
Single linkage

, and min
x∈c,y∈c′

k(x, y) = max
x∈c,y∈c′

ρ(ψx, ψy)︸ ︷︷ ︸
Complete linkage

. (10)

By substituting the different criterion C(c, c′) to merge any two clusters c, c′ in Algorithm 1, we
obtain variants of the corresponding algorithms.

C Impossibility of recovery by kernel k-means(Proof of The-
orem 1)

Proof. Fix the kernel bandwidth parameter ζ > 0. Consider the following example in R, where
U([a, b]) denotes the uniform distribution on the real interval [a, b]. Let

γ1 = m

(
1

2
U([−ε, ε]) +

1

2
U([r − ε, r + ε])

)
(11)

and
γ2 = U([Dr − ε,Dr + ε]). (12)
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Algorithm 1: Agglomorative hierarchical kernel-clustering.

Given: A sample X = {x1, x2, · · ·xn} ⊂ Rd and for some β, ζ > 0 the Gaussian kernel
function g : Rd × Rd → R with bandwidth parameter 4β2 + ζ ;

Let S = {s1, . . . sn} be a collection of singleton trees with the root node of si = {i} .
while |S| > 1 do

Let sq, sr ∈ S be the pair of trees such that C(root(sq), root(sr)) is maximal ;
Generate sqr s.t, root(sqr) = root(sq) ∪ root(sr), left, right(sqr) = sq, sr ;
Add sqr and remove sq and sr from S ;

end
σ̂ ← Partition function obtained by cutting the only element in S, a dendrogram at a level
such that the resulting partition contains K clusters ;

return σ̂ ;

The mixing measure is given by Λ = λ1γ1 + λ2γ2. The constants D � 2� r � ε and λ1 � λ2 are
to be chosen later. The idea is that the interval [Dr − ε,Dr + ε] is separated from the rest of the
distribution via a large constant D, but the points in [Dr − ε,Dr + ε] will nevertheless be clustered
with the points in [r − ε, r + ε] because λ2 is so small. We first show that Λ satisfies the condition in
the theorem, namely that

ρ2(γ1, γ2)

sup
x∈Xn

ρ2(ψx, γ̂σ∗(x),σ∗)
> K2. (13)

Therefore, consider the numerator, which is simply the squared MMD between γ1 and γ2. We have

ρ2(γ1, γ2) = EX∼γ1,X̃∼γ1g(X, X̃) + EY∼γ2,Ỹ∼γ2g(Y, Ỹ )− 2EX∼γ1,Y∼γ2g(X,Y )

≥ 1

(2ε)2

∫
[−ε,ε]2

e−|x−y|
2/ζ dx dy − 2

(2ε)2

∫
[−ε,ε]2

e−|(D−1)r+x−y|
2/ζ dx dy.

At this point, assume that ε is sufficiently small compared to the kernel bandwidth parameter ζ,
namely that 4ε2 < η. This allows us to lower bound the first integral by 1

e . Similarly, choosing D
large enough in comparison to r allows us to make the second term arbitrarily small, whence we
conclude that

ρ2(γ1, γ2) ≥ 1

e
− 1

2e
≥ 1

2e
,

i.e. the numerator is at least 1
2e . Now consider the denominator, which is the maximum squared

MMD between an empirical cluster mean and a sampled point belonging to that cluster. This is at
most the squared MMD between any two points belonging to the same cluster

sup
x∈Xn

ρ2(ψx,
1

|σ∗(x)|
∑

y∈σ∗(x)

ψy) ≤ sup
x,y∈Xn,σ∗(x)=σ∗(y)

ρ2(ψx, ψy) (14)

which can be bound, independently of the sample Xn, by

ρ2(ψ0, ψr+2ε) = 2

√
ζ

4β2 + ζ

(
1− e

−(r+2ε)2

4β2+ζ

)
≤ 2

(r + 2ε)2

ζ
+ o(r4).

(15)
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Here r + 2ε is the maximum distance of any two points belonging to the same cluster and we used
(5). Thus, choosing a small r allows us to make the denominator arbitrarily small, and the fraction
in (13) can become larger than any fixed K2.
Now, we show that k-means does w.h.p. not recover the planted partition. The idea is to choose
λ1 � λ2. In our sample Xn from m(Λ), denote the number of points within [−ε, ε] by N1, the
number of points within within [r− ε, r+ ε] by N2, and the number of points within [Dr− ε,Dr+ ε]
by N3. Assume that n is large enough s.t. N1, N2, N3 > 0. We rely on the equivalence between
kernel-based data clustering and kernel-based density clustering and directly consider the MMD
between component distributions ψxi (compare section B.1). That is we consider k-means w.r.t. the
norm ‖ · ‖2 =< ·, · >Hgζ . The k-means objective of the planted partition is at least

N1

∥∥∥∥∥µψε−N1 µψ−ε +N2 µψr−ε
N1 +N2

∥∥∥∥∥
2

+N2

∥∥∥∥∥µψr−ε−N1µψε +N2µψr+ε
N1 +N2

∥∥∥∥∥
2

≥ N1N2

N1 +N2

∥∥∥µψε−µψr−ε∥∥∥2+O(ε).

Similarly, the k-means objective of the alternative partition where the points in [r − ε, r + ε] and
[Dr − ε,Dr + ε] form a cluster is at most

N1

∥∥∥µψ0
− µψ2ε

∥∥∥2 +N2

∥∥∥∥∥µψr−ε − N2µψr+ε +N3µψDr+ε
N2 +N3

∥∥∥∥∥
2

+N3

∥∥∥∥∥µψDr+ε − N2µψr−ε +N3µψDr−ε
N2 +N3

∥∥∥∥∥
2

≤N1

∥∥∥µψ0 − µψ2ε

∥∥∥2 +
N2N3

N2 +N3

∥∥∥µψr−ε − µψDr+ε∥∥∥2 +O(ε).

Thus, k-means will choose the alternative partition if

N1

∥∥∥µψ0
− µψ2ε

∥∥∥2 +
N2N3

N2 +N3

∥∥∥µψr−ε − µψDr+ε∥∥∥2 +O(ε) ≤ N1N2

N1 +N2

∥∥∥µψε − µψr−ε∥∥∥2

⇐⇒

∥∥∥µψr−ε − µψDr+ε∥∥∥2∥∥∥µψε − µψr−ε∥∥∥2 +O(ε) ≤ N1

N3

N2 +N3

N1 +N2
− N1(N2 +N3)

N2N3

∥∥∥µψ0
− µψ2ε

∥∥∥2∥∥∥µψε − µψr−ε∥∥∥2
⇐⇒

∥∥∥µψr−ε − µψDr+ε∥∥∥2∥∥∥µψε − µψr−ε∥∥∥2 +O(ε) ≤ N1

N3

N2 +N3

N1 +N2
−
(

1 +
N3

N2

) ∥∥∥µψ0
− µψ2ε

∥∥∥2∥∥∥µψε − µψr−ε∥∥∥2
 .

(16)

First note that the norms in equation (16) are deterministic quantities that depend on ε, r and
D. The Ni are Binomial random variables parametrized by λ1 and λ2, i.e. N1 ∼ Binom(n, λ1/2),
N2 ∼ Binom(n, λ1/2) and N3 ∼ Binom(n, λ2). All terms involving N ′is w.h.p. concentrate around
their expectation. Thus, choosing λ1 � λ2 allows us to make the fraction N1

N3
w.h.p. arbitrarily

large. Choosing ε small enough (in comparison to r) ensures that the O(ε) term on the LHS is small
enough, and that the bracketed term on the RHS is at least 1

4 .
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D Sufficient conditions for Consistency of ACTR, AFFK, and
ALNK. (Proof of Theorem 2)

Proof of Theorem 2: Consistency of ACTR. Let Λ be any mixing measure for which there
exists some ε > 0 such that,

PXn
(1

4
inf
k 6=k′

ρ(γk, γk′) < sup
x∈Xn

ρ(ψx, γ̂σ∗(x),σ∗) + ε
)
n→∞−→ 0. (17)

Then, with high probability (w.h.p) over the samples Xn,

inf
k 6=k′

ρ(γk, γk′) > 4 sup
x∈Xn

ρ(ψx, γ̂σ∗(x),σ∗) + 4ε. (18)

If the bandwidth parameter β is chosen according to (19),

β → 0,
nβd

log n
→∞ as n→∞, (19)

it is known that the corresponding kernel density estimate f̂n converges to the true density f in
the l∞ norm (Giné et al., 2002; Einmahl et al., 2005). Observe that the density functions f̂k,σ∗

corresponding to the planted partitions γ̂k,σ∗ are the kernel density estimates of the density functions
corresponding to the component distributions γk. Furthermore by assumption, we have that the
corresponding component weights λk are bounded away from 0. Thus, for each k ∈ [K], we have

sup
x∈Rd

|f̂k,σ∗ − fk|
P−→ 0 as n→∞.

An application of Scheffe’s theorem (or Reiz’s theorem) (Scheffé, 1947) implies that the corresponding
probability measures γ̂k,σ∗ also converge weakly to γk. Simon-Gabriel, Barp, et al. (2020, Theorem
4.2) provide a characterization of the class of kernels that metrize the weak convergence of probability
measures on locally compact domains (e.g., Rd). Following Simon-Gabriel and Schölkopf (2016,
Corollary 3) and Sriperumbudur et al. (2010, Proposition 5), one can verify that the Gaussian kernel
belongs to this class of kernel functions. Therefore, weak convergence of probability measures γ̂k,σ∗

to γk is equivalent to convergence in MMD with respect to (w.r.t) a Gaussian kernel, that is, for
every ε > 0,

P(ρ(γ̂k,σ∗ , γk) > ε)
n→∞−→ 0. (20)

Let t = 4ε/2 and δ = 1/n. Then, for every k ∈ [K], there exists some Nt ∈ N such that ∀ n > Nt,k,

P(ρ(γ̂k,σ∗ , γk) > 4ε/2) <
1

n
. (21)

Let Nt = supk∈[K]Nt,k. For all n > Nt, with high probability (w.h.p) over the samples Xn,

inf
k 6=k′

ρ(γk, γk′) > 4 sup
x∈Xn

ρ(ψx, γ̂σ∗(x),σ∗) + 2ρ(γ̂k,σ∗ , γk). (22)

By assumption, we have that λk is bounded away from 0 for all k ∈ [K]. Therefore,

P( min
k∈[K]

|(σ∗)−1(k)| > 0) =

K∏
k=1

P(|(σ∗)−1(k)| > 0). (23)
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For any k ∈ [K], observe that |(σ∗)−1(k)| is a binomial random variable, Bin(n, λk). Using Hoeffding’s
inequality for binomial random variables,

P(|(σ∗)−1(k)| ≤ t) < exp (−2n(λk −
t

n
)2) (24)

Setting t = 0, for large enough n such that n/ log n > 1/λk, w.p.a.l 1− 1/n

|(σ∗)−1(k)| > 0

So w.h.p over the samples,

min
k∈[K]

|(σ∗)−1(k)| > 0

From Propositions 1, 2, and 3, we then have that w.h.p over Xn, the algorithms ACTR, AFFK, and
ALNKcan recover the planted partition σ∗ (upto a permutation over the labels).

D.1 Sufficient conditions for consistency of kernel k-center clustering
ACTR

Proposition 1 (Conditions for recovery of the true partition by kernel k-center algo-

rithm). For any Λ ∈ P2
K , let Γ = m(Λ). Let X = {x1, x2, · · ·xn} ∼ Γn. Define Γ̂ =

n∑
i=1

1
nψi as the

probability measure associated with the kde in the usual way. For any partition σ : [n]→ [K] such
that the following condition holds:

inf
k 6=k′

ρ(γk, γ
′
k) > 4 sup

i∈[n]
ρ(ψi, γ̂σ(i),σ) + 2 sup

k∈[K]

ρ(γ̂k,σ, γk,σ), (25)

and
inf
k∈[K]

|σ−1(k)| > 0 (26)

σ can be recovered by the kernel k-center algorithm on the sample kernel matrix G (defined in section
4 of the main paper).

Proof of Proposition 1. For any sample X = {x1, x2, · · ·xn} and a partition σ′, let

r = sup
i∈[n]

ρ(ψi, γ̂σ′(i),σ′) (27)

We first show that for any mixing measure satisfying the conditions provided in Equation (25) w.r.t
a sample X and a partition σ′, then for any i 6= j ∈ [n],

ρ(ψi, ψj) ≤ 2r ⇐⇒ σ′(i) = σ′(j)

ρ(ψi, ψj) > 2r ⇐⇒ σ′(i) 6= σ′(j)

1) σ′(i) = σ′(j) =⇒ ρ(ψi, ψj) ≤ 2r. For any i ∈ [n], by definition,

ρ(ψi, γ̂σ′(i),σ′) ≤ r (28)

Therefore, for any i, j ∈ [n],

σ′(i) = σ′(j) =⇒ ρ(ψi, ψj) ≤ ρ(ψi, γ̂σ′(i),σ′) + ρ(γ̂σ′(i),σ′ , ψj) ≤ 2r (29)
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2) σ′(i) 6= σ′(j) =⇒ ρ(ψi, ψj) > 2r. Let σ′(i) = k 6= k′ = σ′(j). Then, by triangle inequality,

ρ(ψi, ψj) ≥ ρ(γk, γk′)− ρ(γk, γ̂k,σ′)− ρ(γ̂k,σ′ , ψi)− ρ(ψj , γ̂k′,σ′)− ρ(γ̂k′,σ′ , γk′) > 2r (30)

Combining Equations (29) and (30), its easy to verify that

ρ(ψi, ψj) ≤ 2r ⇐⇒ σ′(i) = σ′(j)

ρ(ψi, ψj) > 2r ⇐⇒ σ′(i) 6= σ′(j)

For any partition σ, let
L(σ) = sup

i∈[n]
ρ(ψi, γ̂σ(i),σ). (31)

Then the partition σ̂ generated by the kernel k-center clustering algorithm is given by

σ̂ = arg min
σ:[n]→[K]

L(σ). (32)

Then, by definition,
L(σ̂) ≤ L(σ′) = r (33)

Therefore, from (33),

ρ(γ̂σ′(i),σ′ , γ̂σ̂(i),σ̂) ≤ ρ(γ̂σ′(i),σ′ , ψi) + ρ(γ̂σ̂(i),σ̂) ≤ 2r (34)

To show that the partitions σ′ and σ̂ coincide up to a permutation, we show that, for any i, j ∈ [n],
σ′(i) = σ′(j) =⇒ σ̂(i) = σ̂(j) and σ′(i) 6= σ′(j) =⇒ σ̂(i) 6= σ̂(j).

Consider i, j ∈ [n] such that σ′(i) 6= σ′(j). If σ̂(i) = σ̂(j), then from triangle inequality and (34),

ρ(γ̂σ′(i),σ′ , γ̂σ′(j),σ′) ≤ ρ(γ̂σ′(i),σ′ , γ̂σ̂(i),σ̂) + ρ(γ̂σ′(j),σ′ , γ̂σ̂(i),σ̂) ≤ 4r. (35)

However, from (25) we have that

ρ(γ̂σ′(i),σ′ , γ̂σ′(j),σ′) ≥ ρ(γσ′(i), γσ′(j))− ρ(γ̂σ′(i),σ′ , γσ′(i))− ρ(γ̂σ′(j),σ′ , γσ′(j)) > 4r, (36)

which is a contradiction. Therefore, for any i, j ∈ [n] such that

σ′(i) 6= σ′(j) =⇒ σ̂(i) 6= σ̂(j). (37)

Consider any i, j ∈ [n] such that σ′(i) = σ′(j) but σ̂(i) 6= σ̂(j). From (34) we know that

γ̂σ̂(i),σ̂ ∈ B(γ̂σ′(i),σ′ , 2r) and γ̂σ̂(j),σ̂ ∈ B(γ̂σ′(i),σ′ , 2r) (38)

where B(x, r) = {y : ρ(x, y) ≤ r} denotes the ball of radius r centered at x.

From the condition (44) that the clusters are non-empty, for each k ∈ [K], there exists ak such that
σ′(ak) = k. Then, for each k ∈ [K], we know that

γ̂σ̂(ak),σ̂ ∈ B(γ̂σ′(ak),σ′ , 2r) = B(γ̂k,σ′ , 2r) (39)

Furthermore, observe that for all k 6= k′ ∈ [K],

B(γ̂k,σ′ , 2r) ∩B(γ̂k′,σ′ , 2r) = ∅, (40)
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since otherwise there exists some x ∈ B(γ̂k,σ′ , 2r) ∩B(γ̂k′,σ′ , 2r), i.e.,

ρ(x, γ̂k,σ′) ≤ 2r and ρ(x, γ̂k′,σ′) ≤ 2r,

=⇒ ρ(γ̂k,σ′ , γ̂k′,σ′) ≤ ρ(x, γ̂k,σ′) + ρ(x, γ̂k′,σ′) ≤ 4r,

which is a contradiction.

Moreover, by definition, σ′(ak) 6= σ′(ak′) for all k, k′ ∈ [K], from (37), we have

σ̂(a1) 6= σ̂(a2) · · · 6= σ̂(aK) (41)

Since there are only K centers, (39), (40) and (41) imply that

• For any i ∈ [n], there exists some k ∈ [K] such that σ̂(i) = σ̂(ak), and

• γ̂σ̂(ak),σ̂ ∈ B(γ̂σ′(i),σ′ , 2r) =⇒ γ̂σ̂(ak′ ),σ̂ /∈ B(γ̂σ′(i),σ′ , 2r) for all k′ 6= k ∈ [K].

So, from (38),
σ′(i) = σ′(j) =⇒ γ̂σ̂(i),σ̂ = γ̂σ̂(j),σ̂ =⇒ σ̂(i) = σ̂(j), (42)

since, if σ̂(i) 6= σ̂(j), then ρ(γ̂σ̂(i),σ̂, γ̂σ̂(j),σ̂) > 4r.

Therefore, the partitions σ′ and σ̂ coincide up to a permutation over the labels.

D.2 Sufficient conditions for kernel kmeans++ algorithm - proofs

Proposition 2 (Sufficient conditions for recovery by kernel k-means ++). For any Λ ∈ P2
K ,

let Γ = m(Λ). Let X = {x1, x2, · · ·xn} ∼ Γn. Define Γ̂ =
n∑
i=1

1
nψi as the probability measure associated

with the kde in the usual way. For any partition σ′ : [n] → [K] such that the following condition
holds:

inf
k 6=k′

ρ(γk, γ
′
k) > 4 sup

i∈[n]
ρ(ψi, γ̂σ′(i),σ′) + 2 sup

k∈[K]

ρ(γ̂k,σ′ , γk,σ′), (43)

and
inf
k∈[K]

|(σ′)−1(k)| > 0 (44)

σ can be recovered by a (deterministic) kernel k-means++ algorithm on the sample kernel matrix G.

Proof of Proposition 2. Let,

r = sup
i∈[n]

ρ(ψi, γ̂σ′(i),σ′), and Bk = B(γ̂k,σ′ , r) ∀k ∈ [K]. (45)

Claim: Let C be the set of centers initialized in phase one of the k-means ++ algorithm as described.
Then, for each k ∈ [K],

ck ∈ Bk (46)

Proof: For every i ∈ [n], by definition,

ρ(ψi, γ̂σ′(i),σ′) ≤ r =⇒ ψi ∈ Bσ′(i). (47)
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Therefore, without loss of generality (W.L.O.G), let c1 ∈ B1. For any t < K, assume that Ct =
{c1, c2, · · · ct} and ck ∈ Bk ∀k ∈ [t] (upto a permutation over the labels). Note that Bk is non-empty
for every k ∈ [K].
From the proof of Proposition 1, for any mixing measure satisfying the conditions provided in (43),

ρ(ψi, ψj) ≤ 2r ⇐⇒ σ′(i) = σ′(j) (48)

ρ(ψi, ψj) > 2r ⇐⇒ σ′(i) 6= σ′(j) (49)

Therefore, since ck ∈ Bk for all k ∈ [K], d(ψi) = ρ2(ψi, ck) ≤ 2r for all σ′(i) = k. Therefore,

d(ψi) is

{
≤ 2r ∀ψi ∈ Bk, and k ≤ t,
> 2r otherwise.

(50)

Since ct+1 = arg max
ψi

d(ψi), ct+1 ∈ Bs for some s /∈ Ct.

�
Claim: Kernel k-means algorithm does not affect the centers obtained in Phase one of the algorithm.
Proof: From claim 1, in phase one of the algorithm, the centers C = {c1, c2, · · · cK} are obtained such
that ck ∈ Bk for all k ∈ [K]. For each k ∈ [K], clusters {C1, C2, · · ·CK} are then defined as follows.

Ck =
{
i ∈ [n] : ρ2(ck, ψi) ≥ ρ2(ck′ , ψi) ∀k 6= k′ ∈ [K]

}
(51)

From (48), we have that

ρ2(ψi, ck) ≤ 4r2 if σ′(i) = k

ρ2(ψi, ck) > 4r2 otherwise .

Therefore, the partition obtained in the Phase 1 of the algorithm coincides with σ′ up to a permutation
over the labels, that is,

Ck = {ψi ∈ X : σ′(i) = k} , (52)

and ∑
i:σ′(i)=k

ψi = γ̂k,σ′ ∈ Bk. (53)

Clearly,
ρ(ψi, γ̂σ′(i),σ′) ≤ 2r ≤ ρ(ψi, γ̂k,σ′) > 2r ∀k 6= σ′(i).

Therefore, the clusters obtained in the phase 1 of the algorithm do not change in the Phase 2 of the
algorithm and the partition obtained by AFFKcoincides with that of σ′ up to a permutation over the
labels.

�

D.3 Sufficient conditions for kernel linkage clustering algorithms (Proof
of Theorem 2 - Part III)

Proposition 3 (Recovery by single linkage clustering). For any Λ ∈ P2
K , let Γ = m(Λ). Let

Xn = {x1, x2, · · ·xn} ∼ Γn be a sample. Define Γ̂ =
n∑
i=1

1
nψi as the probability measure associated

with the kde in the usual way. For any partition σn such that the following condition holds:

inf
k 6=k′

ρ(γk, γ
′
k) > 3 sup

k
sup

l 6=l′∈σ−1
n (k)

ρ(ψl, ψl′) + 2 sup
k∈[K]

ρ(γ̂k,σn , γk,σn), (54)
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σn can be recovered by the kernel single (and complete) linkage clustering algorithms with respect to
the Gaussian kernel with bandwidth para using the sample kernel matrix G (defined in section 4 of
the main paper).

Proof of proposition 3. For any partition σ, let

δ = sup
k∈[K]

sup
i,j′∈σ−1(k)

ρ(ψi, ψj).

We first show that for any partition σ satisfying the conditions stated in Proposition 3,

∀l, l′ ∈ [n] σ(l) = σ(l′) ⇐⇒ ρ(ψl, ψl′) ≤ δ,
σ(l) 6= σ(l′) ⇐⇒ ρ(ψl, ψl′) > δ.

Observe that, by definition,

∀l 6= l′ ∈ [n], σ(l) = σ(l′) =⇒ ρ(ψl, ψl′) ≤ δ. (55)

By subadditivity of ρ, for any l, l′ ∈ [n] such that σ(l) = k, σ(l′) = k′, and k 6= k′,

ρ(γk, γk′) < ρ(γk, γ̂k) + ρ(γ̂k, ψl) + ρ(ψl, ψl′) + ρ(ψl′ , γ̂k′) + ρ(γ̂k′ , γk′). (56)

Substituting (54) in (56), we obtain

σ(l) 6= σ(l′) =⇒ ρ(ψl, ψl′) > δ. (57)

Using the fact that ρ(·, ·) ≥ 0, from (55) and (57), we have

∀l, l′ ∈ [n] σ(l) = σ(l′) ⇐⇒ ρ2(ψl, ψl′) ≤ δ2,
σ(l) 6= σ(l′) ⇐⇒ ρ2(ψl, ψl′) > δ2.

All three linkage algorithms based on the matrix of squared MMD evaluations between the component
distributions {ψl}nl=1 or alternatively using the sample kernel matrix G (see Lemma 1) would first
group the components within the same cluster according to σ before grouping components belonging
to different clusters according to σ. Therefore, thresholding the dendrogram to obtain exactly K
clusters would recover the underlying partition σ upto a permutation over the labels. With a minor
modification of the proof, it is easy to see that the Proposition also holds under separbility conditions
provided in (43).

Proof of Theorem 5: Consistent recovery of the planted partition by ALNK. Let Λ be any
mixing measure for which there exists some ε > 0 such that,

PXn

 sup
x,x′∈Xn:

σ∗(x)=σ∗(x′)

ρ(ψx, ψx′) >
1

3
inf
k 6=k′

ρ(γk, γk′)− ε

 n→∞−→ 0, (58)

Then, with high probability (w.h.p) over the samples Xn,

inf
k 6=k′

ρ(γk, γk′) > 3 sup
x,x′∈Xn:

σ∗(x)=σ∗(x′)

ρ(ψx, ψx′) + 3ε. (59)
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Furthermore, we know that for every ε > 0,

P(ρ(γ̂k,σ∗ , γk) > ε)
n→∞−→ 0. (60)

Let t = 3ε/2 and δ = 1/n. Then, for every k ∈ [K], there exists some Nt ∈ N such that ∀ n > Nt,k,

P(ρ(γ̂k,σ∗ , γk) > 3ε/2) <
1

n
. (61)

Let Nt = supk∈[K]Nt,k. For all n > Nt, with high probability (w.h.p) over the samples Xn,

inf
k 6=k′

ρ(γk, γk′) > 3 sup
x,x′∈Xn:

σ∗(x)=σ∗(x′)

ρ(ψx, ψx′) + 2ρ(γ̂k,σ∗ , γk). (62)

From Proposition 3, we have that w.h.p over Xn, kernel single linkage clustering algorithm recovers
the true partition σ∗ (upto a permutation over the labels).

E Necessary conditions for consistency of AFFK and ALNK.
(Proof of Theorem 3)

E.1 Proof for AFFK

Fix the kernel bandwidth parameter ζ > 0. Let r, ε and K be small constants that satisfy
1 > r > 2K > 16ε. Consider the following example in R, where U([a, b]) denotes the uniform
distribution on the real interval [a, b]. Let

γ1 = m

(
1

2
U([−ε, ε]) +

1

2
U([r − ε, r + ε])

)
(63)

and

γ2 = m

(
1

2
U([2r −K − ε, 2r −K + ε]) +

1

2
U([3r −K − ε, 3r −K + ε])

)
. (64)

The mixing measure is given by Λ = 1
2γ1 + 1

2γ2. The idea is that because K > 0, the two clusters
are just not separated enough.
To see that AFFK fails to recover the planted partition with probability approaching 1

2 , consider the
case where the first cluster center is initialized with a point c1 ∈ [r − ε, r + ε]. The farthest first
heuristic then chooses a second cluster center c2 ∈ [3r −Kε, 3r −K + ε]. Since K > 4ε, the initial
clusters will be given by

C1 = {x : x ≤ 2r −K + ε} and C2 = {x : x ≥ 3r −K − ε}.

Consequently, in the first iteration of phase two of the algorithm (compare section B.2), the new
cluster centers satisfy

c̃1 ≥
rN2 + (2r −K)N3

N1 +N2 +N3
− ε and c̃2 ≥ 3r −K − ε,
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where Ni denotes the number of points within the respective intervals. Now the clusters themselves
do not change if

(2r −K) + ε− c̃1 ≤ c̃2 − (2r −K)− ε

⇐⇒ 2N1 +N2

N1 +N2 +N3
r − N1 +N2

N1 +N2 +N3
K ≤ r − 4ε,

an event that occurs asymptotically almost surely as the Ni concentrate around their expectation.
Conditional on this event, the algorithm terminates with clusters C1 and C2, i.e. it does not recover
the planted partition. Due to symmetry, the same holds if the first cluster center is initialized with a
point in [2r−K − ε, 2r−K + ε]. As n→∞, the probability to initialize the first cluster center with
a point in either [r − ε, r + ε] or [2r −K − ε, 2r −K + ε] approaches 1

2 .
We now show that the condition in the theorem is satisfied, namely that as n→∞, it holds that

ρ(γ1, γ2)

sup
x∈Xn

ρ(ψx, γ̂σ∗(x),σ∗)
> 4− ε̂. (65)

A simple way to evaluate the LHS is to express both numerator and denominator as sums of inner
products between Gaussians. We have

ρ(γ1, γ2) ≥ ρ(γ̂1,σ∗ , γ̂2,σ∗)− ρ(γ1, γ̂1,σ∗)− ρ(γ2, γ̂2,σ∗),

and as n→∞ and β → 0, the latter two terms converge in probability to 0. Hence, for all ε1 > 0, it
holds that

ρ2(γ1, γ2) ≥ ρ2(γ̂1,σ∗ , γ̂2,σ∗)− ε1.

Furthermore, since ρ2 is bounded, for all n large enough

ρ2(γ1, γ2) ≥ E
[
ρ2(γ̂1,σ∗ , γ̂2,σ∗)

]
− 2ε1.

A straightforward if somewhat lengthy calculation shows that

E
[
ρ2(γ̂1,σ? , γ̂2,σ?)

]
≥ 2

ζ
(2r −K)2 +O(ε) + o(r4). (66)

Similarly, for the denominator,

sup
x∈Xn

ρ2(ψx, γ̂σ∗(x),σ∗) ≤
2

ζ

1

4
r2 +O(ε). (67)

Hence,

ρ2(γ̂1,σ? , γ̂2,σ?)

sup
x∈Xn

ρ2(ψx, γ̂σ∗(x),σ∗)
≥ (2r −K)2 +O(ε) + o(r4)− 2ε1

1
4r

2 +O(ε)

≥
16− 2Kr +O

(
ε
r2

)
+ o(r2) + 2ε1

r2

1 +O
(
ε
r2

) .

Thus, in order to satisfy (65), we have to choose r small enough, and K, ε and ε1 small enough in
comparison to r. We now derive the expression for the numerator. First define the sets I1 = {x ∈
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Xn : x ∈ [−ε, ε]}, I2 = {x ∈ Xn : x ∈ [r− ε, r+ ε]}, I3 = {x ∈ Xn : x ∈ [2r−K − ε, 2r−K + ε]} and
I4 = {x ∈ Xn : x ∈ [3r −K − ε, 3r −K + ε]}. Denote Ni = |Ii|. We have

ρ2(γ̂1,σ∗n , γ̂2,σ∗n) = < γ̂1,σ∗n , γ̂1,σ∗n > + < γ̂2,σ∗n , γ̂2,σ∗n > −2 < γ̂1,σ∗n , γ̂2,σ∗n >

=

∑
x,y∈I1 < ψx, ψy > +2

∑
x∈I1,y∈I2 < ψx, ψy > +

∑
x,y∈I2 < ψx, ψy >

(N1 +N2)2

+

∑
x,y∈I3 < ψx, ψy > +2

∑
x∈I3,y∈I4 < ψx, ψy > +

∑
x,y∈I4 < ψx, ψy >

(N3 +N4)2

− 2

∑
x∈I1,y∈I3 < ψx, ψy > +

∑
x∈I1,y∈I4 +

∑
x∈I2,y∈I3 < ψx, ψy > +

∑
x∈I2,y∈I4 < ψx, ψy >

(N1 +N2)(N3 +N4)

≥

√
ζ

η

[
N2

1 (1− 4ε2

η ) + 2N1N2(1− (r+2ε)2

η ) +N2
2 (1− 4ε2

η )

(N1 +N2)2

+
N2

3 (1− 4ε2

η ) + 2N3N4(1− (r+2ε)2

η ) +N2
4 (1− 4ε2

η )

(N3 +N4)2

− 2
N1N3(1− (2r−K−2ε)2

η ) +N1N4(1− (3r−K−2ε)2
η )

(N1 +N2)(N3 +N4)

− 2
N2N3(1− (r−K−2ε)2

η ) +N2N4(1− (2r−K−2ε)2
η )

(N1 +N2)(N3 +N4)

]
+ o(r4)

Where we used (4) and the Taylor expansion ex = 1 + x+ o(x2). The inequality sign stems from the
fact that we have replaced the exact locations of sampled points with interval boundaries. Taking
expectations,

E
[
ρ2(γ̂1,σ∗n , γ̂2,σ∗n)

]
≥

√
ζ

η

1

η

[
−4ε2 − 2(r + 2ε)2 − 4ε2

4
+
−4ε2 − 2(r + 2ε)2)− ε2

4

+ 2
(2r −K − 2ε)2 + (3r −K − 2ε)2

4
+ 2

(r −K − 2ε)2 + (2r −K − 2ε)2

4

]
+ o(r4)

=
2

η

√
ζ

η
(2r −K)2 +O(ε) + o(r4).

We now derive the expression for the denominator. By symmetry, it suffices to consider the case
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x ∈ [−ε, ε].

ρ

ψx, 1

N1 +N2

 ∑
x′∈[−ε,ε]

ψx′ +
∑

x′∈[r−ε,r+ε]

ψx′


=

1

N1 +N2
||

∑
x′∈[−ε,ε]

(ψx′ − ψx) +
∑

x′∈[r−ε,r+ε]

(ψx′ − ψx)||

≤ N1

N1 +N2
ρ(ψ−ε, ψε) +

N2

N1 +N2
ρ(ψ−ε, ψr+ε)

≤ρ(ψ−ε, ψ+ε) +
N2

N1 +N2
ρ(ψ0, ψr)

=

√√√√2

√
ζ

η

(
1− e−

4ε2

η

)
+

N2

N1 +N2

√√√√2

√
ζ

η

(
1− e−

r2

η

)

≤ N2

N1 +N2
r

√
2

η
4

√
ζ

η
+O(ε)

where we used (5) and the inequality 1− e−x ≤ x. It follows that asymptotically almost surely

sup
x∈Xn

ρ2(ψx, γ̂σ∗(x),σ∗) ≤
2

η

√
ζ

η

1

4
r2 +O(ε).

E.2 Proof for ALNK

Consider the same example as in the above proof for AFFK. At first, a hierarchical linkage algorithm
(compare section B.4) will merge all points within 2ε-intervals. This leaves us with 4 trees. Then,
the linkage algorithm does not return the planted partition if the trees belonging to the intervals
[r − ε, r + ε] and [2r −Kε, 2r −K + ε] are merged in the next step. For r � K � ε, it can be easily
seen that this is the case.

F Statistical identifiability with respect to ECTR, EFFK, and
ELNK

Proof of Theorem 5: Consistency implies statistical identifiability. Let Λ be
For appropriate choice of bandwidths, we know that

lim
n→∞

ρ(γ̂k,σ∗n , γk)
P
= 0 and lim

n→∞
|λ̂k,σ∗n − λk|

P
= 0. (68)

From Aragam et al. (2020, Lemma A.3), convergence of component measures and the corresponding

component weights implies that the sequence of estimators defined by Λ̂ =
K∑
i=1

λ̂k,σ∗nδγ̂k,σ∗n converges

in probability to the true mixing measure Λ w.r.t the Wasserstein metric.
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G Estimating the Bayes partition

Given a finite sample X = {x1, x2, · · ·xn}, let σ̂ denote the partition generated by a kernel clustering
algorithm A. We can define an estimator of the Bayes partition function σ̂b : Rd → [K] in the natural
way:

σ̂b(x) = arg sup
k∈[K]

∑
j:σ̂(j)=k

Gβ(x, xj)
(∗)
= arg sup

k∈[K]

λ̂k,σ̂ f̂k,σ̂(x) (69)

where (∗) follows from Lemma 1. Due to the equivalence between kernel clustering and density-based
clustering, we can show that if a kernel-based algorithm A can consistently recover the planted
partition, then by means of a single reassignment step given by (69), the algorithm consistently
recovers the Bayes partition.
Exceptional set. Given Λ =

∑
k∈[K] λkδγk , for any t > 0, we define the exceptional set

E(t) =
⋃
k 6=k′

{
x ∈ Rd : |λkfk(x)− λk′fk′(x)| ≤ t

}
.

Theorem 2 (Estimating the Bayes partition). Let ζ, and β be bandwidth parameters satisfying
the conditions provided in Theorem 2. Let Λ ∈ P2

K satisfying the conditions provided in (17). For
X = {x1, x2, · · ·xn} ∼ m(Λ)n and let σ̂b,n be the partition function obtained by ACTR, AFFK or
ALNK followed by the reassignment step in (69). Then, w.h.p over the samples, there exists a

sequence {tn}
n→∞−→ 0 such that σ̂n(x) = σBayes(x) for all x ∈ Rd − E0(tn).

Proof of Theorem 2. The proof of this Proposition is adapted with minor changes from the proof
of Aragam et al. (2020, Theorem 5.2). For this reason, we borrow some of the notation from Aragam
et al. (2020). Since Λ satisfies the separability conditions given in equation (58), from Theorem 2,
we know that w.h.p over the samples the algorithms ACTR, AFFK, and ALNKrecover the planted
partition up to a permutation over the labels, that is, σ̂ = σ∗. For appropriate choice of bandwidths,
we know that w.h.p over the samples,

lim
n→∞

fk,σ∗
P
= fk, (70)

where the convergence is defined pointwise and uniformly over Rd.
Let,

tn = 2 sup
k∈[K]

sup
x∈Rd

|λ̂k,σ∗n f̂k,σ∗n(x)− λkfk(x)| ≥ 0. (71)

From (70), we know that tn
P−→ 0. Moreover, by definition, we have that

|λkfk(x)− λk′fk′(x)| > tn =⇒ λσBayes(x)fσBayes(x)(x) > λkfk(x) + tn ∀x 6∈ E0(tn), k 6= σBayes(x).
(72)

Therefore, it follows that for any x ∈ RD − E0(tn) and any k 6= σBayes(x),

λ̂σBayes(x),σ∗n f̂σBayes(x),σ∗n(x)
(1)
> λσBayes(x)fσBayes(x) −

tn
2

(2)
> λkfk(x) +

tn
2

(3)
> λ̂k,σ∗n f̂k,σ∗n(x), (73)

where, (1) and (3) follow from (71) and (2) follows from (72). This implies that σ̂b(x) = arg sup
k∈[K]

λ̂k,σ∗ f̂k,σ∗(x) =

σBayes(x) for all x 6∈ E0(tn).
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