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Abstract

Despite the ubiquity of kernel-based cluster-
ing, surprisingly few statistical guarantees ex-
ist beyond settings that consider strong struc-
tural assumptions on the data generation pro-
cess. In this work, we take a step towards
bridging this gap by studying the statistical
performance of kernel-based clustering algo-
rithms under non-parametric mixture models.
We provide necessary and sufficient separabil-
ity conditions under which these algorithms
can consistently recover the underlying true
clustering. Our analysis provides guarantees
for kernel clustering approaches without struc-
tural assumptions on the form of the compo-
nent distributions. Additionally, we establish
a key equivalence between kernel-based data-
clustering and kernel density-based cluster-
ing. This enables us to provide consistency
guarantees for kernel-based estimators of non-
parametric mixture models. Along with the-
oretical implications, this connection could
have practical implications, including in the
systematic choice of the bandwidth of the
Gaussian kernel in the context of clustering.

1 INTRODUCTION

Clustering refers to the unsupervised task of parti-
tioning a given data sample or the input space into
meaningful regions. Kernel clustering approaches such
as kernel k-means (Dhillon et al.,|2004)) and kernel spec-
tral clustering (Ng et al.,|2002) are widely adopted by
practitioners, particularly for partitioning non-spherical

Proceedings of the 24'" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

Ulrike von Luxburg!?

Max Planck Institute
for Intelligent Systems, Tiibingen?

Debarghya Ghoshdastidar?

Technical University of
Munich?

complex cluster structures. Beyond their good prac-
tical behavior, kernel methods are appealing due to
their amenability to theoretical analysis. However,
as an anomaly, kernel clustering has been elusive to
theoretical analysis, in particular, under general non-
parametric assumptions on the data generation process.
One of the principle sources for this gap between the-
ory and practice had been the lack of a universally
accepted characterization of the quality of a cluster-
ing. One popular notion of the goodness of clustering
is defined as the one that consistently partitions the
data space. Consistency is, however, only a necessary
condition for clustering algorithms. It simply checks
if an algorithm asymptotically converges to a limiting
partition. The optimality of this limiting partition is
not studied under consistency. As an example, spectral
clustering has been shown to be consistent (Luxburg et
al., 2008) for any similarity function k. However, if one
uses a similarity function based on an uninformative
kernel such as the identity kernel, then the obtained
limiting partition is clearly not guaranteed to be a de-
sirable one. Density based clustering (Hartigan, 1975}
Hartigan, [1981; Rinaldo et al.,|2010) is another popular
line of work with theoretical backing, where clusters
are defined as connected components of high-density
regions, referred to as density level sets. The impre-
cise notion of a high-density region is overcome using
the so called cluster-tree approach (Chaudhuri et al.,
2014; Sriperumbudur and Steinwart, 2012), where a
continuum of all level sets is simultaneously considered.

Another systematic approach to overcome the ambi-
guity concerning the quality of clustering lies in the
so called model-based clustering, which assumes that
the data is generated from a mixture distribution and
the goal is to partition the data in congruity with the
components that generate the data. However, theoret-
ical analysis of kernel clustering methods have been
confined to settings with parametric distributions (Yan
et al., [2016; Couillet et al., 2016} Vankadara et al.,
2020). Parametric assumptions such as the Gaussian
mixture setting, where the components are assumed to
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be normally distributed, are extremely restrictive since
the data generated under such assumptions are far from
a typical dataset for which kernel clustering algorithms
are applicable. In contrast, non-parametric assump-
tions on the data-generation process can be consider-
ably less restrictive, but kernel clustering algorithms
have been elusive to theoretical analysis under such
assumptions. A primary hurdle in the analysis of clus-
tering approaches under non-parametric assumptions
is due to the issue of identifiability of non-parametric
mixture models, that is, non-parametric models may
be ambiguously defined. There is limited previous
work that presents an analysis of kernel-based cluster-
ing algorithms under non-parametric mixture models.
Schiebinger et al. (2015]) provide recovery guarantees
for spectral clustering of non-parametric mixtures by
analyzing the spectral properties of the Laplacian op-
erator under the assumption that the overlap between
the components is small relative to a notion of “indi-
visibility” of the components. The analysis provided in
Schiebinger et al. (2015]) is restricted to that of spectral
clustering and considerably different from the analysis
in this paper.

1.1 Contributions

Non-parameteric kernel clustering. We provide
non-parametric conditions for consistency of certain
kernel-based clustering algorithms. To the best of
our knowledge, these are among the first theoretical
guarantees to kernel-based clustering methods without
assumptions on the form of the component distribu-
tions.

1. We provide an impossibility result for kernel
k-means: there exists a mixture distribution with
arbitrarily large separation between the compo-
nents such that for finite samples from this distribu-
tion kernel k-means fails to recover the underlying
clustering.

2. We establish sufficient separability conditions
under which kernel-based algorithms such as k-
center, farthest-first k-means (FFk-means++), or
kernel linkage algorithms can consistently recover
the true partition, given finite samples from a
mixture distribution.

3. We establish necessary conditions for consis-
tency of the kernel FFk-means++ and kernel
linkage algorithms and show that these separabil-
ity conditions are optimal, that is, the sufficient
conditions match the necessary conditions.

Kernel-based data clustering as distribution
clustering. We establish a key equivalence between
kernel-based data clustering and kernel-based density
clustering. In particular:

4. We show that Gaussian kernel-based data cluster-
ing is equivalent to density clustering, where, each
data point is first represented by a Gaussian prob-
ability density function and the densities are then
clustered using the maximum mean discrepancy
metric (with respect to a Gaussian kernel).

5. In addition to theoretical implications, this con-
nection could also have practical implications in
matters such as choosing the bandwidth of the
Gaussian kernel for clustering which has not been
systematically studied in literature so far. Our
analysis reveals that the bandwidth of the ker-
nel used for clustering needs to decrease with n
but, perhaps surprisingly, asymptotically remain
Non-zero.

Non-parametric estimation of mixture models.
Due to this relationship between kernel data cluster-
ing and distribution clustering, any standard Gaussian
kernel clustering algorithm can be used to define an
estimation procedure of the mixture model. There-
fore, in addition to our primary contributions to kernel
clustering, we also make contributions related to non-
parametric estimation of mixture models.

6. We provide conditions under which the estima-
tion procedures corresponding to the kernel-based
clustering algorithms can consistently estimate the
true mixture model.

2 FORMAL SETTING AND
BACKGROUND

Consider the Euclidean space R? of dimension d as the
input domain. Let P denote the space of all Borel prob-
ability measures on R? that are absolutely continuous
with respect to the Lebesgue measure. In our analysis,
we use the framework of mixing measures to define
mixture distributions. This is fairly standard in the
analysis of non-parametric mixture models (Aragam
et al., |2020; Holzmann et al., [2006; Kimeldorf et al.,
1970; Nguyen et al., [2013; Teicher, [1963]) primarily due
to the following reasons:

e Arbitrary mixture distributions are not identifi-
able. Mixing measures allow for the specification of
true components. Section |3.1] provides a thorough
discussion on identifiability of mixture models.

e In non-parametric clustering, one typically does
not make any assumptions on the form of the
component distributions. An elegant way to ac-
complish this is to allow arbitrary component dis-
tributions from P and impose restrictions on the
set of admissible mixing measures.



Vankadara, Bordt, von Luxburg, Ghoshdastidar

Following the notation of Aragam et al. (2020)), we
denote the space of all probability distributions (mixing
measures) over P supported on a finite (X) number of
elements in P by P%. Formally,

K K
PIZ( = {Z)%&Yk: >\k c RJr, Tk € Pa Z)‘k = 1}7

k=1 k=1

where 0., denotes the point mass concentrated at v € P
and [K] denotes the set {1,2,--- K} for any K € N.
Furthermore, assume that the coefficients (A) of the
component measures (i) are bounded away from 0.
Define m : P% — P to be the mapping that uniquely
associates a mixing measure to a mixture distri-
bution, that is,

K

K
VAEPK A= My, — m(A) =D Ay
k=1 k=1

The support of a mixing measure A specifies the true
components of the corresponding mixture distribution,
I'=m(A).

We now describe the problem setup. Let A =
>_kek] MOy, be a mixing measure in P%. Con-
sider a finite sample X = {z1,23, - x,} drawn in-
dependently and identically (i.i.d) according to some

K
I' =m(A) = > Apye- We denote this by X ~ I'™.
k=1

The component measures -y are absolutely continuous

with respect to the Lebesgue measure, and therefore

admit density functions. We use fi to denote the den-

sity function corresponding to the component measure
K

vk and f = > Apfr to denote the density function
k=1

corresponding to I'. Given any density function h, we

use the term “probability distribution corresponding

to h” to denote the measure 1 which is defined as

¥i(A) = [, h(z)dz, for any Borel set A C R%

For any sample X = {x1,z2, - z,}, we use a map
o : [n] = [K] to represent a K —partition of X and
ck(o) = {z; € X : 0(i) = k} to denote the k' cluster
according to o for all k € [K]. When it is clear from
context, we drop the dependence on ¢ and simply use
¢ to denote ci(o). Given any X ~ I', the “planted
partition” and the “Bayes partition” are of particular
interest.

Planted partition. Observe that, drawing a sample
X = {z1,22, -z, } according to a mixing measure
A=) ke[k] MOy, is equivalent to the following proce-
dure. For each i € [n],

1. sample index k € [K] using the weights A1, ..., Ag,

2. generate a sample x; from ;.

We refer to the partition induced by this process as the
planted partition and use 0% or o} to denote it.

Bayes partition. We refer to the mapping b* : X —
[K] as the Bayes partition function, given by

O Bayes (LU) = arg ;nax Ak fk (.’L‘)

We use O’i—gayes to denote the Bayes partition with re-
spect to a sample X ~ m(A)™ which is defined as the
Bayes partition function restricted to X.

Remark. In this work, any reference to a sample
should be understood as drawn i.i.d according to a
mixture distribution T'.

We now describe the main objective of this work: clus-
tering of non-parametric mixture models.

Non-parametric clustering. Given a finite sample
X ={x1,29, - x,} drawn i.i.d according to T'™, the
central objective of non-parametric, model-based
clustering is to recover the planted partition up to a
permutation over the labels, [K].

Alternatively, one could also be interested in the con-
sistent estimation of the Bayes partition (Aragam et
al., |2020]). We present, our results with respect to the
former notion and they can easily be extended to the
latter by means of a simple modification of the algo-
rithms. We discuss this in more detail in Section Bl
The primary objective of this paper is to understand
the performance of kernel clustering algorithms under
the framework of non-parametric clustering. A brief
background on kernels is thus warranted for further
discourse on our analysis.

Background on kernels. Every symmetric positive
definite (p.d) kernel function g : R? x RY — R is
associated with a feature map ¢ : R? — Hy, where
H,4 is a Hilbert space with the inner product (-, ),
such that (¢(z), ¢(y))n, = g(z,y), Va,y € RL H,
is a reproducing kernel Hilbert space (RKHS)
if the mapping f — f(z) is continuous for every
z € RY where f € H,. The Hilbert space H, cor-
responding to a kernel g is of independent interest
while dealing with probability measures since it ad-
mits feature representations referred to as the kernel
mean embeddings. For any probability measure
P € P, the kernel mean embedding with respect to
kernel g is defined as pp(-) = [, ga 9(x,-)dP, which
is an element of H,. The RKHS norm ||HH9 associ-
ated with H, can be used to define a (semi-)metric
between the probability measures. Formally, the max-
imum mean discrepancy (MMD) between two prob-
ability measures P,Q € P with respect to the ker-
nel g is given by p(P,Q) = [lup — polly,- 1f g is
a characteristic kernel, such as the Gaussian kernel,
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then p is a metric on the space of probability mea-
sures P (Fukumizu et al., 2008; Sriperumbudur, Gret-
ton, et al., |2010). In our analysis, we consider the
space P metrized by the MMD corresponding to a
Gaussian kernel function, g¢ : R? x R* — R, where
gc(z,y) = exp (—7”95_5’”2) Vz,y € R? with band-
width ¢ > 0. The MMD metric enjoys several valu-
able properties, from both a theoretical and practical
point of view (Gretton et al., [2012; Muandet et al.,
2016). Kernel density estimation is a popular non-
parametric approach for density estimation. Given
any X = {x1,xq, -z, } ~ '™, the kernel density esti-
mate (KDE) of the density function f, with respect to
Gaussian kernel gg with bandwidth 8 > 0, is given by

()

J/C\(x) = (2%52)‘1/2

Zﬁ(ﬂﬂ); filz) =

Let f,wi € P be the probability distributions corre-
sponding to f, f; respectively. Under the following
conditions on the bandwidth parameter g,

nB?

p—0,
logn

— 00 as n — 00, (2)

the kernel density estimate fn converges to the true
density f in the I norm (Giné et al., |2002; Einmahl
et al., |2005).

3 RECOVERY GUARANTEES FOR
KERNEL-BASED DATA
CLUSTERING

Identifiability. A key theoretical question concerning
both estimation and clustering under non-parametric
mixture models is that of identifiability, that is, any
mixture distribution can be decomposed in infinitely
many ways into component distributions (Teicher, 1963}
Holzmann et al.,|[2006; Vandermeulen et al., 2015; Miao
et al., [2016; Aragam et al., 2020). Therefore, non-
parametric clustering and estimation of mixture models
are ill-defined, even if the number of components K
is assumed to be known. The framework of mixing
measures as discussed earlier allow for the specification
of the “true components” and the “true planted/Bayes
partitions”. For any set of mixing measures £ C P%,
let m(£) denote the set of mixture distributions cor-
responding to £. Clearly, the mapping £ — m(£) is
not injective on the whole space £ = P? due to gen-
eral non-identifiability. This motivates the following
definition.

Definition 3.1 (Identifiablility). A subset £ C P%
is called identifiable if the map £ — m(£) is injective.

The most common approach to deal with identifiabil-
ity is to make restrictive parametric assumptions on
the form of the component distributions, for example,
Gaussianity, which renders the mixture model identifi-
able (Bruni et al., [1985; Teicher, |1963). Recent work
by Aragam et al. (2020 uses regularity and separa-
bility criteria to achieve identifiability. Our analysis,
inspired by Aragam et al. (2020)), also uses separabil-
ity criterion to deal with identifiability. However, our
analysis differs from theirs on several fronts since we
do not impose any regularity conditions on the mix-
ing measures and also consider a statistical approach
to identifiability. Moreover, the focus of their paper
(identifiability of non-parametric mixture models) is
very different from ours, which is providing recovery
guarantees for kernel-based clustering approaches.

Any non-parametric analysis of model-based clustering
(or estimation) is typically preceded by an identifia-
bility analysis for the mixture models. We do not
explicitly study identifiability, that is, identifying a set
£ € P2 for which only one mixing measure can gener-
ate a mixture distribution. Instead, given finite samples
from the mixture distribution, we provide conditions
under which a particular algorithm (is biased toward
and hence) recovers the true mixing measure/partition.
In our analysis of kernel-based clustering algorithms,
we show that under appropriate separability condi-
tions, certain algorithms can consistently recover the
planted partition. Specifically, we present and analyze
the asymptotic behavior of four different kernel-based
clustering algorithms.

Algorithms. We present a brief description of the
algorithms here for completeness and include detailed
descriptions in the supplementary. Consider a finite
sample X = {x1,x9, - x,} ~ ™

e k-means (Axmn). The objective is to find a
partition & : [n] — [K] such that the sum of
squared within cluster distances on X is minimized.
We consider the optimal solution to the NP-Hard,
k-means problem in our analysis.

e FFk-means++ (Appk). This algorithm is a
variant of k-means-++ where the initial centers are
chosen in a deterministic, farthest-first order.

e k-center (AcTr). The objective seeks to obtain
a k-partition of X such that the maximal radius
of the clusters is minimized. The optimal solution
to the NP-Hard k-center problem is analyzed.

e Agglomerative linkage (ALnk). Given a sim-
ilarity function (single, average or complete link-
age), these algorithms generate a dendrogram es-
tablishing a hierarchy of clusters of the data in a
bottom up approach, starting out with each point
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Figure 1: Example to show that simple separation con-
ditions do not suffice to overcome identifiability. As
the distribution «; 2 moves arbitrarily far from the re-
maining distributions, the distance between ~; and -
also increases arbitrarily. However, without additional
assumptions, no clustering algorithm can recover the
desirable clusters as defined by the true compo-
nents y; and 7.

as its own cluster and progressively combining
them into larger clusters until there is a single
cluster that contains the entire data.

Given a positive definite kernel g : R? x R? — R, the
kernelized versions of these algorithms are defined by
replacing the Euclidean inner product by the inner
product (-,-), induced by g on the input space R,
which is given by

(i, 25)g = 9(@i, ;).
In this paper, we provide necessary and sufficient sepa-

rability conditions for the kernel-based clustering algo-
rithms Axwmn, Arrk, Actr, and Apnk.

Main results. For a finite sample X =
{z1, 22, - x,} ~ '™ recall that 1), refers to the prob-
ability distribution corresponding to ﬁ as defined in
(1)) with bandwidth parameter 5 > 0. Given a partition
o : [n] — [K] of probability distributions {¢;}!_,, we
use 7y » to denote the mean of the k™ cluster according
to o, that is,

1

|ex (o)

Yz, -

z; Eck (o)

Yk,o =

Let p denote the MMD corresponding to the Gaussian
kernel g¢ with respect to a bandwidth parameter ¢ > 0
and let g denote the Gaussian kernel function with
the bandwidth parameter (43% + (). For readability,
when it is clear from context, we ignore the dependence
on the partition function, ¢ in the notation. We now
present one of our key results which establishes the
impossibility of cluster recovery for kernel k-means.
The result states that there is always a mixing measure
with arbitrarily large MMD separation between the
component distributions for which, given finite samples
from this mixture, kernel k-means fails to recover the
planted clustering.

Theorem 1 (Impossibility of clustering recovery
by Axkmn). Fix ¢ > 0. Let 8 be any sequence of

bandwidth parameters and let g be the Gaussian kernel
with bandwidth parameter 432 + (. For all C > 0, there
exists a mizing measure A € P3 such that

p(11,72) > C sup P(Vw, Vo= (2),0+) (3)
reEXnp
holds within all finite samples and yet Axpyn with ker-
nel g w.h.p. fails to recover the planted partition o*.

Even though kernel k-means fails to provably recover
the planted partition for arbitrarily large separation
between the components, there is a sufficient separation
between the components beyond which kernel-based
k-center, FFk-means++, and hierarchical linkage al-
gorithms can provably and consistently recover the
planted partition.

Theorem 2 (Sufficient conditions for consis-
tency of Actr, Arrk, and Aink). Fiz ¢ > 0.
Let B be any sequence of bandwidth parameters satisfy-
ing @ and let g be the Gaussian kernel with bandwidth
parameter 432 + (. For any A € P%, if there exists
€ > 0 such that

P inf , Yk ) > 4 su s Vo () or ) + €
X (k#,p(% Vi) me)gnp(w Vo (z),0+) )

L 4)
then the algorithms Acrr, Arrk, and Apyk with ker-
nel g can w.h.p. recover the planted partition o*.

The result states that, for recovery, the distance be-
tween any two component distributions in MMD (p)
needs to be larger than about twice the maximal within
cluster distance in the feature space: the RKHS (#,)
corresponding to the kernel g, for clustering defined by
the planted partition. The conditions provided here
might appear to be weak, but perhaps more consequen-
tially, in Theorem [3] we show that under no additional
assumptions the constant 1/4 is in fact necessary and
hence cannot be improved for both Appx and Apnk.

Theorem 3 (Necessary conditions for Arrk and
Arnk to consistently recovery the planted par-
tition). Fiz ¢ > 0. Let B be any sequence of bandwidth
parameters and let g be the Gaussian kernel with band-
width parameter 48% + ¢. For any € > 0, there exists
A € P3 such that

Px, (P(’Yl,’m) >4 sup p(Ve, Vor (2),0%) — E) n=Ro

reX,

(5)
and the algorithms Appix and Apnk with kernel g fail
to recover the planted partition o* with probability ap-
proaching % and 1, respectively, as n — oo.

The proofs for the results appear in the supplementary.
For the kernel k-center problem, we can indeed show
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X = {21, 29,2, } ~m(A)" € R?

Kernel-based data clustering (A)

Data partition

—llzi—z;|1*

Apply k-means

Compute
———— 24, 1) = ex
Kernel similarity 9( 3) P
)

Place a density function
1y, on each z;

—llai—11?

"/11, () = (2,,,};2)4 exp 257

467+¢ with respect to g

pz(tb‘,,., W) =205 ¢.a(l — g(zi,75))

Compute MMD
W_» P(isYay) = e, = B, |13ty
| between the densities

. P — 2
Hopy; = f exXp ”MC I 1/)T,d$
Rd

G :[n] — [k]

ST

Density partition

Apply k-means
—————————————

with respect to p

| Kernel-based density clustering (Akpg)

Figure 2: Illustration of the equivalence between kernel-based data clustering and distribution clustering. For
Gaussian kernel clustering algorithm A using a bandwidth parameter n > 0, decompose 7 to obtain any 8 > 0
and ¢ > 0 satisfying 432 4+ ¢ = 1. Then A can equivalently be reformulated as a kernel-based density clustering

procedure as shown in the figure.

that the constant in the sufficient conditions can
further be improved to 1/3 when K = 2. However,
we believe that for any arbitrary K, the conditions
provided in cannot be further improved. This can
be shown for a linear kernel and we leave the more
general case of the Gaussian kernel as a conjecture.
Our results not only show that certain kernel-based
clustering algorithms can exploit separability to recover
the planted clustering but also clearly show that under
no additional assumptions very strong separability con-
ditions are necessary to obtain recovery guarantees for
kernel-based clustering. Furthermore, due to reasons
of identifiability, simple separation conditions between
the component distributions do not suffice to derive
consistent recovery guarantees. For instance consider a
simple example of a mixture distribution shown in Fig-
ure[ll As 7,2 moves arbitrarily far from the remaining
distributions, the distance between the two component
distributions, v1,y2 becomes arbitrarily far. However,
without additional assumptions, it is not possible for a
clustering algorithm to recover the desirable clustering
even if we see infinite amount of data. Therefore, the
separability conditions on the component distributions
are necessarily dependent on the geometric properties
of the distribution and not merely on the sample size
or the dimension of the input space as it often is in the
parametric setting. Our results, providing necessary
and sufficient recovery conditions for kernel-based data
clustering algorithms (Theorems , and [3), are ob-
tained by analyzing an equivalent density/distribution
clustering procedure which is considerably easier to
analyze. Specifically, this equivalence allows us to ex-
ploit the metric geometry of the space of probability
measures on the Euclidean space. Our proof techniques
are motivated by the work of Aragam et al. (2020). We

now describe this relationship between kernel-based
data clustering and kernel-based density clustering.

4 EQUIVALENCE BETWEEN
KERNEL-BASED DATA
CLUSTERING AND
DISTRIBUTION CLUSTERING

In this section, we present a density clustering proce-
dure and describe its close relationship to kernel-based
data clustering. Given a finite sample X, the density
clustering procedure clusters the component probability
distributions (¢;) of the kernel density estimate with
respect to X using MMD as the metric between the
distributions. This procedure is illustrated in Figure
As shown in Figure [2] the partition obtained by this
density clustering procedure can be used to define a
partition on the sample X. This partition can alterna-
tively be obtained by using a simple kernel-based data
clustering procedure. We now describe this density
clustering procedure, which we denote by Akpg.

Kernel-based density clustering Axpg. Consider
Gaussian kernel g¢ for some ¢ > 0. Given sample
X ~T™
~ n -
e Estimate the density of I by f = % > fiasin
i=1
with a bandwidth parameter g > 0.
e Consider MMD corresponding to the Gaussian

kernel g¢ as the metric between the distributions.
Cluster the probability distributions {t;}"_, corre-

~ N
sponding to { fl}
clustering algorithm (for example, k-means) to

by means of a distance based
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2 X = {z1,29,- -2, } ~ m(A)" € R?

E Kernel data clustering
Y G :[n] = K]

Define a partition
on distributions ;

Define an estimator

Estimated component distributions s = |Ck_}g)‘ > e,
i€en(3)

A s = L@l

Estimated component weights -

of the mixing measure A k=1

Figure 3: Illustration of the estimation procedure defined with respect to a kernel clustering algorithm. Any
Gaussian kernel clustering algorithm can be used to define a partition on component density functions {¢;};_;
which can in turn be used to define an estimator of the mixing measure A.

obtain a partition function .

This procedure is also illustrated in Figure We
show that for appropriately chosen bandwidth parame-
ters, any kernel-based data clustering algorithm can be
equivalently formulated as a density clustering proce-
dure (Axpg). Recall that 8 and ¢ are the bandwidth
parameters of the Gaussian kernels used in Axpg for
kernel density estimation and for defining the MMD
respectively. Then, let g : RY x R? — R be the Gaus-
sian kernel with bandwidth parameter 482 + (. The
following lemma shows that the maximum mean dis-
crepancy between the component distributions (1);) is
closely related to kernel evaluations on the input data.

Lemma 1 (MMD between components is closely
related to kernel evaluations between input
data.). Given any sample X € R%, let the compo-
nent KDE distributions (1;) be defined in the usual
way. For all z;,x; € X,

P> (i, 5) = Cpca(l — glai, ;)

where Cg ¢ q 15 a constant dependent on the bandwidths
B, ¢ and the input dimension d.

We obtain this result by explicitly computing the MMD
between the component distributions. Theorem [4] is
then an immediate consequence of Lemma (1} which
states that every kernel based data-clustering algorithm
can equivalently be formulated as a kernel-based density
clustering procedure (see Figure .

Theorem 4 (Equivalence between kernel data—
clustering and Axpg). Any Gaussian kernel-based
(data) clustering algorithm can equivalently be formu-
lated as a clustering of the component KDE distribu-
tions with respect to the MMD metric corresponding to
a Gaussian kernel for appropriately chosen bandwidth
parameters.

This simple result is consequential for practical consid-
erations such as in the choice of bandwidth parameter
for kernel data clustering (see Section @ as well as for
theoretical considerations. As it turns out, the density
clustering procedure (Axpg) of the component KDE

distributions can be used to define an estimator of the
true mixing measure, that is, true component distribu-
tions and the corresponding weights. The equivalence
between the two procedures, therefore, allows us to
derive consistency guarantees for the estimators by
analyzing the corresponding kernel-based clustering
algorithms.

5 CONSISTENCY OF ESTIMATING
MIXTURE MODELS

Estimation procedure. By an estimation procedure,
we refer to any algorithm that takes a sample X drawn
according to some mixing measure A, that is, X ~
m(A)™ and provides an estimate A of A.

Identifiability. Identifiability is also a key issue for
estimation. Similar to our analysis of non-parametric
clustering, we circumvent an explicit analysis of identi-
fiability. Moreover, in the preceding discussion, iden-
tifiability is defined as a deterministic property of a
set of mixing measures. We introduce a statistical
notion of identifiability which can be defined as a prop-
erty of either a mixing measure or a set of mixing
measures. Additionally, in contrast to identifiability,
statistical identifiability is defined with respect to an
algorithm and therefore, it is a more intuitive and nat-
ural definition in the analysis of estimation procedures.
Intuitively, the set of all mixing measures which are
identifiable with respect to an estimation procedure £
encodes the inductive bias of £.

Definition 5.1 (Statistical identifiability). Let o
be some metric defined on the space of all mixing
measures P2. A mixing measure A is statistically iden-
tifiable with respect to an estimation procedure £ if the

sequence of mixing measures {/A\n =& (Xn)} converges
in probability to A, where given X,, ~ m(A)™.

Furthermore, a set of mixing measures £ C P% is said
to be statistically identifiable with respect to estima-

tion procedure £ if every mixing measure A € £ is
statistically identifiable with respect to &.
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Remark. The convergence of the mixing measures
can be defined with respect to any metric on P%. In
our results, we show convergence with respect to the
Wasserstien distance between mixing measures (see the
supplementary for a definition).

Estimation procedure based on kernel-based
data clustering. We describe the procedure to define
an estimator of the true mixing measure A. This pro-
cedure is illustrated in Figure 8] As usual, for some
B,¢ > 0, denote the Gaussian kernel with bandwidth
parameter 432 + ¢ > 0 by g. The component probabil-
ity distributions of the KDE 1; are also defined in the
usual way with respect to the bandwidth parameter
B8 > 0. Given a sample X,, ~ m(A)",

(a) By means of a kernel-based data clustering pro-
cedure, with respect to g, obtain a partition
0 :[n] = [K] of X,,.

(b) Use ¢ to define a partition of component KDE
distributions {t;}!"_,.

Yk,5°

~ K
(c) The estimator is defined as A, = Y ;50
i=1

K3
where Y, 7 = ﬁ D owce, Vi and Mgz = i—f‘
Let EcTr, EFFK, and &Nk denote the estimation pro-
cedures corresponding to the kernel data clustering
algorithms, AcTr, Arrk, and Apnk respectively: the
estimation procedure that uses the respective kernel
clustering algorithm to obtain a partition & in (a).
Theorem [5| then immediately follows from the recov-
ery guarantees for the corresponding kernel-based clus-
tering algorithms (Theorem and the equivalence
between kernel data clustering and density clustering
established in Theorem |4 We show that any mixing
measure satisfying the conditions provided in is
statistically identifiable with respect to the estimation
procedures corresponding to Actr, Arrk, and ApNK-.

Theorem 5 (Statistical identifiability with re-
spect to forr, EFFk, and Sunk). Let ¢ and 8
be bandwidth parameters satisfying the conditions pro-
vided in Theorem @ Then any A € P% satisfying the
conditions provided in is statistically identifiable
with respect to ECTR; 5FFK; and SLNK-

Estimating the Bayes partition. For theoretical
considerations, it might be of interest to analyze con-
ditions under which kernel-clustering algorithms can
consistently estimate the Bayes partition. Given a
finite sample X = {1,292, --2,}, let & denote the
partition generated by a kernel clustering algorithm
A. We can define an estimator of the Bayes partition
function 7, : RY — [K] in the natural way:

op(x) = argsup E Gga(z,z;) ®) argsupxk,gfk,a(z)
ke[K] j5(j)=k ke[K]
(6)

where (x) follows from Lemma |1} Due to the equiva-
lence between kernel clustering and density-based clus-
tering, we can show that if a kernel-based algorithm A
can consistently recover the planted partition, then by
means of a single reassignment step given by @, the
algorithm consistently recovers the Bayes partition.

Exceptional set. Given A = ZkE[K] Ak0~, , for any
t > 0, we define the exceptional set

Et)= | {z e R": [Mefu(z) — Ao fuor (@) <t}

k£k!

Theorem 6 (Estimating the Bayes partition).
Let ¢, and B be bandwidth parameters satisfying the
conditions provided in Theorem @ Let A € P% sat-
isfying the conditions provided in , For X =
{z1,22, -2} ~ m(A)™ and let Gy, be the partition
function obtained by Acrr, Arrx or Apnk followed
by the reassignment step in (@ Then, w.h.p over the
samples, there exists a sequence {t,} "Z%0 such that
Gn () = Opayes(z) for all x € RY — Ey(ty,).

6 DISCUSSION AND FUTURE
WORK

We show in this work that certain kernel-based clus-
tering algorithms can exploit separability conditions
to overcome identifiability. Our results also show that
strong separability conditions are indeed necessary for
provable recovery guarantees for clustering methods
under non-parametric conditions. To further elabo-
rate, we highlight a conceptually interesting insight
from our results, which is surprising on the first glance.
Even though kernel-based FFk-means++-, which is a
relaxation of the NP-Hard kernel k-means can provably
recover the true clusters under the sufficient separa-
bility conditions (Theorem , our impossibility result
(Theorem [3]) shows that the NP-Hard kernel k-means
algorithm fails to (provably) do so. This clearly shows
that for better recovery guarantees for a clustering al-
gorithm A, in the non-parametric setting, it is essential
to thoroughly characterize the inductive bias of the A,
that is, the set of mixing measures for which A can
recover the true clustering.

We also established a key connection between kernel
data clustering and distribution clustering when using
Gaussian kernels and MMD as a metric between the
distributions. As a consequence, we can interpret any
standard Gaussian kernel clustering algorithm as a
distribution clustering procedure. This is particularly
useful in theoretical analysis since, for instance, we can
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analyze kernel clustering algorithms by analyzing the
corresponding distribution clustering procedure and
vice versa. This connection could also have practical
implications on matters such as bandwidth selection
for kernel clustering.

Extending our results beyond the Gaussian ker-
nel. We believe that the relationship between kernel
data clustering and density clustering can indeed be
established for a larger class of kernel functions. For
instance, choosing kernel functions from conjugate fam-
ilies is one way in which the analysis could possibly be
extended to other kernels, that is, choosing the MMD
kernel function as the conjugate prior of the kernel
function used for density estimation. It would also be
of significant interest to characterize the class of kernels
for which the equivalence can be established. However,
a detailed study in this direction is reserved for future
work.

Bandwidth. There is little to no literature that pro-
vides a systematic approach to bandwidth selection
for kernel-based clustering. In contrast to kernel clus-
tering, bandwidth selection is a well studied problem
in the context of kernel density estimation (Giné et
al., 2002; Einmahl et al., 2005} Goldenshluger et al.,
2011; Chacén et al., [2013). By appropriating band-
width selection strategies from this work, we provide
the following guidance in bandwidth selection for
kernel-based data clustering. As it would be ex-
pected, our analysis suggests that the bandwidth pa-
rameter used for kernel-clustering (432 + ¢) needs to
decrease with n since our sufficient conditions for re-
covery require that g 2. Interestingly, however, it
suggests that the bandwidth parameter can asymptot-
ically remain non-zero since ( is chosen to be a fixed
parameter greater than 0. We note that these condi-
tions are asymptotic and a more thorough analysis of
the convergence rates of the estimators is necessary
to provide the rate at which the bandwidth needs to
reduce with sample size. Moreover, the range of the
bandwidth parameter, which depends on the constant
terms, could be be data-dependent. We conducted
few small-sample experiments, and observed that the
dependence of clustering performance on bandwidth is
complex and requires more thorough investigation. We
leave this analysis for future work.
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