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A Algorithm Details

We add a few notes on some steps of Algorithm 1 that are necessary for the implementation.

e Normalization of weights: Note that the weight updates in (14) and (15) do not guarantee that > x¥¥ <
UEVS
Ad for all u € V; in G;. Therefore, we introduce the normalized weights w}¥ which are evaluated in the k-th
iteration as

AR (K + 1)

> (k¥ (k+1) +re(k+1))

Wt (k +1) =

(21)

e Pseudo-weights: We introduce the pseudo-weights K" to accommodate for the setting when the degree
of u or v vertex is strictly less than d. The theoretical justification behind the introduction of these weights
is included in Appendix B.

e Dummy weight updates: We note that update of pseudo-weights as #¥¥(k+1) = &*(k) exp(5/2) implies
that these are not affected by the loss and mere technical components. Similarly, for the vertices u,v ¢ Vs(k),
we do not have samples from them to compute {¥?(k) at the k-th iteration and update their corresponding
weights using (14). Therefore, updates in (15) refer to keeping the corresponding weights for u, v ¢ Vi(k)
pairs effectively unchanged.

B Sample Complexity Analysis

Note that our algorithm consists of two subroutines that are executed in tandem. The first subroutine relates to
the pruning of the set of V' vertices to adaptively focus on the pairwise relationships among the vertices in V.
The second routine is the joint learning of the shared structure in the graph pair which leverages multiplicative
weight updates to the vertices of interest in every iteration. For our sample complexity analysis, we assume that
V5 forms an isolated subgraph in both G; and G5. This assumption allows us to leverage different properties of the
Ising model that are necessary for establishing a closed form of the sample complexity. Furthermore, for analysis
under this assumption, we can decouple the two subroutines in the following manner: We first evaluate the
number of samples that is needed to localize V5 with a high likelihood. Next, we evaluate the sample complexity
of joint learning of the shared subgraph G after V; has been localized with high likelihood.

B.1 Isolating V; vertices through pruning

Before we give the sample complexity analysis for the joint multiplicative weight updates, we will show that the
pruning step of the Algorithm 1 localizes V; correctly in the correlation decay regime.

We start by providing the following lemma, which is instrumental in establishing the edge-level decisions.

Lemma 2. In a ferromagnetic Ising model G = (V, E) if the minimum distance between two vertices u,v € V is
£>1 and X satisfies tanh(\) < 1/(L + 1), where L is the mazimum number of paths between any two vertices,
then we have

tanh’(\) < E[X“X"] < (L 4 1) tanh?()\) . (22)

Proof. For an Ising model, the lower bound on the correlation between any two vertices relates to the shortest
path between them (Anandkumar et al., 2010, Lemma 3). This provides the lower bound in (22), where the
shortest path between u and v vertices have length ¢ > 1. Note that for any graph G, the upper bound on the
correlation, stated by (Anandkumar et al., 2010, Lemma 3), is bounded as follows:

b
E[X“X"] < Ilgi? Z N (u,v) tanh® A 4 | By (u)| tanh®(\) , (23)
= t=t
where N¢(u,v) is the number of paths between w and v of length ¢ and By (u) is the set of vertices in the self-
avoiding walk tree of G at a distance b from vertex u. Therefore, in (23), by using Ny(u,v) < L, tanh’ X\ < tanh? X,

|By(u)| < L(L — 1) and |By(u)| tanh®(\) < tanh? A for any b > %7 we get the upper bound in (22). O
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Now following from the proof of Lemma 1, for any € > 0 and k = a;ﬁ’% P samples, we have
_ 1
P[E,[ X X}] > tanh(A\) — €] > 1 — el Y(u,v) € E;, (24)
_ 1
PEL[X XY] < (L + 1) tanh*(\) + ¢ > 1 — el V(u,v) ¢ E;. (25)

Taking a union bound over all possible pairs in both graphs, (24) and (25) hold with probability not smaller
than 1 — 2p?>~®. Now notice that if lower bound of an edge (u,v) € Fj is higher than the upper bound of a
non-edge (u,v) ¢ Es, then the thresholding decision in (8) also removes the spurious edges with high probability.
Formally, if the following equations hold true,

(L + 1) tanh*(\) + € < tanh(\) — € , (26)
. /ozl;lfgp - tanh(A)(1 — (L2+ 1) tanh*())) 7 (27)

- 2aclogp
tanh®(\)(1 — (L + 1) tanh?®(\))2

: (28)

then the pruning step ensures that V, = Vi. In this context, we add the following lemma.

Lemma 3. In the correlation decay regime of A = O(1/L), with k = O(%) samples, our pruning step localizes
Vs ezactly with probability at least (1 — 2p*>~%).

B.2 Joint Learning of Sparse GLMs

Now that we have localized V; vertices, we will show that the joint learning method will lead to the result in
Theorem 1. We start by noting that the Sparsitron algorithm proposed in (Klivans and Meka, 2017) for learning
a sparse generalized linear model (GLM) was shown to enable structure learning of a single Ising model due to
certain properties of the random variables associated with a degree bounded Ising model. Here, we will build
upon the principles adopted in (Klivans and Meka, 2017) to first propose Algorithm 2 to joint learning of two
sparse GLMs and characterize its performance. Then we will leverage the performance of Algorithm 2 and the
properties of Ising models to complete the proof of Theorem 1.

Algorithm 2 Learning two GLMs jointly

1: Input 8, 7, T pairs of data samples
2: initialize w? = 1,/a for i € {1,2}
3: for a new pair of data sample k € {1,...,T} do

4: Compute hf = i wé:l”
w; 1

5: Compute losses £¥(t) = 1(1, + (o(wh¥ - X (k)) — Y (k))) X (k) for i € {1,2}

6: forte{l,...,a} do

7: if ¢ (whi(t),whb(t)) =1 for k samples then

8: Update the weights w! (t) = wF~(t) exp(B(£5 () + £5(t))/2) for i € {1,2}

9: else

10: Update the weights w? (t) = w1 (t) exp(BeF(t)) for i € {1,2}

11: end if

12: end for

13: end for

Define g; and g2 as two pdfs defined in [—1,1]* x {0,1}. Denote (C;, D;) as a random sample from g;, i.e.,
(Ci, D;) ~ g;, where C; € [-1,1]* and D; € {0,1}. Also, we denote a collection of k¥ independent and identically
distributed (i.i.d.) samples from g; by (C¥, D¥). We assume that C; and D; satisfy the property

E[D;|Ci] = o(ri - C;) , for i € {1,2}, (29)

a

where o : R — [0, 1] is a non-decreasing 1-Lipschitz function, and r; £ [ri,...,7%] is a vector of weights, such

that, ||r;]1 < w for i € {1,2} for some w > 0. Let ¢} (j) be a decision rule that using k data samples from g;
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and go generates the output

<z<j>={ Lodfr=ry (30)

0, otherwise

for j € {1,...,a} and the output is correct with a probability larger than 1 — ~, for some v > 0. We also define
¢ (j) as a vector consisting of decisions made on upto k data samples and is given by

GG, GO - (31)
In this scenario, we propose Algorithm 2 to jointly learn r; and ro which builds upon the principles of Hedge
algorithm in (Freund and Schapire, 1997). Theorem 2 provides the sample complexity of Algorithm 2.

Theorem 2. Given T = O(w?(log(a/d¢)/€?) number of i.i.d. samples from g1 and go, Algorithm 2 forms
estimates 71 and 7o, such that, with probability at least 1 — §, we have

By, 0. [(0(Fi - C;) — a(ri - C)))*] < e, forie {1,2}. (32)

Proof. Note that in Algorithm 2, given a set of k samples and a decision vector ¢} (j), the weight wf(j) for the
j-th index in w is given by

k
wf () = w)(7) [ [ exp(BLY(G)) - (33)
where
Li(j) = ﬂ{czw}w + (L= L)) (34)

and 1., is an indicator function. First, we present a result similar to (Freund and Schapire, 1997, Theorem 5),
which establishes that the overall regret of an online learning framework given by Algorithm 2 is upper bounded
by the regret of the best expert with addition of terms that scale as O(y/T log a) 4 log a. This result is formalized
in the next lemma.

Lemma 4. Given T data samples and a sequence of decision vectors ¢}, the overall regret corresponding to
learning the GLM for g; in Algorithm 2 is bounded as

th min E:L’C O(\/Tloga) +loga, (35)

tE{L at
where

LF & [LF(1),...,LF(a)]" and WF2[RFQ),... KF ()], (36)

» "

such that ||h¥||; = 1 and h¥(t) > 0,Vt € {1,...,a}.

Proof. Given an instance of decision sequences ¢} and the corresponding weights wll?, we note that
a
> wi(t) Zw t) exp(BLE(t)) - (37)
t=1

Since we have L¥(t) € [0, 1], and from the convexity argument in (Freund and Schapire, 1997), we get

exp(BL} (1)) < 1 — (1 —exp(B))L{(t) - (38)

Therefore, it readily follows that

Zw <D w1 - (1 - exp(B))hf - LE) . (39)
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For k = T and by repeating the steps (37) and (39), we have
a a T
Yowl () <Y w(t) [T~ (1 —exp(8))hf - LE) . (40)
t=1 t=1 k=1

a
By using Y w?(¢) = 1 and the property 1+ x < exp(z), Vz, we get
t=1

Z w; (t) < exp(—(1 — exp(B Z hf . LF) . (41)
T
The overall regret of the Algorithm 2 is given by . h¥ . LY and from (41), we have
k=1

v (Sl )
;hi-Ligw. (42)

Therefore, we have established that any sequence of the loss functions for joint learning of the two GLMs satisfy
the same property as the loss function for learning a single GLM in (Klivans and Meka, 2017). Subsequent
arguments in Lemma 4 and Lemma 5 in (Freund and Schapire, 1997) complete the proof. O

We will leverage Lemma 4 to characterize T for prediction of r; next. Corresponding to g;, we define the random
variable

V£ (b} —rifw) - L, (43)
such that, Vik € [-1,1]. Based on Vlk , we define another sequence of random variables
= Vik _E[VikKC]lc_lvD]f_l)’(CS_I’DIS_I)] . (44)

Then, we have ZF € [~2,2]. Note that using Azuma’s inequality on martingales with bounded differences, we
find that the following event holds with probability at least 1 — &,

T T
> E[VF|(CFDE, (C5 L DY) Z O(T'log(1/6) . (45)
k=1 1

Furthermore, note that
E[VA((CH, D), (G5, DY) = CElwhd ) LA (16)
and
E[VA| > 1 Elo(wh - Co) — o(ri- C)?], (47)
where (47) follows from the inequality that Va,b € R, (a — b)(c(a) — (b)) > (c(a) — o(b))? and that the lower

bound corresponds to correct decisions ¢} (t) =1 for all t € {1,...,a}, irrespective of the confidence 7. Then, it
follows from (36), (45), and (47) that with probability at least 1 — &, we have

— Y Elo(wh} - C;) —o(r; - C;))?]

T

T
< min ZLk Z ri/w) - LF + O(y/Tloga) +loga + O(T log(1/3)) . (48)
k=1

k=1



Varici, Sihag, Tajer

Clearly, when ||r;||; = w, we have that

T

min > LF(t) - i(ri Jw)-LE<0. (49)

te{l,...
efl,..a} = 1

When we have ||r;||1 < w, we can augment r; with a pseudo vector 7;, s.t., ||[r;,7:]||1 = w and the random vector
C; with an additional element that corresponds to 0 such that 7; corresponds to the weight associated with 0
and proceed further. This also motivates the inclusion of auxiliary weights £}'” in Algorithm 1. Next, we note
that with probability at least 1 — §, we have

1 Z:I[E[a(whéC - Cy) —o(ri - Cy))?*] = O(\/Tloga) + O(loga) + O(T log(1/6) . (50)

4w
k=1

Therefore, for T = O(w? log(a/d)/€?, we must have that with probability at least 1 — 4,

i LAY 02 <
ke«{%l,l.?,T}E[g(whl Ci)—o(ri-C)*] <e. (51)

B.3 Learning Ising Models Jointly
To complete the proof of Theorem 1, we note that if V, is an MRF, we have
1

T ltep(2h Y, XiXY)
{v:(u,v)EES}

E[B/] (52)

Therefore, every vertex u € V; can determine its neighborhood in G; and G, using Algorithm 2 by setting o to
be a sigmoid function, w = Ad, D; = B}* in G;, and a = |Vb| — 1. In this scenario, we have the following lemma
in the context of Ising models that is equivalent to Theorem 2.

pe
of samples from V; vertices in Gy and Go, Stage 2 of Algorithm 1 produces at least one edge structure EF for

Lemma 5. For a u verter in an Ising model spanned by Vs, giwven ny = O (glog ) number of pairs

ke {l,...,nr}, such that, with probability at least 1 — ﬁ,
Elo[-2 > AXP|-o|-2 > MX/||<e, Vexo (53)
{v:(u,v)eEﬁ“} {v:(u,v)€ES}

Recalling that we can localize all the ¢ vertices of V; exactly with O( loff ) samples, the statement of the Theorem 1
follows from Lemma 5, (Bresler, 2015, Lemma 2.1) for degree bounded Ising models and (Klivans and Meka,

2017, Lemma 4.3).
By combining Lemma 3 and Lemma 5, we complete the proof of Theorem 1.

Remark 2. We conjecture that the above analysis provided us with an upper bound on the number of samples
sufficient for learning Gs as we ignore the impact of multiplicative weight updates made for joint structure learning
till the iteration when pruning has localized V5 successfully. Howewver, in practice, for graphs without the strong
assumption on structure for Vi, we observe that for the same number of samples, our algorithm performs substan-
tially better than learning the two graphs individually even under the correlation decay regime (refer to Fig. 4,
where the structure learning algorithms leverage same pairwise statistics as our pruning subroutine), indicating
that the joint structure learning subroutine converges towards learning the true structure of Gs simultaneously as
the pruning subroutine enables the estimate Vi to converge to V.
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C Necessary Conditions for Recovering (V;, E;)

In this section, we briefly comment on the necessary conditions for recovering the subgraph (Vg, Es) under perfect
pruning. We note that in general, the joint pdf of X; and X5 denoted by f(X;,X3) is given by

1
f(Xl,Xg):Z—mexp STONMXEXTHXIXD 4 > O AXPXT+ > AXEXY | (54)
(u,v)EES (u,w)EEL (u,0)EES

where Zjo is the partition function that ensures f(Xi,X32) is a valid pmf, and we have defined E, & Eq\Es
and B £ E5\E;. The class of graphs associated with Gs is given by by 7, and formally defined in Definition 1.
Following in the main paper, we have defined Z;(Gs) C Z, x Z,, as the class of all possible pairs of Ising models
whose shared structure is given by Gg, and denoted the set of random variables associated with V5 in G; by X3
and those with V\V; by X¢. Accordingly, the marginal joint pmf of the random variables X¢ is given by

1
1Z5(Gs)l

f(X3,X3) & exp | D AN + X5X5)

(u,v)EEs

<Y Y Zl xexp | 3 axpxv+ S0 axexp || (55)

XX (By,B2)eTy(0,) L2 (u,v)€ By (u,v)€ By

where Z5 g is a partition function associated with pdf of the pair of Ising models with edge structures Fy and

FE» unique to G1 and Go, respectively. Clearly, finding a closed-form for f (X3,X35) is intractable in general and
performing marginal inference on Ising models is an open research problem with many approximation methods.

However, in certain scenarios, the pdf f conforms to MRF properties. For instance, if (V;, Es) forms a tree
structure in graphs with L = 1 or an isolated subgraph in graphs with arbitrary L, f(X$,X$) is given by

r3 5 s 1 U Yy Uy
f(X}XQ):Z—eXp > OMXPXY+ XX | (56)
12 (uv/U)eEs

We remark that while (56) captures the connectivity of (Vg, Es) for general Ising models, it ignores any long range
correlations existing between the random variables X;* and X due to the existence of multiple paths between u
and v vertices in graph G;.

For completeness, we list the conditions on the number of samples required in the structure learning stage of
our framework under perfect pruning and when subgraphs spanned by V; form an MRF in both graphs. Note
that the scenario with perfect pruning is sufficient to compare our results on the average sample complexity of
our algorithmic framework since we can isolate Vg correctly with high probability in correlation decay regime.
The following theorem provides the necessary condition on the number of samples for recovering shared graph
structure (V;, Es) in the context of tree-structured graphs.

Theorem 3. When Gy and Go belong to a family of tree structured Ising models and the shared structure FEg
forms a tree, any graph decoder that achieves P(Z;) < 1/2 must have ny, = (ﬁ;h)\ log q) number of samples
from Vg vertices.

Furthermore, for an isolated subgraph (V, E), the necessary conditions based on the results in (Sihag and Tajer,
2019b) for jointly recovering Ey are provided in Theorem 1.

Theorem 4. For a pair of graphs G1 and Gs in the family of Ising models with an isolated subgraph (Vi, Ey),
any graph decoder that achieves P(I;) <dé-— @ must have

logg  exp(Ad)
1
Ntanh A Adexp(y) 0894) (57)

ni, > max{

number of samples from Vi vertices.
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D Additional Experiments

Joint versus independent learning of structurally similar graphs. In this section, we illustrate the
gains in sample complexity per graph by jointly learning the structures of two graphs using Algorithm 3 that
uses the multiplicative weight updates corresponding to the means of the loss functions in (14) as opposed to
learning them independently using the algorithm in (Klivans and Meka, 2017) using (16). The difference from
the experiments given in the main paper is that, here we aim to learn the complete structures of the two graphs,
and assume Vj is known. For this purpose, we run our experiments on Ensemble 3 in Fig. 3 which has maximum
degree 3. The structural similarity between the two models is quantified by a parameter p € (0, 1] in a fashion
similar to that defined in (Sihag and Tajer, 2019a, Definition 1). In this setting, Algorithm 1 without pruning
step and known Vj is equivalent to Algorithm 3.

Algorithm 3 Joint structure learning algorithm for recovering E, Fs> when structural similarity is known (Sihag
and Tajer, 2019a)

1: Input Vi, n =T + M pairs of data samples, 5 = log (1/(1 + \/logp/T))

2: Initialize s¥¥(1) =1/(p— 1), R}*(1) =1/(p — 1) and w}’(1) =0 for all u # v € V and i € {1, 2}

3: for a new pair of data sample k € {1,...,T} do

4: For each u € V, compute b¥(k) = >, wi(k)X? (k)

v#EU,vEV

5: for each pair u,v € V, u # v do

6: Compute losses £V (k)

7 if u € V;,v € V5 then

8: Update the weights ¥ according to (14) and &¥’(k + 1) = RV (k) exp(8/2) for i € {1, 2}
9: else
10: Update the weights ¥ according to (16) and &%V (k + 1) = R¥ (k) exp(B8/2) for i € {1,2}
11: end if

12: end for
13: for each pair u # v do

14: Compute normalized weights w¥¥(k + 1) according to (21)

15: end for

16: Compute estimates Gf and G¥ such that for every pair u # v in GF, an edge exists if w¥® > \/2
17: Compute empirical risks €¥

18: end for

k

19: return Graphs G} : t = argmin,, !

Figure 8 illustrates the comparison of the mean performance of Algorithm 3 for recovering graph pairs with
different structural similarity against recovering them independently using the algorithm in (Klivans and Meka,
2017) over 1000 random instances of graph pairs. The probability of error counts the fraction of the instances at
which the true graph pair was not recovered exactly in any of the iterations when the online learning algorithm
was run up to a horizon indicated on the horizontal axis.

Clearly, our algorithm outperforms the independent structure learning algorithm for 4 = 0.25,0.5 and 1. When
=1, the graph pairs are identical and therefore, Algorithm 1 is equivalent to processing the data X7 and X%
in parallel with 2 processing units that process one graph sample each in every iteration with an exchange of
pairwise loss functions between the two. This indicates that Algorithm 1 outperforms by processing 2 graph
samples in every iteration up to a horizon T as compared to an approach that sequentially processes 1 graph
sample up to a horizon T.
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Figure 8: Error probability versus horizon (T) or the number of samples for each graph.

Our algorithm vs. naive joint learning benchmark. A different baseline from the ones presented in the
main paper can be the joint learning of two graphs in their entirety, without aiming to learn only the shared
structure. We can achieve this baseline by removing pruning part of our algorithm, i.e., simply replacing Step.

18 of 1 with individual weight updates. Figure 9 illustrates that our algorithm requires significantly less number
of samples per vertex on both random and tree structured graph pairs.
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Figure 9: Error probability versus sample complexity

The effect of pruning errors. We remark that if the pruning stage output significantly deviates from the
correct Ejg, our algorithm still has the room to make the correct decisions as the structure learning algorithm
runs independently of the pruning step for at least k > alogp/ tanh? A\ number of iterations, during which the
weights for all pairwise combinations in the graph are learnt. Therefore, if pruning step makes significantly
wrong decisions and terminates updating the weights for certain edges in Eg, we expect the degradation in

performance to be controlled. We tested this on Erdés-Rényi random graph pairs that have 12 shared edges, and

we intentionally stopped updates for 3 of those edges in Vs - We observe in Fig. 10 that, there is approximately

10% increase in sample complexity of recovering the shared graph correctly, indicating that the algorithm was
robust.
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Figure 10: Effect of forced pruning errors
The effect of subgraph size. Size of the subgraph ¢ appears in the sample complexity (20), which indicates

that for a fixed target performance, doubling ¢ increases the sample complexity by %exp()\d). Figure 11
illustrates the effect of increasing graph size for Erdés-Rényi random graphs with 200 vertices.
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Figure 11: Error probability versus sample complexity

Application to voting records. We have tested our algorithm on senate voting data of 109-th congress
(2005-2006 period) (Lewis et al., 2020) which has been previously analyzed in (Guo et al., 2015). There are 44
Democrats, 55 Republicans and 1 independent senator at this term. Each senator was linked to a vertex in the
Ising model, and their ‘Yes’ vote was associated with the state +1 and the ‘No’ vote was associated with the state
—1. Due to the bipartisanship in the U.S. Senate, the voting behavior of any senator was likely to be correlated
with that of other senators with a similar political affiliation. We aimed to learn the shared structure between
the graphs Gpass and Greject, Where the edge structures of Gpass and Gieject Tepresented correlations among the
voting behaviors of different senators in the ”Passed” and ”Rejected” bills, respectively.

Figure 12a illustrates the shared structure between Gpass and Gieject Obtained using our framework. Figure 12b
and 12c illustrate the individual structures of Gpass and Greject learnt using the algorithm in (Klivans and Meka,
2017). The comparison of the shared structure in Fig. 12a to that of the graphs in Fig. 12b and Fig. 12c reveals
that a significant number of edges linking different senators exist in only one graph.
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(a) Shared Gpass and Greject (b) Structure of Gpass (c) Structure of Greject

Figure 12: Learned Structure of Senators of 109th Congress. Blue, Red, and Green vertices represent Democrat,
Republican, and Independent senators respectively.



