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Deep Neural Networks (DNN) We start with a quick recall about the notations and the background
used in the main paper. To this end, we consider a deep neural network which architecture is specified by
N = (V,E, I,O, F ), where:

• V is a set of vertices, i.e., the total number of units in the neural network;

• E ⊆ V × V is a set of edges;

• I = {i1, . . . , id} ⊂ V is a set of input vertices;

• O = {o1, . . . , oC} ⊂ V is a set of output vertices

• F = {fv : v ∈ V } is a set of activation functions, where fv : R→ R.

In the graph defined by G = (V,E) and having a layered structure with L layers, a path p = (v1, ..., vL) with
v1 ∈ I and vL ∈ O consists of a sequence of vertices such that (vj , vj+1) ∈ E for all j. We assume that G
is directed and contains no cycles, the input vertices have no incoming edges and the output vertices have no
outgoing edges. The network is related to the training data by assuming |I| = d, the number of input vertices
corresponds to the number of input features, and |O| = C, the number of output vertices corresponds to the
number of output dimensions. We let nl denote the number of neurons at each layer l ∈ [1, . . . , L] where n1 = d

and nL = C. We further associate a (trainable) weight w
(l)
ij to an edge between vertex v

(l)
i of layer l and v

(l−1)
j

of layer l − 1 and denote by w(l) the matrix of all weights between the two layers. W = {w(`),∀`} is the set of

all parameters associated to the network. For each vertex v
(l)
i , we also associate a value (activation function)

g
(l)
i = f

v
(l)
i

(z
(l)
i ) with z

(l)
i =

∑nl−1

k=1 w
(l)
ik g

(l−1)
k .

Given a training set S = {xj , yj}Mj=1 drawn from distribution D on X × Y with X ⊆ Rd and |Y| = C, the task

of the neural network is to produce a predictor h : X → Y that assigns a label close to yj ∈ Y to each xj ∈ X .
This is done by solving the following optimization problem:

min
W

loss(W ) = min
W

1

M

M∑
j=1

`(oL(xj), yj), (1)

where ` : R×R→ R+ is some convex loss function such as squared `2 norm. Note that one usually uses stochastic
gradient descent to optimize the loss function of a neural network where the weights are updated either for each
example x or for a mini-batch of examples.

Congestion Games We consider a non-atomic version of the congestion games [Schmeidler, 1973] that were
first defined in [Rosenthal, 1973] to model road traffic. All along the paper, we use the definition of non-atomic
congestion games from [Roughgarden and Éva Tardos, 2004] and use some of the results established in this paper.
A non-atomic congestion game illustrated in Figure ?? is composed of the following five elements:

• n: the size of each population of players. In non-atomic game, the number of players is infinite and the
significance of one player is negligible. Consequently, players are distributed into populations and we denote
by d the number of such populations. Each population i ∈ [[d]] has a size ni and must be seen as a flow of
players.

• E(G): the set of resources of the game which are available for players when choosing a strategy. In the
setting we study, the resources are the edges of a graph G that players can use when choosing a path from
their starting point to the ending one.
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Figure 1: Example of a non-atomic congestion game with three populations of players

• S: the set of strategies. Each population of players needs to travel from the starting to the ending point in
the graph using the graph paths between them. Then, for a population i with a starting point di and an
ending point fi, the set of strategies Si of the players from population i are the set of paths that link di to
fi.

• c: the cost functions. To each edge of the graph e ∈ E(G), we associate a non-negative, continuous cost
function ce(·) on R+ which denotes the cost paid by the players using this edge. The cost function depends
on the flow of players that use e and can be viewed as time spent by players to travel so that more players
using the same edge leads to them spending more time on it.

• a: the rates of consumption. As non-atomic congestion games were designed to model road traffic, they
can also take into account the possible types of roads (i.e., edges) and the types of users in the game. The
non-negative coefficients aS,e are created for this aim (with the convention aS,e = 0 if e /∈ S and aS,e > 0
otherwise). Then, for each population i, a strategy Si ∈ S and an edge e, we associate a coefficient aS,e
which is used while defining the flow of users on this edge and the cost a player pays.

These five elements define a non-atomic congestion game NCG = (E(G), c, S, n, a).

The decisions of players are modelled through the action distribution z = (zS) S∈Si
i∈[[d]]

that lists all possible strategies

and is given by a vector of non-negative reals such that
∑
S∈Si

zS = ni for each player type i. One can see zS as
the measure of the set of players that selects strategy S. We call z̃e the total amount of congestion on element
e produced by the action distribution z:

z̃e =

d∑
i=1

∑
S∈Si

aS,ezS .

The cost cS(z) incurred by a player of type i selecting strategy S ∈ Si is defined with respect to the action
distribution z as follows:

cS(z) =
∑
e∈S

aS,ece(z̃e).

One would have noticed that this cost is the sum over all edges used by the player of the costs of these edges.
The social cost SC(z) w.r.t. an action distribution z and the social optimum SO of a game are given respectively
by:

SC(z) =

d∑
i=1

∑
S∈Si

cS(z)zS , SO = min
z

SC(z).



The social cost can be seen as the sum over all players of the costs payed the players while the social optimum
is the optimal social cost. In what follows, when we speak about the value of an action distribution, we mean
the value of the social cost associated to this distribution.

An action distribution z is a Wardrop equilibrium (WE) if for each player type i = 1, 2, ..., d and strategies
Sa, Sb ∈ Si such that zSa

> 0, we have cSa
(z) ≤ cSb

(z). The Wardrop equilibrium is a situation in which no
player intends to switch to another strategy because each of the players has already chosen the cheaper strategy
with respect to the choices of the other players.

The main results about non-atomic congestion games needed further are the followings:

P1. Social cost SC(z) can be rewritten as:

SC(z) =
∑
e∈E

ce(z̃e)z̃e with z̃e =
∑
i

∑
S∈Si

aS,ezS .

P2. Each NCG admits a Wardrop equilibrium.

P3. All Wardrop equilibria have the same value.

P4. For a given game NCG, we define the price of anarchy (PoA) of a game as:

PoA(NCG) =
WE(NCG)

SO(NCG)
.

Our first result for which the full proof is given in the main paper is stated below.

Lemma 1. Assume A1-4, let DNN be defined as N = (V,E, I,O, F ) with F = {f : ∀z, f(z) = z}, let loss(·)
be its associated loss function and let L = {(xj , yj)}Mj=1 be the learning sample. Then, one can construct a

non-atomic congestion game NCGloss
N = (E, c, S, n, a) fully defined in terms of N , loss(·) and L.

FULL PROOF OF THEOREM 1

Theorem 1. Under the assumptions of Lemma 1, let `(ξ, yjk) = Ajkξ
β with Ajk ≥ 0, β ≥ 2. Then, given a neural

network N , every local minimum of the loss function loss(·) associated to N is a Wardrop equilibrium of the
associated congestion game NCGloss

N .

Proof. In what follows, we write cjk := cejk
and similarly for all quantities that have such subscripts to avoid

cumbersome notations. The proof of this theorem relies on several lemmas with the first one showing how the
weight matrix W of the neural network N is related to the flow in the associated congestion game such that the
loss of the neural network becomes equal to the social cost of the associated congestion game.

Lemma. Under the assumption of Lemma 1, a configuration W of the neural network N defines an action
distribution zW of the associated congestion game NCGloss

N such that loss(W ) = SC(zW ). Similarly, for every
action distribution zW of the associated congestion game NCGloss

N there exists a set of weights W of N such that
loss(W ) = SC(zW ).

Proof. (−→) Given a flow z, the social cost of a congestion game can be written as:

SC(z) =
∑
e∈E

ce(z̃e)z̃e.

For the studied congestion games, the following holds:

SC(z) =
∑
e∈E

ce(z̃e)z̃e

=
∑
k

∑
j

cjk(z̃jk)z̃jk



Manuscript under review by AISTATS 2021

=
∑
k

∑
j

`(z̃jk, y
j
k).

Given a set of weights W of a given network N , the loss of the network can be written as:

loss(W ) =
∑
j

∑
k

`(b̃jk, y
j
k)

with bk,i =
∑
p∈Si∩pk wp where wp is the product of the weights encountered in the path p and pk is the set of

paths that include the M edges associated to the output k, b̃jk =
∑
i x

j
i bk,i.

In order to relate z̃jk and b̃jk, we let k ∈ [1, . . . , C] and note that a player of type i who wishes to travel on the

edge ejk travels on all the edges (ej
′

k )1≤j′≤M . Thus, the measure of population i using the edge ejk is equal to the

measure of population i that uses the edge ej
′

k and is denoted by zk,i =
∑
S∈Si∩pk zS where pk is the set of paths

which include (ej
′

k )1≤j′≤M . One can verify that

z̃jk =
∑
i

xjizk,i.

Relating z̃jk and b̃jk now boils down to establishing the equality between zk,i and bk,i. To this end, we note that
for an action distribution z defined such that for each i and S ∈ Si, zS = wS with wS being the product of the
weights encountered in the path S, zk,i =

∑
S∈Si∩pk zS =

∑
S∈Si∩pk wS = bk,i which implies z̃jk = b̃jk so that

loss(W ) =
∑
j

∑
k

`(b̃jk, y
j
k) =

∑
j

∑
k

`(z̃jk, y
j
k)

= SC(zW ).

Note that z is a valid distribution since
∑
S∈Si

zS = 1 as each subgraph of the network with di as root is a
probability tree with non-negative and normalized weights.

(←−) We prove the second statement of this lemma below. From the Assumption 1, it follows that all the
matrices we consider in this proof are non-negative and verify that the sum of the coefficients on each column
is equal to 1. Let w(1), ..., w(L) be the matrices of weights of the neural network such that, for 1 ≤ ` ≤ L, w(`)

is the matrix of the weights which stands between layer ` − 1 and layer `. Concerning the dimensions of the
matrices, we have that w(1) ∈ Mn1,d(R+) and for 1 ≤ ` ≤ L, w(`) ∈ Mn`,n`−1

(R+). Let w′ ∈ MC,d(R+) be the
following matrix: w′ = (zk,i) 1≤k≤C

1≤i≤d
. Let w′′ be the matrix such that w′′ = (bk,i) 1≤k≤C

1≤i≤d
. One can verify that

w′′ = w(L) ∗ ... ∗ w(1) Now, we see that our problem boils down to whether for each matrix w′, there exists
w(1), ..., w(L) such that w′ = w(L) ∗ ... ∗w(1). We will show that the answer is positive by using the fact that each
matrix w(`) has dimensions superior to C due to the Assumption 3. Let w′ be a non-negative and normalized
matrix. Let us take w(1), ..., w(L) such that:

w(1) =

(
0
w′

)
, and for ` = 2, . . . , L : w(`) =

(
H` 0
0 IC

)
with H` =


1 . . . 1
0 . . . 0
...

...
0 . . . 0

 , IC ∈MC(R).

One can verify that w(1), ..., w(L) are non-negative and normalized matrices. Then, we have w(1), ..., w(L) admis-
sible matrices such that w′ = w(L) ∗ ... ∗ w(1).

We now proceed by showing how a local minimum W of the loss function induces a distribution zW
which is a Wardrop equilibrium of the associated congestion game. To this end, we use the result from
[Kinderlehrer and Stampacchia, 2000] showing that every local minimum x∗ of a function h belonging to class
C1 and defined on a closed and convex subset X ⊆ Rn verifies the following variational inequality:

〈∇h(x∗), x− x∗〉 ≥ 0, ∀x ∈ X.



Given W , the loss of the network only depends on {bk,i} (see lemma above) which induces the outputs {b̃jk}.
Then, we can define the loss on the set of admissible families B = {bk,i} and verify that B is convex and closed.
Given the particular shape of the studied loss functions, one can also verify that the loss is C1 on a neighborhood
of B. Then, we get that every local minimum b∗ of the loss function on B verifies the variational inequality:

〈∇loss(b∗), b− b∗〉 ≥ 0, ∀b ∈ B.

We can now prove the following lemma.

Lemma. For any b and b∗ in B, the following holds:

〈∇loss(b∗), b− b∗〉 =
∑
i

∑
k

∑
j

xji c
j′
k (b̃j∗k )b̃j∗k (bk,i − b∗k,i)

+
∑
i

∑
k

∑
j

xji c
j
k(b̃j∗k )(bk,i − b∗k,i).

Proof. Be b ∈ B, we have:

loss(b) =
∑
k

∑
j

`(b̃jk, y
j
k)

=
∑
k

∑
j

cjk(b̃jk)b̃jk

with b̃jk =
∑
i x

j
i bk,i. For b ∈ B we can compute that:

∂loss

∂bk,i
(b) =

∑
j

∂cjk
∂bk,i

(b̃jk)b̃jk + cjk(b̃jk)
∂b̃jk
∂bk,i

=
∑
j

cj′k (b̃jk)xji b̃
j
k + cjk(b̃jk)xji

=
∑
j

cj′k (b̃jk)xji b̃
j
k +

∑
j

cjk(b̃jk)xji .

For b ∈ B and b∗ ∈ B, the previous calculations lead to the desired result.

〈∇loss(b∗), b− b∗〉 =
∑
i

∑
k

∂loss

∂bk,i
(b∗)(bk,i − b∗k,i)

=
∑
i

∑
k

∑
j

xji c
j′
k (b̃j∗k )b̃j∗k (bk,i − b∗k,i) +

∑
i

∑
k

∑
j

xji c
j
k(b̃j∗k )(bk,i − b∗k,i).

On the other hand, we can characterize the Wardrop equilibrium of a non-atomic congestion game using the
following variational inequality. Let Z be the set of admissible flows for NCGloss

N .

Lemma. A distribution z∗ is a Wardrop equilibrium of NCGloss
N if and only if:∑

i

∑
k

∑
j

xji c
j
k(z̃j∗k )(zk,i − z∗k,i) ≥ 0, ∀z ∈ Z.

Proof. (−→) In the following, we will use [Roughgarden and Éva Tardos, 2004, Proposition 2.7]. It states that
if z is a Wardrop equilibrium, then for each player type i there is a real number ci(z) such that all strategies
S ∈ Si with zS > 0 verify cS(z) = ci(z). Then, the social cost of z is:

SC(z) =

d∑
i=1

ci(z)ni.
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We can add that if z is a Wardrop equilibrium, then for each player type i and strategy S ∈ Si, if zS = 0 then
cS(z) ≥ ci(z). This addition is immediate from the definition of the Wardrop equilibrium because it would be
in the interest of the players of type i to use the strategy S otherwise.

We will now apply this proposition to our case. Let z∗ be a Wardrop equilibrum of NCGloss
N . For each player

type i, there exists a number ci(z
∗) such that for all k, if z∗k,i > 0 then

∀S ∈ Si ∩ pk, cS(z∗) =
∑
j

xji c
j
k(z̃j∗k ) = ci(z

∗).

Moreover, if z∗k,i = 0 then for all S ∈ Si ∩ pk, we have

cS(z∗) =
∑
j

xji c
j
k(z̃j∗k ) ≥ ci(z∗)

and in general ∑
j

xji c
j
k(z̃j∗k ) ≥ ci(z∗).

We can compute that:∑
i

∑
k

∑
j

xji c
j
k(z̃j∗k )(zk,i − z∗k,i) =

∑
i

∑
k

∑
j

xji c
j
k(z̃j∗k )zk,i −

∑
i

∑
k

∑
j

xji c
j
k(z̃j∗k )z∗k,i

=
∑
i

∑
k

zk,i
∑
j

xji c
j
k(z̃j∗k )−

∑
k

∑
j

cjk(z̃j∗k )
∑
i

xjiz
∗
k,i

=
∑
i

∑
k

zk,i
∑
j

xji c
j
k(z̃j∗k )−

∑
k

∑
j

cjk(z̃j∗k )z̃j∗k

=
∑
i

∑
k

zk,i
∑
j

xji c
j
k(z̃j∗k )− SC(z∗)

=
∑
i

∑
k

zk,i
∑
j

xji c
j
k(z̃j∗k )−

∑
i

ci(z
∗)ni

≥
∑
i

∑
k

zk,ici(z
∗)−

∑
i

ci(z
∗)ni

=
∑
i

ci(z
∗)
∑
k

zk,i −
∑
i

ci(z
∗)ni

=
∑
i

ci(z
∗)ni −

∑
i

ci(z
∗)ni

= 0.

(←−) Let z∗ be a distribution that verifies∑
i

∑
k

∑
j

xji c
j
k(z̃j∗k )(zk,i − z∗k,i) ≥ 0 ,∀z ∈ Z.

By contradiction, let us suppose that z∗ is not a Wardrop equilibrium. Then by definition, there exists a player
type i and two strategies S1 ∈ Si, S2 ∈ Si such that z∗S1

> 0 and cS1
(z∗) > cS2

(z∗). We construct the distribution
z such that zS = z∗S for all S such that S 6= S1 and S 6= S2. We impose zS1

= 0 and zS2
= z∗S1

+ z∗S2
. One can

verify that z is an acceptable distribution. Let us suppose that S1 ∈ pk and S2 ∈ pk′ . Then, we have k 6= k′

because cS1(z∗) > cS2(z∗) (otherwise we would have cS1(z∗) = cS2(z∗)). We also have that zk′,i = z∗k′,i + z∗S1

while zk,i = z∗k,i − z∗S1
. Furthermore, it holds that cS1(z∗) =

∑
j x

j
i c
j
k(z̃j∗k ) > cS2(z∗) =

∑
j x

j
i c
j
k′(z̃

j∗
k′ ). If i′′ 6= i

or k′′ 6= k 6= k′, we have zk′′,i′′ − z∗k′′,i′′ = 0. We can compute that:∑
i

∑
k

∑
j

xji c
j
k(z̃j∗k )(zk,i − z∗k,i) =

∑
j

xji c
j
k′(z̃

j∗
k′ )(zk′,i − z

∗
k′,i) +

∑
j

xji c
j
k(z̃j∗k )(zk,i − z∗k,i)

=
∑
j

xji c
j
k′(z̃

j∗
k′ )z

∗
S1

+
∑
j

xji c
j
k(z̃j∗k )(−z∗S1

)



= cS2(z∗)z∗S1
− cS1(z∗)z∗S1

= z∗S1
(cS2(z∗)− cS1(z∗))

< 0

that leads to a contradiction.

Let us remind that we consider loss functions of the form loss(W ) =
∑
j

∑
k `(ξ, y

j
k) where `(ξ, yjk) = Ajkξ

β with

Ajk ≥ 0, β ≥ 2. For such loss functions, we can establish the following result.

Lemma. Let loss(W ) =
∑
j

∑
k `(ξ, y

j
k) where `(ξ, yjk) = Ajkξ

β with Ajk ≥ 0, β ≥ 2 and b∗ ∈ B. Then,

∀b ∈ B, 〈∇loss(b∗), b− b∗〉 ≥ 0 if and only if ∀z ∈ Z,
∑
i

∑
k

∑
j

xji c
j
k(b̃j∗k )(zk,i − b∗k,i) ≥ 0.

Proof. We start by showing that the considered loss functions ensure that the cost functions of the associated
congestion game are solutions of the differential equation:

(β − 1)cjk(t) = cj′k (t)t.

In fact, the solutions of the equation (β − 1)U(ξ) = U ′(ξ)ξ which verify U(0) = 0 are functions U such that
U(ξ) = AUξ

(β−1) with β ≥ 2. We restrict the set of solutions to functions U such that AU ≥ 0 so that U is non-
decreasing. Then we have, for all k and j, cjk(ξ) = Ajkξ

β−1 with Ajk > 0, β ≥ 2. The fact that `(ξ, yjk) = cjk(ξ)ξ

imposes that ` has the form: `(ξ, yjk) = Ajkξ
β with Ajk > 0, β ≥ 2. The loss function loss(W ) =

∑
j

∑
k `(ξ, y

j
k)

where `(ξ, yjk) = Ajkξ
β with Ajk ≥ 0 respects all the conditions, i.e., `

x is non-decreasing, non-negative and
continuous. It also allows the cost functions of the associated congestion game to verify the differential equation
written above. For this type of loss, we can rewrite the condition:

〈∇loss(b∗), b− b∗〉 =
∑
i

∑
k

∑
j

xji c
j′
k (b̃j∗k )b̃j∗k (bk,i − b∗k,i) +

∑
i

∑
k

∑
j

xji c
j
k(b̃j∗k )(bk,i − b∗k,i)

=
∑
i

∑
k

∑
j

xji (β − 1)cjk(b̃j∗k )(bk,i − b∗k,i) +
∑
i

∑
k

∑
j

xji c
j
k(b̃j∗k )(bk,i − b∗k,i)

= β
∑
i

∑
k

∑
j

xji c
j
k(b̃j∗k )(bk,i − b∗k,i).

Then, using the fact that B = Z (proved in the first lemma of the proof of Theorem 1), we have:

∀b ∈ B, 〈∇loss(b∗), b− b∗〉 ≥ 0 ⇐⇒ ∀z ∈ Z,
∑
i

∑
k

∑
j

xji c
j
k(b̃j∗k )(zk,i − b∗k,i) ≥ 0.

The proof of the theorem is now straightforward. If W is such that the family b∗ induced by W is a local
minimum of the loss function loss(W ) of N , then

〈∇loss(b∗), b− b∗〉 ≥ 0, ∀b ∈ B

and ∑
i

∑
k

∑
j

xji c
j
k(b̃j∗k )(zk,i − b∗k,i) ≥ 0, ∀z ∈ Z

which implies that zW , the flow associated to W such that z∗k,i = b∗k,i, is a Wardrop equilibrium of the associated
congestion game. This concludes the proof of the main theorem.
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PROOF OF COROLLARY 3

Corollary 3. Under the assumptions of Theorem 1, let C = 2 and let ` be the squared loss. Then, a local
minimum of loss(·) is a global minimum.

Proof. For a set of weights W , we can express the squared loss denoted by Sloss as follows:

Sloss(W ) =
∑
j

∑
k 6=ej

(
b̃jk

)2
+
(

1− b̃jej
)2

while for loss(·) we have:

loss(W ) =
∑
j

∑
k 6=ej

(b̃jk)2.

One can see that:

Sloss(W ) = loss(W ) + const,

where const =
∑
j(1 − b̃jej )2. The squared loss penalizes the outputs equal to 1. Let us rewrite const recalling

that
∑
i x

j
i = 1 and

∑
k bk,i = 1.

b̃jej =
∑
i

xji bej ,i =
∑
i

xji

1−
∑
k 6=ej

bk,i


=
∑
i

xji −
∑
i

xji
∑
k 6=ej

bk,i = 1−
∑
k 6=ej

∑
i

bk,ix
j
i

= 1−
∑
k 6=ej

b̃jk.

Then,

const =
∑
j

(1− b̃jej )2

=
∑
j

1−

1−
∑
k 6=ej

b̃jk

2

=
∑
j

∑
k 6=ej

b̃jk

2

.

Finally, we have that

Sloss(W ) = loss(W ) +
∑
j

∑
k 6=ej

b̃jk

2

.

In a general case of classification with a number of classes C ≥ 3, nothing guarantees that Sloss(·) and loss(·)
have the same local minima. However, in the case of binary classification with C = 2, we have that:

const =
∑
j

∑
k 6=ej

b̃jk

2

=
∑
j

∑
k 6=ej

(b̃jk)2 = loss(W ).

This result is obtained due to the fact that the set {k 6= ej} has an only element (1 ≤ k ≤ C = 2). This implies
that Sloss(W ) = 2loss(W ) and we have that Sloss and loss have the same local minima.



PROOF OF LEMMA 3

We now briefly recall the background on non-linear DNNs with activation functions F given by ReLUs defined
as:

fv : R −→ R
x 7−→ max(0, x).

(2)

One can show that for a non-linear DNN with ReLUs, its kth output for the instance xj is given by:

ojk =
∑
p∈pk

zjpx
j
pwp,

where pk is the set of paths that end to output k, wp is the product of the weights on the path p and xjp is

the value of the coordinate of xj from which the path p starts. As for zjp, it is a variable that is equal to 1 if

all ReLUs fv encountered in the path p are such that fv(g
j
v) = gjv where gv is the value of the node v on the

example xj and 0, otherwise. In other words, the variable zjp reflects whether the path p is active (zjp = 1) or

not (zjp = 0) depending on the ReLU activation on the path p for the instance xj .

One prominent example of non-linear DNN’s modelization was introduced by [Choromanska et al., 2014] and
further improved by [Kawaguchi, 2016] who successfully discarded several of the unrealistic assumptions of the
original model and lightened others. For our analysis, we use some of the lighter assumptions made in the
latter paper. The first assumption, denoted by A1pm in the corresponding paper, states that zjp are Bernoulli

random variables with the same probability of success ρ. The second assumption, called A5um, states that zjp
are independent from the inputs {xj}Mj=1 and the weight parameters W . These assumptions, although remaining

unrealistic in case of A5um, allow us to write the expected output ojk as follows:

E(ojk) =
∑
p∈pk

ρxjpwp = ρ
∑
p∈pk

xjpwp. (3)

One can remark that the output of the network has simply been multiplied by ρ. Given a non-linear DNN N ,
let lin(N) be the linear DNN associated to N where all activation functions are replaced by the function:

fv : R −→ R
x 7−→ x.

We now show how we can reduce non-linear DNNs to congestion games with failures by adapting the results
obtained for atomic congestion games with failures in the paper [Li et al., 2017] to a non-atomic case.

Lemma 2. Assume A1-4, A1pm, A5um, let N = (V,E, I,O, F ) with O and F defined as in (3) and (2),
respectively. Let loss(·) be its associated loss function and let {(xj , yj)}Mj=1 be the available learning sample.

Then, N can be reduced to a non-atomic congestion game with failures NCGFloss
N = (E, c, S, n, a) fully defined

in terms of N and loss(·).

The proof of this lemma can be found in the paper itself. Given W and our set of assumptions, we study the
same loss as in the linear case but on the expected outputs of the neural networks, ie,

loss(W ) =
∑
j

∑
k

`(E(ojk), yjk), (4)

where ojk is the kth output of N for instance j. We further let β = 2 in the definition of ` as done in
[Kawaguchi, 2016] for the squared loss. We now establish the equivalence between the local minima of the
non-linear model to those of the linear one.

Lemma 3. Under the assumptions of Lemma 2, let β = 2 and the loss function be as in (4). Then, a local
minimum of loss(W ) of N is a local minimum of the loss function of the corresponding linear network from
Lemma 1.
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Proof. Under the assumptions of Lemma 3, the loss of the non-linear DNN can be written as:

loss(W ) =
∑
j

∑
k

`(E(ojk), yjk).

We further have that
E(ojk) = ρ

∑
p∈pk

xjpwp = ρb̃jk.

Then,

loss(W ) =
∑
j

∑
k

`(ρ b̃jk, y
j
k)

=
∑
j

∑
k

Ajk(ρ b̃jk)β

= ρβ
∑
j

∑
k

Ajk(b̃jk)β

= ρβ loss′(W ),

where loss′(W ) is the loss of the linear network associated to N . It follows that loss and loss′ have the same
local minimums.
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