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Abstract

This work extends causal inference in tempo-
ral models with stochastic confounders. We
propose a new approach to variational esti-
mation of causal inference based on a repre-
senter theorem with a random input space.
We estimate causal effects involving latent
confounders that may be interdependent and
time-varying from sequential, repeated mea-
surements in an observational study. Our ap-
proach extends current work that assumes in-
dependent, non-temporal latent confounders
with potentially biased estimators. We in-
troduce a simple yet elegant algorithm with-
out parametric specification on model com-
ponents. Our method avoids the need for
expensive and careful parameterization in de-
ploying complex models, such as deep neural
networks in existing approaches, for causal
inference and analysis. We demonstrate the
effectiveness of our approach on various bench-
mark temporal datasets.

1 INTRODUCTION

Estimating the causal effects of an intervention or treat-
ment on an outcome is an important problem in sci-
entific investigations and real-world applications. For
example: What is the effect of sleep-deprivation on
health outcomes? How would family socio-economic
status affect career prospects? What is the impact
of a disease outbreak on the regional stock markets?
Existence of confounders or confounding variables that
affect both the treatment and the outcome may produce
bias in the estimation, and hence complicate the causal
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inference process. Classical approaches to dealing with
observed or visible confounders are the propensity score-
based methods and their variants (Rubin, 2005). In
cases with latent or hidden confounders, however, the
treatment effects on the outcome cannot be directly
estimated without further assumptions (Pearl, 2009;
Louizos et al., 2017). For example, in crop planting,
rainfall received in a field may affect both the fertilizer
(since it may drain the fertilizer off the field) and the
crop yield (through water the plants received). In this
situation, rainfall is the hidden confounder as it may
not be directly measurable in real life.

Recent studies in causal inference (Shalit et al., 2017;
Louizos et al., 2017; Madras et al., 2019) mainly focus
on static data, i.e., the observational data are time-
independent and with independent and identically dis-
tributed (iid) noise. In many real-world applications,
however, events change over time, e.g., each participant
may receive an intervention multiple times and the tim-
ing of these interventions may differ across participants.
In this case, the time-independent assumption does not
hold, and causal inference would degenerate in the mod-
els that fail to capture the nature of time-dependent
data. In practice, temporal confounders such as season-
ality and long-term trends can potentially contribute
to confounding bias. For example, the confounding soil
fertility in crop planting may change over time, due to
different reasons such as annual rainfall or soil erosion.
Whenever soil fertility, which may or may not be di-
rectly measured, declines (or raises), it would possibly
affect the future level of fertility. In real-life situations,
there may be many such latent confounders that may
not be interpretable. This motivates us to propose a
causal modeling framework that captures these latent
confounding variables that change over time, and a
causal inference method that mitigates the stochastic
confounding problem and reduces bias in estimating
causal effects.

In this work, we introduce a framework to character-
ize the latent confounding effects over time in causal
inference based on the structural causal model (SCM)
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(Pearl, 2000). Inspired by recent work (e.g., Riegg,
2008; Louizos et al., 2017; Madras et al., 2019) that
handle static, independent confounders, we relax this
assumption by modeling the confounders as a stochastic
process. This approach generalizes the independent set-
ting to model confounders that have intricate patterns
of interdependencies over time.

Many existing causal inference methods (e.g., Louizos
et al., 2017; Shalit et al., 2017; Madras et al., 2019)
exploit recent developments of deep neural networks.
While effective, the performance of a neural network
depends on many factors such as its structure (e.g., the
number of layers, the number of nodes, or the activation
function) or the optimization algorithm. Tuning a
neural network is challenging; different conclusions
may be drawn from different network settings. To
overcome these challenges, we propose a nonparametric
variational method to estimate the causal effects of
interest using a kernel as a prior over the reproducing
kernel Hilbert space (RKHS). Our main contributions
are summarized as follows:

• We introduce a Causal Inference with Stochastic
Confounders (CausalSC) method for temporal data
that captures the interdependencies of confounders.
This relaxes the independent confounders assumption
in recent work (e.g., Louizos et al., 2017; Madras et al.,
2019). Under this setting, we introduce the concepts of
causal path effects and intervention effects, and derive
approximation measures of these quantities.

• Our framework is robust and simple for accurately
learning the relevant causal effects: given a time series,
learning causal effects quantifies how an outcome is
expected to change if we vary the treatment level or
intensity. Our algorithm requires no information about
how these variables are parametrically related, in con-
trast to the need for paramterizing a neural network.

• We develop a nonparametric variational estimator
by exploiting the kernel trick in our temporal causal
framework. This estimator has a major advantage:
complex non-linear functions can be used to modulate
the SCM with estimated parameters that turn out to
have analytical solutions. We empirically demonstrate
the effectiveness of the proposed estimator.

2 BACKGROUND AND RELATED
WORK

The structural causal model (SCM) (Pearl, 1995, 2000)
is a general causal modeling framework that builds on
several seminal works, including structural equation
models (Goldberger, 1972, 1973; Duncan, 1975, 2014),
potential outcomes framework of Neyman (1923) and
Rubin (1974), and graphical models (Pearl, 1988).

The SCM consists of a triplet: a set of exogenous vari-
ables whose values are determined by factors outside
the framework, a set of endogenous variables whose
values are determined by factors within the framework,
and a set of structural equations that express the value
of each endogenous variable as a function of the val-
ues of the other (endogenous and exogenous) variables.
Figure 1 (a) shows a causal graph with endogenous
variables Y, Z, W. Here Y is the outcome variable, W
is the intervention variable, and Z is the confounder
variable. Exogenous variables are variables that are
not affected by any other variables in the model, which
are not explicitly in the graph. Causal inference eval-
uates the effects of an intervention on the outcome,
i.e., p(Y |do(W = w)), the distribution of the outcome
Y induced by setting W to a specific value w. Our
work focuses on the problem of estimating causal ef-
fects, which is different from the works of identifying
causal structure (or causal discovery) (Spirtes et al.,
2000), where several approaches have been proposed,
e.g., Tian and Pearl (2001); Peters et al. (2013, 2014);
Jabbari et al. (2017); Huang et al. (2019).

Estimators with unobserved confounders. The
following efforts take into account the unobserved con-
founders in causal inference: Montgomery et al. (2000);
Riegg (2008); de Luna et al. (2017); Kuroki and Pearl
(2014); Louizos et al. (2017); Madras et al. (2019).
Specifically, some proxy variables are introduced to
replace or infer the latent confounders. For example,
the household income of a student is a confounder that
affects the ability to afford private tuition and hence
the academic performance; it may be difficult to ob-
tain income information directly, and proxy variables
such as zip code, or education level are used instead.
Figures 1 (b) and (c) present two causal graphs used
by the recent causal inference algorithms in Louizos
et al. (2017); Madras et al. (2019). The graphs contain
latent confounder Z, proxy variable X, intervention
W , outcome Y , and observed confounder S.

Estimators with observed confounders. Hill
(2011); Shalit et al. (2017); Alaa and van der Schaar
(2017); Yao et al. (2018); Yoon et al. (2018); Künzel
et al. (2019); Oprescu et al. (2019); Nie and Wager
(2020) follow the formalism of potential outcomes and
these works do not take into account latent confounders
but satisfy the strong ignorability assumption of Rosen-
baum and Rubin (1983). Of interest is the inference
mechanism by Alaa and van der Schaar (2017), where
the authors model the counterfactuals as functions
living in the reproducing kernel Hilbert space. In con-
trast, we work on a time series setting within a struc-
tural causal framework whose inference scheme directly
benefits from the generalization of the empirical risk
minimization framework.
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Figure 1: The SCM framework: approaches of mod-
eling causality. (a) all variables are observed; (b) the
confounder Z is latent and being inferred using proxy
variable X (Louizos et al., 2017); (c) there is an addi-
tional observed confounder S (Madras et al., 2019).
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Figure 2: Causal inference with Stochastic Confounders
(CausalSC) for temporal data.

Estimators for temporal data. Little attention has
been paid to learning causal effects in non-iid setting
(Guo et al., 2020; Bica et al., 2020b). Lu et al. (2018)
formalize the Markov Decision Process under a causal
perspective and the emphasis is mainly on sequential
optimization. This work does not discuss the estimation
of average treatment effects using observational data.
Li and Bühlmann (2018) model potential outcomes for
temporal data with observed confounders using state-
space models. The models proposed are linear and
quadratic regression. Ning et al. (2019) propose causal
estimates for temporal data with observed confounders
using linear models and developed Bayesian flavors
inference methods. Bojinov and Shephard (2019) gen-
eralize the potential outcomes framework to temporal
data and proposed an inference method with Horvitz–
Thompson estimator (Horvitz and Thompson, 1952).
This method, however, does not consider the existence
of unobserved confounders. Bica et al. (2020a,b) formal-
ize potential outcomes with observed and unobserved
confounders to estimate counterfactual outcomes for
treatment plans on each individual, where the outcomes
are modelled with recurrent neural networks. The ob-
served data of each individual in these two works are
temporal and the individuals are independent with
each other. In other words, there is a collection of ob-
served time series for each individual. Our work, on the
other hand, has no notion of individuals. We instead
observe one time series for each feature of the data,
i.e., the outcome, treatment, covariates and observed
confounders (covariates and observed confounders may

have several features). Thus, the problem setup of our
work is different from that of Bica et al. (2020a,b). Sev-
eral efforts (e.g., Kamiński et al., 2001; Eichler, 2005,
2007, 2009; Eichler and Didelez, 2010; Bahadori and
Liu, 2012) analyse causation for temporal data based
on the notion of Granger causality (Granger, 1980).
These works focus on discovering causal structures,
which is different from our work that estimates causal
effects over a period of time.

3 OUR APPROACH

We introduce a Causal inference with Stochastic Con-
founders (CausalSC) framework based on SCM, as
illustrated in Figure 2. Following Frees et al. (2004),
we evaluate the causal effects within a time interval de-
noted by t. We assume that the interval is large enough
to cover the effects of the treatment on the outcome.
This assumption is practical as many interval-censored
datasets are recorded monthly or yearly.

The latent confounder z. In real world applications,
capturing all the potential confounders is not feasible
as some important confounders might not be observ-
able. When there are unobserved or latent confounders,
causal inference from observational data is even more
challenging and, as discussed earlier, can result in a
biased estimation. The increasing availability of large
and rich datasets, however, enables proxy variables for
unobserved confounders to be inferred from other ob-
served and correlated variables. In practice, the exact
nature and structure of the hidden or latent confounder
z are unknown. We assume the structural equation of
the latent confounder at time interval t as follows:

zt = fz(zt−1) + et, (1)

where the exogenous variable et ∼ N(0, σ2
zIdz

), the
function fz : Z 7→ Fz with Z is the set containing zt
and Fz is a Hilbert space, σz is a hyperparameter
and Idz

denotes the identity matrix. The choice of
this structural equation is reasonable because each
dimension of zt maps to a real value which gives a wide
range of possible values for zt. The function fz(·) would
control the effects of confounder at time interval t− 1
to its future value at time interval t. With reference to
an earlier example, the soil fertility in crop planting can
be considered as confounder and this quantity changes
over time. When the fertility of soil at time interval
t − 1 declines, possibly because of soil erosion, the
fertility of soil at time interval t may also declines.
Furthermore, the Gaussian assumption imposed on
exogenous variable et makes it computational tractable
for subsequent calculations.

The observed variables y, w, x and s. The dx–
dimensional observed features at time interval t, is
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denoted by xt ∈ Rdx . Similarly, the treatment variable
at time interval t is given by wt. yt and st denote the
outcome and the observed confounder at time interval t,
respectively. zt denotes an unobserved confounder. Let
Y, W, S, X be sets containing yt, wt, st, xt, respectively,
and let Fy, Fw, Fs, Fx be Hilbert spaces. Let fy : Z×
W×S 7→ Fy, fw : Z×S 7→ Fw, fs : S 7→ Fs, fx : Z×S 7→
Fx. We postulate the following structural equations:

st = fs(st−1) + ot, yt = fy(wt, zt, st) + vt, (2)

xt = fx(zt, st) + rt, wt = 1(ϕ(fw(zt, st)) ≥ ut), (3)

where the exogenous variables ot ∼ N(0, σ2
sIds), rt ∼

N(0, σ2
xIdx), vt ∼ N(0, σ2

y) and ut ∼ U[0, 1], 1(·) de-
notes the indicator function and ϕ(·) is the logis-
tic function. The last structural equation implies
that wt is Bernoulli distributed given zt and st, and
p(wt = 1|zt, st) = ϕ(fw(zt, st)). Similar reasoning
holds for these assumptions in that they afford compu-
tational tractability in terms of time series formulation.
Our model assumes that the treatment and outcome
at time interval t− 1 are independent of the treatment
and outcome at time interval t given the confounders.
These assumptions are important in real-life, for ex-
ample, in the context of agriculture, the crop yield
(outcome) of the current crop season probably does not
affect crop yield in the next season, and similarly for
the chosen fertilizer (treatment). However, they may
be correlated through the latent confounders, e.g., soil
fertility of the land.

Learnable functions. With Eqs. (1)-(3), we need
to learn fi, where i ∈ A := {y, w, z, x, s}. Standard
methods to model these functions include linear models
or multi-layered neural networks. Selecting models for
these functions relies on many problem-specific aspects
such as types of data (e.g., text, images), dataset size
(e.g., hundreds, thousands, or millions of data points),
and data dimensionality (high- or low-dimension). We
propose to model these functions through an augmented
representer theorem, to be desribed in Section 4.

3.1 Causal Quantities of Interest

Temporal data capture the evolution of the character-
istics over time. Based on earlier work (Louizos et al.,
2017; Pearl, 2009; Madras et al., 2019), we evaluate
causal inference from temporal data by assuming that
the confounders satisfy Eq. (1). The corresponding
causal graph is shown in Figure 2. This relaxes the
independent assumption in Louizos et al. (2017) and
Madras et al. (2019). In particular, we aim to mea-
sure the causal effects of wt on yt given the covariate
xt, where xt serves as the proxy variable to infer la-
tent confounder zt. This formulation subsumes earlier
approaches (Louizos et al., 2017; Madras et al., 2019).

Considering multiple time intervals, we further denote
the vector notations for T time intervals as follows: y =
[y1,..., yT ]>,w = [w1,..., wT ]>, s = [s1,..., sT ]>,x =
[x1,...,xT ]>, z = [z1,..., zT ]>, z0 = ∅, s0 = ∅. We de-
fine fixed-time causal effects as the causal effects at
a time interval t and range-level causal effects as the
average causal effects in a time range. The fixed-time
and range-level causal effects can be estimated using
Pearl’s do-calculus (Pearl, 2009). We model the unob-
served confounder processes using the latent variable
zt, inferred for each observation (xt, st, wt, yt) at time
interval t. The interval is assumed to be large enough to
cover the effects of the treatment wt on the outcome yt.
This assumption is practical as many interval-censored
datasets are recorded monthly or yearly.

Definition 1. Let w1 and w2 be two treatment paths.
The treatment effect path (or effect path) of t ∈
[1, 2,..., T ] is defined as follows:

EP := E[ y |do(w=w1),x]−E[ y |do(w=w2),x]. (4)

The effect path (EP) is a collection of causal effects at
time interval t ∈ [1, 2, . . . , T ].

Definition 2. Let EP be the effect path satisfying Def-
inition 1. Let EPt ∈ EP be the effect at time interval
t. The average treatment effect (ATE ) in [T1, T2] is
defined as follows:

ATE :=
(∑T2

t=T1
EPt

)/
(T2 − T1 + 1). (5)

The average treatment effect (ATE) quantifies the ef-
fects of a treatment path w1 over an alternative treat-
ment path w2. This work focuses on evaluating the
causal effects with binary treatment. The key quantity
in estimating the effect path and average treatment
effects is p(y |do(w),x), which is the distribution of
y given x after setting variable w by an intervention.
Following Pearl’s back-door adjustment (Pearl, 2009)
and invoking the properties of d-separation, the causal
effects of w to y given x with respect to the causal
graph in Figure 2 is as follows:

p(y|do(w),x) =

∫
p(y|w, z, s)p(z, s|x)dsdz. (6)

The expression in Eq. (6) typically does not have an
analytical solution when the distributions p(y |w, z, s),
p(z, s |x) are parameterized by more involved impulse
functions, e.g., a nonlinear function such as multi-
layered neural network. Thus, the empirical expec-
tation of y is used as an approximation. To do so,
we first draw samples of z and s from p(z, s|x), and
then substitute these samples to p(y|w, z, s) to draw
samples of y. The whole procedure is carried out using
forward sampling techniques under specific forms of
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p(y|w, z, s), p(z|x, s,w,y), p(y|s,x,w), p(w|s,x) and
p(s|x). In the next section, we present approximations
of these probability distributions.

4 ESTIMATING CAUSAL EFFECTS

Estimating causal effects requires systematic sampling
from the following distributions: p(s|x), p(w|s,x),
p(y|s,x,w), p(z|x, s,w,y) and p(y|w, z, s). This sec-
tion presents approximations to these distributions.

4.1 The Posterior of Latent Confounders

Exact inference of z is intractable for many models,
such as multi-layered neural networks. Hence, we in-
fer z using variational inference, which approximates
the true posterior p(z|x, s,w,y) by a variational pos-
terior q(z|x, s,w,y). This approximation is obtained
by minimizing the Kullback-Leibler divergence (DKL):
DKL[q(z|x, s,w,y)‖p(z|x, s,w,y)], which is equivalent
to maximizing the evidence lower bound (ELBO) of
the marginal likelihood:

L=Ez

[
log p(y,w, s,x|z)

]
(7)

−
T∑

t=1

Ezt−1

[
DKL

(
q(zt|yt,xt, wt, st)‖p(zt|zt−1)

)]
.

The expectations are taken with respect to varia-
tional posterior q(z|x, s,w,y), and each term in the
ELBO depends on the assumption of their distribu-
tion family presented in Section 3. We further as-
sume that the variational posterior distribution takes
the form q(zt|·) = N(zt|fq(yt, wt, st,xt), σ

2
qIdz ), where

fq : Y×W× S× X→ Fz is a function parameterizing
the designated distribution, σq is a hyperparameter,
and Idx

denotes the identity matrix. Our aim is to
learn fi where i ∈ A← A ∪ {q}.

4.1.1 Inference of The Posterior

To formulate a regularized empirical risk, we draw
L samples of z from the variational posterior using
reparameterization trick: zl = [zl1,..., z

l
T ] with zlt =

fq(yt, wt, st,xt) + σqε
l
t and εlt ∼ N(0, Idx

). By drawing
L noise samples ε1t ,..., ε

L
t at each time interval t in

advance, we obtain a complete dataset

D =

L⋃
l=1

T⋃
t=1

{(
yt, wt,xt, st, z

l
t

)}
.

At each time interval t, the dataset gives a tuple of
the observed values yt, wt,xt, st, and an expression of
zlt = fq(yt, wt, st,xt) + σqε

l
t. We state the following:

Lemma 1. Let κi be kernels and Hi their associated
reproducing kernel Hilbert space (RKHS ), where i ∈ A.

Let the empirical risk obtained from the negative ELBO
be L̂. Consider minimizing the following objective func-
tion

J = L̂
(⋃

i∈A
fi

)
+
∑
i∈A

λi‖fi‖2Hi
(8)

with respect to functions fi (i ∈ A), where λi ∈ R+.
Then, the minimizer of (8) has the following form

fi =
∑T×L

l=1 κi( · ,νi
l )β

i
l (∀i ∈ A), where νi

l is the lth

input to function fi, i.e., it is a subset of the lth tu-
ple of D, and the coefficients βi

l are vectors in the
Hilbert space Fi. This minimizer further emits the fol-

lowing solution: βi = [βi
l ,...,β

i
TL]> =

(∑L
l=1 Kl

i
>

Kl
i +

λiLKi

)−1∑L
l=1 Kl

i
>
ψi for i ∈ A \ {w, q} and ψy = y,

ψx = x, ψs = s, ψz = Kqβ
q.

As mentioned in Section 3, we propose to model fi
using kernel methods. A natural way is to develop a
slight modification to the classical representer theorem
(Kimeldorf and Wahba, 1970; Schölkopf et al., 2001) so
that it can be applied to the optimization of the ELBO.
Eq. (8) is minimized with respect to the weights βi and
hyperparameters of the kernels. The proof of Lemma 1
is provided in Appendix.

Lemma 2. For any fixed βq, the objective function J
in Eq. (8) is convex with respect to βi for all i ∈ A\{q}.

Proof. We present the sketch of proof here and details
are deferred to Appendix. It can be shown that the
objective function is a combination of several compo-
nents including (βi)>Cβi, c>βi, −w> logϕ(Kl

wβ
w)

and −(1 −w)> logϕ(−Kl
wβ

w), where i ∈ {y, s, x, z},
C is a positive semi-definite matrix and c is a vec-
tor. The first component is a quadratic form. Thus,
its second-order derivative with respective to βi is a
positive semi-definite matrix; hence, it is convex. The
second term is a linear function of βi thus it is con-
vex. The two last terms come from cross-entropy loss
function and the input to these function are linear
combination of the kernel function evaluated between
each pair of data points. So these two terms are also
convex. Consequently, J is convex with respective to
βi (i ∈ A \ {q}) because it is a linear combination of
convex components.

Lemma 2 implies that at an iteration in the optimiza-
tion that βq reaches its convex hull, the objective func-
tion J will reach its minimal point after a few more
iterations. This is because the non-convexity of J is in-
duced only by βq. This result indicates that we should
attempt different random initialization on βq instead
of the other parameters when optimizing J because
βi (i ∈ A \ {q}) always converges to its optimal point
(conditioned on βq).



Causal Modeling with Stochastic Confounders

4.2 The Auxiliary Distributions

The previous steps approximate the posterior p(z|·) by
variational posterior q(z|·) and estimate the density of
p(y|w, z, s). This section outlines the approximation
of p(y|s,x,w), p(w|s,x) and p(s|x). Denoting their
corresponding approximation as p̃(y|s,x,w), p̃(w|s,x),
p̃(s|x), we estimate the parameters of those distribu-
tions directly using classical representer theorem.

In the following, we briefly describe how to approximate
p̃(w|s,x). The regularized empirical risk obtained from
the negative log-likelihood of p̃(w|s,x) is as follows:

Jw =

T∑
t=1

`Xent

(
wt, gw(wt−1, st,xt)

)
+ δw‖gw‖2Vw

,

where `Xent(·, ·) is the cross-entropy loss function,
δw ∈ R+, gw : W× S× X 7→ Fw, and Vw is the RKHS
with kernel function τw(·, ·). By classical representer
theorem, the minimized form of gw is given by:

gw =

T∑
j=1

αw
j τw( · , [wj−1, sj ,xj ]),

where αw
j ∈ R is the parameter to be learned. It can be

shown that Jw is a convex objective function because
the input to the cross-entropy function is linear. Other
distributions can be estimated in a similar fashion and
the full description is provided in Appendix.

5 EXPERIMENTS

Baselines and aims of experiments. In this sec-
tion, we examine the performance of the proposed
CausalSC in estimating causal effects from tempo-
ral data on both synthetic and real-world datasets.
We compare with the following baselines: (1) The
potential outcomes-based model for time series data
by Bojinov and Shephard (2019), which uses Horvitz-
Thompson estimator to evaluate causal effects. The
key factor of this method is the ‘adapted propen-
sity score’; we have implemented two versions of this
score. The first one uses a fully connected neural net-
work. Herein, we assume that p(wt|w1:t−1,y1:t−1) =
Bern(wt|f(wt−1, yt−1)) with f(wt−1, yt−1) is a neural
network taking the observed values of wt−1, yt−1 as
input to predict wt. The second one uses Long-Short
Term Memory (LSTM) to estimate p(wt|w1:t−1,y1:t−1).
(2) The second baseline is CFRNet, a model for infer-
ring treatment effects by Shalit et al. (2017). (3) The
third baseline, CEVAE (Louizos et al., 2017) is a causal
inference model based on variational auto-encoders. We
use the code of CEVAE and CFRNet which are avail-
able online to train these models. (4) The last baseline
is fairness through causal awareness (FCA) by Madras

et al. (2019). This method is an extension of CEVAE
that considers two types of confounder: observed and
latent ones.

For the neural network setup on each baseline, we
closely follow the architecture of Louizos et al. (2017)
and Shalit et al. (2017). Unless otherwise stated, we
utilize a fully connected network with the exponen-
tial linear unit (ELU) activation function (Clevert et al.,
2016) and use the same number of nodes in each hidden
layer. We fine-tune the network with 2, 4, 6 hidden lay-
ers and 50, 100, 150, 200, 250 nodes per layer. We also
fine-tune the learning rate in {10−1, 10−2, 10−3, 10−4}
and use Adamax (Kingma and Ba, 2015) for optimiza-
tion.

Evaluation metrics. To evaluate the performance of
each method, we report the absolute error of the ATE:

εATE := |ATE− ÂTE | and the precision of estimating
heterogeneous effects (PEHE) (Hill, 2011): εPEHE :=(∑T2

i=T1
(EPi − ÊPi)

2
)
/(T2 − T1 + 1).

5.1 Illustration on Modeling with Stochastic
Confounders

Before carrying out our main experiments, we first
illustrate the importance of our proposed method in es-
timating causal effects for time series data with stochas-
tic confounders. We consider the ground truth causal
model whose structural equations are as follows:

st = a0 + a1st−1 + ot,

wt = 1(ϕ(b0 + b1zt) ≥ ut),
yt = fy(st, wt) + vt,

where 1(·) is the indicator function, s0 = 0, ot ∼
N(0, 0.32), ut ∼ U[0, 1], and vt ∼ N(0, 1). In this model,
st, wt, yt are endogenous variables, and ot, ut, vt are
exogenous variables. The functions fi (i ∈ A \ {y}) in
this model are linear. We consider three cases for the
ground truth of function fy:

(1). Linear: fy(st, wt) = c0 + c1st + c2wt.
(2). Quadratic: fy(st, wt) = (c0 + c1st + c2wt)

2.
(3). Exponential: fy(st, wt) = exp(c0 + c1st + c2wt).

For all the cases, we randomly choose the true parame-
ters of the models as follows (a0, a1, b0, b1, c0, c1, c2) =
(0.70, 0.95, 0.20,−0.10, 0.70, 0.40, 1.70), and then sam-
ple three time series of length T = 1000 for st, wt, yt
from the above distributions. Herein, we keep wt, yt, st
as the observed data and use the following three in-
ference models to estimate causal effects: Model-1:
without confounders, Model-2: with iid confounders
and Model-3: with stochastic confounders. The er-
rors reported in Table 1 show that the model with
stochastic confounders outperforms the others as it fits
data well. In the following sections, we present our
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Table 1: The errors of the estimated treatment effects (lower is better).

Model-1
without confounders

Model-2
with iid confounders

Model-3
CausalSC

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

Linear outcome 0.06±.01 0.06±.01 0.05±.01 0.05±.01 0.05±.01 0.05±.01
Quadratic outcome 2.53±.08 2.26±.06 1.78±.03 0.88±.03 0.33±.02 0.26±.02
Exponential outcome 4.52±.12 3.36±.15 4.18±.20 2.41±.07 0.91±.03 0.78±.06

main experiments with more complicated functions fi
(i ∈ A).

5.2 Synthetic Experiments

Since obtaining the ground truth for evaluating causal
inference methods is challenging, most of the recent
methods are evaluated with synthetic or semi-synthetic
datasets (Louizos et al., 2017). This set of experiments
is conducted on four synthetic datasets and one bench-
mark dataset, where three synthetic datasets are time
series with latent stochastic confounders and the other
two datasets are static data with iid confounders.

Synthetic dataset. We simulate data for yt, wt, xt,
st and zt from their corresponding distributions as in
Eqs. (1)-(3), each with length T = 200. The ground
truth nonlinear functions fi(i ∈ A \ {q}) with respect
to the distributions of yt, wt,xt, st, zt are fully con-
nected neural networks (refer to Appendix for details
of these functions). Using different numbers of the
hidden layers, i.e., 2, 4, and 6, we construct three syn-
thetic datasets, namely TD2L, TD4L, and TD6L. For
these three datasets, we sample the latent confounder
variable z satisfying Eq. (1). We also construct another
dataset, TD6L-iid, that uses 6 hidden layers but with
the iid latent confounder variable z, i.e., zt ⊥⊥ zs,∀t, s.
Finally, we only keep yt, wt, xt, st as observed data for
training. Further details of the simulation are provided
in Appendix.

Benchmark dataset. Infant Health and Develop-
ment Program (IHDP) dataset (Hill, 2011) is a study
on the impact of specialist visits on the cognitive de-
velopment of children. This dataset has 747 entries,
each with 25 covariates. The treatment group consists
of children who received specialist visits and a control
group that includes children who did not. For each
child, a treated and a control outcome were simulated
from the numerical scheme of the NPCI library Dorie
(2016).

Results and discussion. Each of the experimen-
tal datasets has 10 replications. For each replication,
we use the first 64% for training, the next 20% for
validation, and the last 16% for testing. We exam-
ine three setups for our inference method, one with
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Figure 3: The heatmap of αj1 on each dataset.

kernel method to model the nonlinear functions, an-
other one with the neural networks, and the third one
is an iid confounder setting with kernel method to
model the nonlinear functions. Specifically, ‘CausalSC-
Matérn kernel’, ‘CausalSC-RBF kernel’ and ‘CausalSC-
RQ kernel’ denote our proposed method with repre-
senter theorem to model the nonlinear functions fi
(i ∈ A) using Matérn kernel, radial basis function
kernel, and rational quadratic function kernel, respec-
tively. CausalSC-NNjL denotes our method using
neural networks to model these nonlinear functions,
where j ∈ {2, 4, 6} is the number of hidden layers. ‘iid
confounder-Matérn kernel’, ‘iid confounder-RBF kernel’
and ‘iid confounder-RQ kernel’ denote our proposed
method with representer theorem and independent con-
founders.

Table 2 reports the errors of each method, where signif-
icant results are highlighted in bold. We observe that
the performance of our model is competitive for the first
three datasets since our framework is suited and built
for temporal data. This verifies the effectiveness of our
proposed method on the inference of the causal effects
for temporal data, especially with latent stochastic
confounders. Moreover, the use of representer theorem
returns similar values of ATE on three different kernel
functions. Our proposed method outperforms the other
baselines on the first three datasets, this is because we
consider the time-dependency in the latent confounders,
while the others do not take into account such property.
For datasets that respects iid confounder, our meth-
ods give comparable results with the other baselines
(the last five lines in Table 2). This can be explained
as follows. In our setup, zt has the following form:
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Table 2: Out-of-sample ATE error (εATE) of each method on different datasets (lower is better).

Method
Temporal Data (latent stochastic confounders) IID Data (iid confounders)

TD2L TD4L TD6L TD6L-iid IHDP

CausalSC-Matérn kernel 0.299±.069 0.193±.088 0.237±.056 0.412±.116 0.290±.076
CausalSC-RBF kernel 0.341±.078 0.289±.025 0.287±.067 0.397±.096 0.460±.130
CausalSC-RQ kernel 0.311±.067 0.255±.020 0.257±.063 0.342±.076 0.489±.170

CausalSC-NN2L 0.369±.080 0.395±.162 0.396±.169 0.390±.107 4.057±.109
CausalSC-NN4L 0.413±.092 0.309±.063 0.313±.060 0.398±.104 1.048±.441
CausalSC-NN6L 0.477±.102 0.325±.069 0.297±.070 0.388±.106 0.306±.063

iid confounder-Matérn kernel 0.519±.072 0.658±.098 0.762±.068 0.311±.092 0.217±.095
iid confounder-RBF kernel 0.632±.085 0.982±.120 0.884±.078 0.346±.075 0.277±.091
iid confounder-RQ kernel 0.640±.085 1.081±.103 0.785±.077 0.335±.076 0.283±.075

Bojinov and Shephard (2019) (FC) 1.477±.220 1.243±.219 1.180±.177 0.470±.081 0.529±.183
Bojinov and Shephard (2019) (LSTM) 1.316±.261 1.117±.232 1.179±.323 0.593±.102 0.613±.137
Shalit et al. (2017) (CFRNet) 0.780±.131 0.570±.098 0.701±.131 0.568±.091 0.424±.100
Louizos et al. (2017) (CEVAE) 1.166±.247 1.428±.709 0.705±.179 0.337±.093 0.232±.061
Madras et al. (2019) (FCA) 0.391±.078 1.065±.504 0.682±.080 0.393±.103 0.261±.063
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Figure 4: εATE on different lengths of the training set
(lower is better).

zt = α0 +
∑T

j=1

∑L
l=1αjl kz(zt−1, z

l
j) + εt, where α0

is a bias vector, αjl is a weight vector, and εt is the
Gaussian noise (Please refer to Appendix for specific
expressions of α0 and αjl). The learned weights αjl

presented in Figure 3 (for l = 1) show that their quan-
tities are around 0 on data with iid confounders, which
breaks the connection from zt−1 to zt and thus makes
these two variables independent to each other.

Figure 4 presents the convergence of each method on the
dataset TD6L, over different lengths of the training set
Ttrain ∈ {5, 10,..., 125}. In general, the more training
data we have, the smaller the error of the estimated
ATE. The figure reveals that our method (blue line)
starts to converge from around Ttrain = 45, which is
faster than the others. Additionally, the estimated
ATE of our method is stable with a small error bar.

5.3 Real Data: Gold–Oil Dataset

Data description. Gold and oil are among the most
transactable commodities in real-life. An increasing

trend of oil price would result in a rise of gold price since
it may generate higher inflation that pushes up the de-
mand for gold (Le and Chang, 2011; Šimáková, 2011).
In this section, we examine the causal effects from the
price of crude oil to that of gold. The dataset in this
experiment consists of monthly prices of some com-
modities including gold, crude oil, beef, chicken, cocoa-
beans, rice, shrimp, silver, sugar, gasoline, heating oil
and natural-gas from May 1989 to May 2019. We con-
sider the price of gold as the outcome y, and the trend
of crude oil’s price as the treatment w. Specifically,
we cast an increase of crude oil’s price to 1 (wt = 1)
and a decrease of crude oil’s price to 0 (wt = 0). We
use the prices of gasoline, heating oil, natural-gas, beef,
chicken, cocoa-beans, rice, shrimp, silver and sugar as
proxy variables x.

To make it suitable for our setting, the following pre-
rocessing procedure is performed. Let ν0,ν1,ν2,...,νT

be time series of a commodity. We take the differ-
ence between two consecutive observations as input
to our model, i.e., ∆νt = νt − νt−1. This preprocess-
ing is applied to all the prices of commodities, thus
the inputs to our model are actually the differenced
series: ∆ν1,∆ν2,∆ν3,...,∆νT . For the treatment wt

(t = 1, 2,..., T ), we further cast it to a binary value,
i.e., wt = 1(∆νt > 0), where 1(·) denotes the indicator
function. By using the differenced series, we are remov-
ing trends and seasonal effects (see, e.g, Commandeur
and Koopman, 2007, Chapter 10; Jinka and Schwartz,
2016, Chaper 4). Hence, it would be more reasonable
to assume that the preprocessed data satisfies our pro-
posed causal graph, i.e., the two consecutive differenced
values of the observations are independent given the
latent confounders, ∆νt ⊥⊥ ∆νt−1 | zt.
Results and discussion. We evaluate the effect
path and ATE between two sequences of treatments
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Figure 5: Case (a): ATE between two treat-
ment paths [1, 1,..., 1, 1]> and [0, 1,..., 0, 1]>, Case (b):
ATE between two treatment paths [1, 0,..., 1, 0]> and
[0, 1,..., 0, 1]>.

w1 = [1, 1,..., 1, 1]> (increasing crude oil prices) and
w2 = [0, 1,..., 0, 1]> (alternating decreasing and increas-
ing crude oil prices, i.e., constant on average). In
Figure 5, Case (a) presents the estimated ATE of the
above two sequences of treatments. The estimated ATE
using CausalSC is 4.8, which means that in a period
the price of crude oil increases, the average gold price
is about to increase 4.8. This quantity is equivalent
to an increase of 0.77% in the gold price over the pe-
riod (4.8/{(∑T

t=1 y
obs
t )/T} = 0.77%). To validate the

0.77% increase in gold price, we compare this with the
results reported in Šimáková (2011) (based on Granger
causality) that show the “percentage increase in oil
price leads to a 0.64% increase in gold price”. We note
that our results give similar order of magnitude and the
slight difference may be attributed to our experimental
data that is from May 1989 to May 2019, while the
analysis in Šimáková (2011) is on the data from 1970
to 2010.

In Figure 5, Case (b), we present another experiment
with w1 = [1, 0,..., 1, 0]> and w2 = [0, 1,..., 0, 1]>. In
this case, both treatment paths represent the alternat-
ing variation of crude oil prices. Specifically, the former
increases first and then decreases, while the latter is on
the opposite. The average treatment effect is expected
to be around 0. From Figure 5, Case (b), the estimated
ATE by CausalSC is 0.0045, which is in line with the
expectation. To check on statistical significance, we
performed a one group t-test on the EP (Definition 1)
with the population mean to be tested is 0. The p-value
given by the t-test is 0.9931, which overwhelmingly fail
to reject the null hypothesis that the ATE equals 0.
This again verifies the reasonable performance of the
proposed method.

6 CONCLUSION

We have developed a causal modeling framework,
CausalSC, that admits observed and latent confounders

as random processes, generalizing recent work where
the confounders are assumed to be independent and
identically distributed. We study the causal effects over
time using variational inference in conjunction with
an alternative form of the representer theorem with a
random input space. Our algorithm supports causal
inference from the observed outcomes, treatments, and
covariates, without parametric specification of the com-
ponents and their relations. This property is important
for capturing real-life causal effects in SCM, where
non-linear functions are typically placed in the priors.
Our setup admits non-linear functions modulating the
SCM with estimated parameters that have analytical
solutions. This approach compares favorably to recent
techniques that model similar non-linear functions to
estimate the causal effects with neural networks, which
usually involve extensive model tuning and architecture
building.

One limitation of our framework is that the fixed
amount of passing time (time-lag) is set to unity as it
leads to further simplifications in computing causal ef-
fects. Of practical interest is to perform a more detailed
empirical study on general time-lag.
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