
Large Scale K-Median Clustering for Stable Clustering Instances

Konstantin Voevodski
Google, Cambridge, USA

Abstract

We study the problem of computing a good
k-median clustering in a parallel computing
environment. We design an efficient algorithm
that gives a constant-factor approximation
to the optimal solution for stable clustering
instances. The notion of stability that we
consider is resilience to perturbations of the
distances between the points. Our computa-
tional experiments show that our algorithm
works well in practice - we are able to find bet-
ter clusterings than Lloyd’s algorithm and a
centralized coreset construction using samples
of the same size.

1 Introduction

Modern data collections require algorithms that can
handle massive amounts of data. In many applications
involving online content (for example videos, images,
text posts), it is common to have hundreds of millions
of data points. Therefore the design and development
of large-scale learning algorithms has become a com-
pelling research area. In particular, recently large-scale
parallel algorithms have been developed for hierarchi-
cal clustering (Bateni et al., 2017), graph partitioning
(Aydin et al., 2016), and weighted set cover (Harvey
et al., 2018).

Here we study k-median clustering in a parallel comput-
ing environment. Given a set of data points X, the k-
median clustering problem is to find a set of k centers in
X such that the sum of the distances between each data
point and the nearest center is minimized. This is a
very-well studied problem with several known constant-
factor approximations (see Charikar et al. (2002); Jain
and Vazirani (2001); Arya et al. (2001)). However,
these algorithms are very computationally expensive

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

and do not scale well even to medium-size data sets.
Sampling and coreset approaches have been proposed
for the k-median problem to support larger data sets,
but they are still limited in how much data they can
handle. In particular, these approaches still require
computing a constant-factor approximation on the sam-
ple or coreset, and become infeasible when the size of
the required sample or coreset grows too large (see Sec-
tion 1.2). In addition, online and streaming approaches
have been proposed for the k-median problem, but
their run time is not feasible for clustering a lot of data
points at once (see Section 1.2).

Our objective is to design an algorithm that can easily
handle millions of data points. A heuristic way to ap-
proach a clustering task of this scale is to first partition
the data onto many machines using some application-
specific criteria. We can then cluster the data on each
machine in parallel. However, this means that the data
points assigned to different machines cannot be in the
same cluster. If our initial partition strategy is not
very good, we then severely limit the quality of the
clustering we can output. Another way to approach
large-scale clustering is to make strong assumptions
about the structure of the data, which can give clus-
tering instances that are easy to solve efficiently even
for very large data sets (see Section 3).

In this work we design an efficient k-median clustering
algorithm that easily scales to millions of data points.
Our algorithm does not use any partitioning heuris-
tics, and makes more realistic assumptions about the
structure of the data. The first step of our algorithm
samples a set of points S ⊂ X uniformly at random.
We then compute a Voronoi decomposition of X with
respect to the points in S. Observe that the Voronoi
decomposition may be computed in a distributed fash-
ion in time tn/m, where t is the size of the sample,
n is the size of the data set, and m is the number of
machines. Given that m can easily be on the order of
104, the parallel Voronoi decomposition only takes a
few minutes even when n is on the order of 1010. We
then compute the clustering by running an in-memory
algorithm (on a single machine) that only considers
the points in S, whose run time is polynomial in t.

Large Scale K-Median Clustering for Stable Clustering Instances

However, our algorithm is still able to approximate
the objective value for the entire data set using the
information from the Voronoi cells.

1.1 Our Results

We design and develop a parallel k-median clustering
algorithm with strong performance guarantees. In our
analysis we prove that if the data has a certain struc-
ture, our algorithm outputs a 6-approximation of the
optimal solution in expectation. On a single machine
our algorithm has a run time of O(nt + t3), where
t = O(klogkδ) is the size of the sample used by the
algorithm. In a distributed computing environment
with m machines, the algorithm can be implemented
in time O(ntm + t3).

We assume that the clustering instance is resilient to
perturbations of the distances between the points -
the optimal clustering remains unchanged for small
multiplicative perturbations. This assumption has been
studied in a variety of previous work (see, in particular
Awasthi et al. (2012); Balcan and Liang (2012); Ben-
David and Reyzin (2014)). We also assume that the
data points are more densely distributed around the
centers of the optimal clustering (see Section 2). This
is a natural property of a good clustering, and we have
observed it to hold for real data.

In Section 4 we show that our algorithm works well
in practice. We show that we are able to compute
clusterings with better objective value than alternative
solutions using a sample of points of the same size. We
also show that our center-density assumption holds for
the data sets in our study.

1.2 Related Work

There are several constant-factor approximations for k-
median. Charikar et al. (2002) give a 6 2

3 -approximation
algorithm, and Jain and Vazirani (2001) give a 6-
approximation. Both approaches use linear program-
ming. Arya et al. (2001) give a (3 + ε)-approximation
that uses local search. In particular, Arya et al. (2001)
present an algorithm that swaps p centers in each stage
and gives an approximation ratio of 3 + 2/p. The most
efficient version of this algorithm (swapping one center
in each stage) gives a 5-approximation.

In order to handle more data several approaches have
been proposed. One approach is to first sample a set of
points S ∈ X, and then use one of these constant-factor
c-approximation algorithms to cluster S, which still
gives a good approximation for X. In particular, for a
data set with diameter M in Rd, Mishra et al. (2001)
give a sampling algorithm that chooses a sample of size
O((Mcd

ε)2k) and gives a solution where the average

distance to the nearest median is within c · OPT +
ε, where OPT is the value of the optimal solution.
Czumaj and Sohler (2004) give an improved algorithm
with a sample size of O(Mc

ε2 kd) that gives a solution
within (c+ ε)OPT + ε. Meyerson et al. (2004) present
another sampling algorithm for instances with large
clusters. It uses the algorithm of Arya et al. (2001) as
a subroutine. The resulting approximation ratio is a
large constant.

The limitation of these sampling approaches is that we
still need to compute a constant-factor approximation
on the points in the sample. Such approximations are
slow to compute and run on a single machine. Given
that these sampling approaches require fairly large
sample sizes that may also depend on the data diameter,
they become infeasible for very large data sets.

Another approach to handle large data is to use core-
sets - small subsets of representative points that enable
approximating the objective value on the full data set
up to a multiplicative factor of 1 ± ε. Feldman and
Langberg (2011) present a coreset of size t = O(kdε2)

that runs in time O(ndk+log2n+k2+t log n), where n
is the number of data points and d is the dimension of
the data. Their algorithm takes a k-median solution as
input, and samples points based on their contribution
to the objective in this solution. However, the analysis
requires first computing a constant-factor approxima-
tion for the entire data set, which is infeasible for large
data sets. In Section 4 we compare the performance
of our algorithm with the algorithm of Feldman and
Langberg (2011). In our implementation of the con-
struction of Feldman and Langberg (2011) we use a
heuristic to compute the initial k-median solution.

Balcan et al. (2013) improve on the limitations of Feld-
man and Langberg (2011) by showing how to construct
the coreset in a distributed fashion on m machines,
where each machine computes a constant-factor ap-
proximation on a subset of the data of size n/m. The
size of the resulting coreset is O(kdε2 +mk). However,
when the number of machines is large (say m = 104),
this still gives a coreset that is too large, given that
we must compute a constant-factor approximation on
the points in the coreset in order to preserve the ap-
proximation ratio on the full data set. On the other
hand, choosing a smaller m is problematic because
then n/m (the size of each subset) becomes too large,
and we will not be able to compute a constant-factor
approximation on each subset.

The perturbation resilience property considered here
was also studied by Awasthi et al. (2012) and Bal-
can and Liang (2012). Awasthi et al. (2012) give a
polynomial-time algorithm for α-perturbation resilient
instances for any center-based clustering objective in a

Konstantin Voevodski

metric space. Their algorithm works for α ≥ 3 when
the centers are restricted to only the data points. Bal-
can and Liang (2012) improve this bound to α ≥ 1+

√
2

using a more sophisticated algorithm, and also study
a noisy version of the problem where only a subset of
the data points satisfy α-perturbation resilience.

The algorithms of Awasthi et al. (2012) and Balcan
and Liang (2012) compute a hierarchical clustering of
the data points and then use dynamic programming to
find the best k-pruning of the hierarchical clustering
tree. Given the stability assumptions, they return the
optimal clustering, but their run time is infeasible for
large data sets. It takes O(n3) time to compute a
hierarchical clustering, where n is the number of data
points. Computing the dynamic programming solution
also requires O(n2) time just to compute the cost of a
single cluster for each sub-tree.

The complexity of perturbation resilience was studied
by Ben-David and Reyzin (2014). They prove that
finding the optimal k-median clustering is NP-hard if
the data satisfies α-perturbation resilience for α < 2.
On the other hand, they show that if α > 2 +

√
3,

then the optimal clustering satisfies strict separation
(see Definition 2.7). When this is the case, Balcan
et al. (2008) show that we can construct a hierarchical
clustering of the data using single-linkage, and some
pruning of this tree must be equivalent to the optimal
clustering. As before, this pruning may be computed
using dynamic programming. However, this algorithm
is still not feasible for large-scale data.

Other MapReduce, online, and streaming algorithms
have been proposed for the k-median problem. The
MapReduce algorithm from Ene et al. (2011) uses a
weighted k-median c-approximation algorithm as a sub-
routine, and then outputs a (10c+ 3)-approximation to
the optimal solution. Using the (3 + ε)-approximation
algorithm from Arya et al. (2001) as a subroutine, this
construction at best gives a 33-approximation. The
online algorithm from Lattanzi and Vassilvitskii (2017)
optimizes for clustering consistency in the online set-
ting, where points x1, x2, . . . xn arrive one at a time,
rather than the overall run time for clustering n points.
In fact, their construction requires calling a constant-
factor approximation algorithm for k-median n times.
Similarly, the streaming algorithm for k-median from
Charikar et al. (2003) optimizes for memory efficiency,
rather than the overall run time. Its construction re-
quires solving a facility-location problem in each phase,
where the number of phases is bounded by the total
number of points. While requiring limited memory, the
overall run time is not feasible for large-scale data.

Large-scale algorithms have also been studied in the
context of k-center clustering (Malkomes et al., 2015),

Gaussian mixture models (Lucic et al., 2018), and k-
means clustering (Bachem et al., 2018). The coreset for
Gaussian mixture models from Lucic et al. (2018) uses
k-means++ as a subroutine, and the overall construc-
tion is very similar to the centralized coreset construc-
tion of Feldman and Langberg (2011) for k-median,
which is one of our experimental baselines in Section 4.

2 Preliminaries

Suppose we are given a metric space (X, d), where
d : X × X → R≥0, and n = |X|. The k-median
objective function is to find k centers c1, . . . ck ∈ X
that minimize the sum of the distances of each point
to the nearest center:

∑
x∈X mini d(x, ci). We use

C = C1, . . . Ck to refer to the corresponding clusters
(where each point is assigned to the nearest center).

We use c∗1, . . . c
∗
k to refer to the centers that optimize

the k-median objective, and use C∗ = C∗1 , . . . C
∗
k to

refer to the corresponding clustering. We use OPT to
refer to the optimal objective value.

We assume that our clustering instance is stable with
respect to multiplicative perturbations of the distances
between the points. We next formally define this prop-
erty.

Definition 2.1. Given a metric space (X, d) and a
parameter α > 1, an α-perturbation of d is a function
d′ : X × X → R≥0, such that for any pair of points
x, y ∈ X, we have d(x, y) ≤ d′(x, y) ≤ αd(x, y). We
say that a clustering instance satisfies α-perturbation
stability for objective function Φ if the unique optimal
clustering for (X, d) under Φ is the same as the unique
optimal clustering for (X, d′) under Φ, where d′ is any
α-perturbation of d.

We next state two properties that follow from α-
perturbation stability, which are used throughout our
analysis. These properties are proved in Awasthi et al.
(2012).

Proposition 2.2. Suppose a clustering instance satis-
fies α-perturbation stability for the k-median objective
function. Then for any x ∈ C∗i and any other cluster
C∗j 6=i, we must have d(x, c∗j) > αd(x, c∗i).

Proposition 2.3. Suppose a clustering instance satis-
fies α-perturbation stability for the k-median objective
function. Then for any pair of points x ∈ C∗i and
y ∈ C∗j 6=i, we must have d(x, y) > (α− 1)d(x, c∗i).

In our analysis we use ri to denote the radius of cluster
Ci, which is defined as the maximum distance between
ci and any other point in Ci: ri = maxx∈Ci

d(x, ci).
Similarly, we use r∗i to denote the radius of cluster C∗i .
We use B(x, d) to denote the ball of radius d around
x: B(x, d) = {y ∈ X : d(x, y) ≤ d}.

Large Scale K-Median Clustering for Stable Clustering Instances

We observe that a lot of the points in C∗i may lie close
to the center c∗i . We formalize this observation with
the following definition.

Definition 2.4. We say that a k-median clustering
C = C1, . . . Ck satisfies γ-center density if there is a
constant 0 < c < 1, and a constant 0 < γ < 1, such
that for each Ci ∈ C, we have |B(ci, γri)| ≥ c|Ci|.
We say that a k-median clustering instance satisfies
γ-center density if the optimal clustering C∗ satisfies
this property.

Our algorithm computes a hierarchical clustering tree
using minimax distance, which is defined as follows.

Definition 2.5. For two sets of points S1, S2 ⊂ X,
we use dm(S1, S2) to denote the minimax distance be-
tween S1 and S2, which is defined as dm(S1, S2) =
minx∈S1∪S2

maxy∈S1∪S2
d(x, y).

In our analysis we show that the hierarchical clustering
computed by our algorithm is consistent with the opti-
mal clustering C∗. Our consistency property is defined
as follows.

Definition 2.6. Let T be a hierarchical clustering tree
of a set of points S ⊆ X, and let the clustering C be
defined as C∗ restricted to the points in S: Ci = C∗i ∩S.
We say that T is consistent with C∗ if for each node
N in T , and each cluster Ci ∈ C, we either have
N ∩ Ci = ∅, N ⊆ Ci, or Ci ⊆ N .

Note that for each C∗i ∈ C∗, this property requires
that all points from C∗i must be merged before merging
them with any points from C∗j 6=i.

We discuss instances when C∗ satisfies additional struc-
tural properties. In particular, we consider the strict
separation and strict threshold separation properties of
a clustering, which are defined as follows.

Definition 2.7. We say that a clustering C satisfies
strict separation if for all x, y ∈ Ci and z ∈ Cj 6=i we
have d(x, y) < d(x, z).

Definition 2.8. We say that a clustering C satisfies
strict threshold separation if there exists a threshold t,
such that for all x, y ∈ Ci we have d(x, y) ≤ t, and for
all x ∈ Ci and y ∈ Cj 6=i we have d(x, y) > t.

3 Large Scale K-Median Clustering

In order to motivate the design of our algorithm, we
observe that the difficulty of the problem may vary
depending on the structure of the optimal clustering.
In particular, if the optimal clustering has very strong
structure, such as strict threshold separation (see Defi-
nition 2.8), then we can recover it with a very simple
and efficient algorithm that runs on a single machine.
This observation is formalized in Proposition 3.1.

Proposition 3.1. Suppose a k-clustering C for (X, d)
satisfies strict threshold separation and each cluster in
C has size Ω(n/k). Then there exists an algorithm that
outputs C with probability at least 1− δ and runs on a
single machine in time O(k2logkδ + kn).

Proof. It suffices for the algorithm to sample t =
O(klogkδ) points from X uniformly at random. Let
S refer to the sampled points. We can verify that with
probability at least 1− δ, S contains a point from each
cluster in C. When this is the case, it suffices to run k
iterations of farthest-first traversal on the points in S -
in each iteration we select the point in S that has the
largest min-distance to the points we already selected.
The first point in the traversal may be selected in any
manner. This traversal may be implemented in O(kt)
time. We then output the clustering corresponding to
the k centers output by the traversal (by assigning each
point to the nearest center). This requires kn time. We
can verify that if C satisfies strict threshold separation,
the output clustering must be equivalent to C.

Note that Proposition 3.1 applies to any k-clustering,
and clearly also applies to the optimal k-median cluster-
ing if it satisfies these structural assumptions. However,
such assumptions are very strong and are less likely
to hold in practice. We next present our algorithm
that works under more realistic assumptions about the
data. Like the algorithm described in the proof of
Proposition 3.1, our algorithm is still able to utilize a
uniform sample of the data points. However, we need
more information about each sampled point, which
we can compute in parallel, and a more sophisticated
procedure to output a clustering that approximates the
optimal solution.

3.1 Algorithm Description

Our algorithm first selects a subset of seed points S ⊂
X uniformly at random. We then compute a Voronoi
decomposition of X with respect to the points in S.
For each s ∈ S, let v(s) denote the points in its Voronoi
cell, and let c(s) denote the cost of s, which is defined
as c(s) =

∑
x∈v(s) d(x, s). We compute |v(s)| and c(s)

for each seed point s ∈ S. This information is used
to approximate the objective value of the clusterings
considered by our algorithm.

Our algorithm then computes a hierarchical clustering
of S in a bottom-up fashion using minimax distance
(see Definition 2.5). In each iteration, two nodes with
the smallest minimax distance are merged, until only
one node is left. Note that if we start with t = |S|
points, we will have 2t − 1 nodes in total. We will
use N1, N2, . . . N2t−1 to refer to these nodes indexed in
depth-first order.

Konstantin Voevodski

Step 1: Sample subset S uniformly at random Step 2: Parallel Voronoi decomposition w.r.t. S

Step 3: Compute hierarchical clustering tree T
of the points in S

Step 4: Dynamic programming on T using the size
and cost of each Voronoi cell

 k-cluster(N) =
argmin_{l} l-cluster(N.left) + (k-l)-cluster(N.right)

Figure 1: A high-level description of the algorithm
components.

We then apply dynamic programming to find the best
k-pruning of the hierarchical clustering tree. Our dy-
namic programming only considers clusterings of the
seed points, but approximates the objective value for
the entire data set using the information from the
Voronoi cell of each seed. Figure 1 gives a high-level
description of the components of our algorithm, and we
follow with a more exact description and its analysis.

We will use si to refer to the seed points in node Ni.
In our analysis we will also use pi = {x ∈ X : x ∈ v(s)
and s ∈ si} to refer to the points in the corresponding
Voronoi cells. In order to define the table of solutions
constructed by the dynamic programming, we will use
cost(i, j) to refer to the cost of clustering Ni using j
clusters.

Algorithm 1 Large-Scale-K-Median(X, d, k, δ)

• Let t = O(klogkδ)
• Sample t points S ⊂ X uniformly at random
• Compute a Voronoi decomposition of X w.r.t. S
• For each s ∈ S, let v(s) denote the points in its
Voronoi cell, let c(s) =

∑
x∈v(s) d(x, s)

• Let T be the hierarchical clustering tree of S com-
puted using minimax distance
• Run Dynamic-Programming(T, k)
• Let Nr be the root of T
• Output clustering corresponding to cost(r, k)

Algorithm 2 Dynamic-Programming(T, k)

Let N1, N2, . . . N2t−1 be a depth-first traversal of T
for i = 1 to 2t− 1 do

for j = 1 to k do
Let cost(i, j) = Cluster(Ni, j)

end for
end for

Algorithm 3 Cluster(Ni, j)

if j = 1 then
Let si be the seed points in node Ni
return minx∈si One-Clustering-Cost(x, si)

end if
Let i1 be the index of the left child of Ni
Let i2 be the index of the right child of Ni
return min0<l<j cost(i1, l) + cost(i2, j − l)

Algorithm 4 One-Clustering-Cost(x, si)

Initialize cost = 0
for s ∈ si do

cost ← cost +c(s) + d(x, s) · |v(s)|
end for
return cost

The algorithm is described in more detail in Algo-
rithm 1. For simplicity, we omit the details regarding
the initialization of the table for leaf nodes and nodes
with less than two children. In order to output the best
clustering, it suffices to store the centers corresponding
to the clusterings in the table of solutions (these details
are also omitted).

3.2 Performance Analysis

We state the theorem regarding the performance of our
algorithm in Theorem 3.2.

Theorem 3.2. Suppose the k-median clustering for
(X, d) satisfies α-perturbation stability and γ-center
density for α ≥ 3 + 2γ. Suppose each cluster in the op-
timal clustering has size Ω(n/k). Then with probability
at least 1 − δ, Algorithm 1 outputs a clustering with
expected objective value at most 6 ·OPT , and runs in
time O(nt+ t3), where t = O(klogkδ) is the size of the
sample used by the algorithm. In a parallel computing
environment with m machines, Algorithm 1 has a run
time of O(ntm + t3).

In order to prove Theorem 3.2 we next state and prove
several observations regarding the structure of the clus-
tering instance, and the performance of the individual
components of our algorithm. Lemma 3.3 shows that
given our perturbation stability assumption, any pair
of points x ∈ C∗i and y ∈ C∗j must be well-separated
with respect to the radius of C∗i .

Lemma 3.3. Suppose the k-median clustering for
(X, d) satisfies α-perturbation stability for α ≥ 3 + 2γ.
For any pair of points x ∈ C∗i and y ∈ C∗j 6=i, we must
have d(x, y) > (1 + γ)r∗i .

Proof. Let z be the point in C∗i that is farthest from
c∗i (ties broken arbitrarily). In other words, we have
d(z, c∗i) = r∗i . We show that if d(x, y) ≤ (1 + γ)r∗i ,

Large Scale K-Median Clustering for Stable Clustering Instances

then z is too close to c∗j , violating our perturbation
stability assumption. To see this, observe that by
the triangle inequality we have d(z, c∗j) ≤ d(z, c∗i) +
d(c∗i , x) + d(x, y) + d(y, c∗j) = r∗i + d(c∗i , x) + d(x, y) +
d(y, c∗j). Then by Proposition 2.3, given that α ≥ 3,
we must have d(x, c∗i) < d(x, y)/(α − 1) < d(x, y)/2,
and similarly d(y, c∗j) < d(x, y)/(α − 1) < d(x, y)/2.
Then if we have d(x, y) ≤ (1 + γ)r∗i , we must have
d(z, c∗j) < (3 + 2γ)r∗i , violating perturbation stability
for z per Proposition 2.2.

Continuing our analysis, let TS be the hierarchical clus-
tering tree of the seed points S that is computed by our
algorithm. Let TX be the corresponding hierarchical
clustering tree of X, which is given by the Voronoi cells
of the seed points. In other words, each node Ni in TS
corresponds to a node N ′i in TX , which contains the
points pi. Note that we only use TX in our analysis;
our algorithm does not compute it. Lemma 3.4 shows
that given our assumptions, both TS and TX must be
consistent with C∗, per our definition of consistency in
Definition 2.6.

Lemma 3.4. Suppose the k-median clustering for
(X, d) satisfies α-perturbation stability and γ-center
density for α ≥ 3 + 2γ. Suppose each cluster in the
optimal clustering has size Ω(n/k). Let TS be the hier-
archical clustering tree of the seed points S computed by
our algorithm. Let TX be the corresponding hierarchical
clustering tree of X. Then with probability at least 1−δ,
TS and TX are consistent with the optimal clustering
C∗.

Proof. For each cluster C∗i , let us use s∗i to refer to the
closest seed point to c∗i (ties broken arbitrarily). If our
clustering instance satisfies γ-center density, and each
cluster in the optimal clustering has size Ω(n/k), we
can verify that if we select O(klog kδ) seed points, with
probability at least 1− δ, for each cluster C∗i , we will
have d(s∗i , c

∗
i) ≤ γr∗i .

Whenever this is the case, we prove that TS must be
consistent with C∗ by induction on the construction
of TS . At the start, for each cluster A we clearly have
A ⊆ C∗i for some C∗i ∈ C∗. We now verify that if
A ⊂ C∗i , and A′ ⊂ C∗j 6=i or A′ is the union of two
or more other clusters in C∗, there must be another
cluster B ⊂ C∗i such that dm(A,B) < dm(A,A′).

To verify this, let us consider the cluster assignment
of s∗i . If s∗i ∈ A, then we may choose B to be any
other cluster that is a strict subset of C∗i . Otherwise,
we choose B to be the cluster that contains s∗i . Using
the triangle inequality, we can verify that dm(A,B) ≤
(1 + γ)r∗i . On the other hand, Lemma 3.3 shows that
the distance between any pair of points x ∈ A and
y ∈ A′ must be more than (1 + γ)r∗i , which implies

that dm(A,A′) > (1 + γ)r∗i .

Finally, we prove that for any point x ∈ C∗i in the
Voronoi cell of a seed point s ∈ S, we must also have
s ∈ C∗i . To see this, consider that by Lemma 3.3,
the distance between x and any seed point s′ ∈ C∗j 6=i
must satisfy d(x, s′) > (1 + γ)r∗i . On the other hand,
the distance between x and s∗i must satisfy d(x, s∗i) ≤
d(x, c∗i) + d(c∗i , s

∗
i) ≤ r∗i + γr∗i = (1 + γ)r∗i . Clearly,

x will then be in the Voronoi cell of s∗i , or another
seed point from C∗i . It follows that whenever TS is
consistent with C∗, TX must be consistent with C∗ as
well.

We next state and prove a lemma regarding the se-
lection of the seed points. Lemma 3.5 shows that in
expectation they give a 2-approximation with respect
to the cost of the optimal centers.

Lemma 3.5. Let Ci be a cluster with center ci, and
let x be a point in Ci chosen uniformly at random.
Let us define cost(y) =

∑
z∈Ci

d(z, y). Then we have
E[cost(x)] ≤ 2 · cost(ci).

Proof. By the triangle inequality, we have
cost(x) ≤

∑
z∈Ci

(d(z, ci) + d(ci, x)) =
∑
z∈Ci

d(z, ci) +
|Ci|d(ci, x) = cost(ci) + |Ci|d(ci, x). Also, observe
that for x chosen uniformly at random in Ci,
we have E[d(ci, x)] = (1/|Ci|) ·

∑
z∈Ci

d(z, ci) =
(1/|Ci|) · cost(ci). Combining these two ob-
servations, by linearity of expectation we have
E[cost(x)] ≤ 2 · cost(ci).

Finally, Lemma 3.6 shows that the cost of the center
computed by Algorithm 4 on only the seed points is a
3-approximation with respect to the cost computed on
the entire data set.

Lemma 3.6. For node Ni, let si refer to the seed
points in Ni, and let pi = {x ∈ X : x ∈ v(s) and
s ∈ si} refer to the points in the corresponding Voronoi
cells. For any x ∈ si, let ˜cost(x) be the output of One-
Clustering-Cost(x, si), and let cost(x) =

∑
y∈pi d(y, x).

Then we must have cost(x) ≤ ˜cost(x) ≤ 3 · cost(x).

Proof. For any point y ∈ pi, let s(y) be the seed
point s ∈ si such that y is in the Voronoi cell of
s. Observe that by construction we have ˜cost(x) =∑
y∈pi d(y, s(y)) + d(s(y), x).

Clearly, for y in the Voronoi cell of x, we have
d(y, s(y)) + d(s(y), x) = d(y, x) + d(x, x) = d(y, x).
It suffices to show that for points y ∈ pi in other
Voronoi cells, we have d(y, x) ≤ d(y, s(y))+d(s(y), x) ≤
3d(y, x).

To verify the first part, by the triangle inequality,
we have d(y, x) ≤ d(y, s(y)) + d(s(y), x). To verify

Konstantin Voevodski

the second part, observe that by the triangle inequal-
ity we have d(x, s(y)) ≤ d(x, y) + d(y, s(y)). Adding
d(y, s(y)) to both sides, we have d(x, s(y))+d(y, s(y)) ≤
d(x, y) + 2d(y, s(y)). Also observe that given that y
is in the Voronoi cell of s(y), we have d(y, s(y)) ≤
d(y, x). Combining the last two inequalities, we have
d(y, s(y)) + d(s(y), x) ≤ 3d(y, x), as required.

The observations in Lemma 3.4, Lemma 3.5, and
Lemma 3.6 enable us to prove Theorem 3.2. We now
follow with the proof of Theorem 3.2.

Proof of Theorem 3.2. By Lemma 3.4, there must be
a pruning of TX that is equivalent to C∗. Consider
any C∗i ∈ C∗. For any point x ∈ C∗i define cost(x) =∑
y∈C∗

i
d(y, x). By Lemma 3.5, for each seed point

s ∈ C∗i , in expectation we have cost(s) ≤ 2 · cost(c∗i).
Then by Lemma 3.6, we have cost(s) ≤ ˜cost(s) ≤
3·cost(s), where ˜cost(s) is the cost of s that is computed
by our algorithm. Combining these observations, we
see that in expectation we have ˜cost(s) ≤ 6 · cost(c∗i).
Therefore in expectation the objective value for C∗i
that is computed by our algorithm must be within
6 · cost(c∗i). Considering that this statement holds for
each cluster in C∗, in expectation the objective value of
this pruning of the hierarchical clustering tree (which
is equivalent to C∗) must be within 6 · OPT . Also,
observe that by Lemma 3.6, the cost of a clustering
that is computed by our algorithm (using only the seed
points) is an upper-bound on its actual cost. Clearly,
the dynamic programming solution will then return
either the pruning that is equivalent to C∗ or a different
pruning with objective value that is within 6 ·OPT in
expectation.

To verify the run time, the Voronoi decomposition can
be computed in O(nt) time on a single machine, given
that it requires t comparisons for each of the n points.
In a parallel computing environment, we may partition
the n points into m equal-sized sets, assign each set
to a different machine, and then compute the Voronoi
decomposition for each set in parallel, reducing the
run time by a factor of m. In particular, in a parallel
implementation, the t seed points are passed to each
machine; each machine then computes the quantities
|v(s)| and c(s) for the points assigned to it, which are
then added together to compute these quantities for
the entire data set.

It takes O(t3) time to compute the hierarchical clus-
tering tree of the t seed points. The dynamic program-
ming table is then constructed iteratively for each of
the 2t − 1 nodes in the tree. For each node, it takes
O(t2) time to compute the one-clustering cost, and
O(k2) to compute the j-clustering cost for 2 ≤ j ≤ k.
Given that we choose a setting of t that is larger than

k, the dynamic programming table is then computed
in O(t3) time.

4 Experiments

We evaluate the performance of our algorithm on the
Covertype data set from the UCI Machine Learning
Repository (Dheeru and Taniskidou, 2017), as well as
the Quantum Physics and Protein Homology data sets
from KDD Cup. Each data set contains n points in Rd.
For the Covertype data set we have n = 581012 and
d = 54. For the Quantum Physics data set we have
n = 50000 and d = 78. For the Protein Homology data
set we have n = 145751 and d = 74. We normalize
the data for each dimension such that all entries are in
[0,1] (where 0 corresponds to the minimum value and 1
corresponds to the maximum value). For the Quantum
Physics data set we also discard the 8 dimensions that
have missing data (see KDD Cup).

Figure 2: Performance comparison for the Covertype
data set. Top: results for k = 50. Bottom: results for
k = 100.

Our Algorithm 1 is termed Large Scale K-Median
(LSKM). We compare performance with two alternative
algorithms. The first is simply Lloyd’s algorithm run on
a sample of points chosen uniformly at random, which
we term Lloyd’s. The initial centers for Lloyd’s are

Large Scale K-Median Clustering for Stable Clustering Instances

Figure 3: Performance comparison for the Quantum
Physics data set. Top: results for k = 50. Bottom:
results for k = 100.

chosen uniformly at random. The second algorithm is
the centralized coreset construction from Feldman and
Langberg (2011). Their construction takes a k-median
solution as input, and computes the coreset by sampling
points based on their contribution to the objective in
this solution. We compute the initial k-median solution
using Lloyd’s. We then use the algorithm of Feldman
and Langberg (2011) to compute the coreset. Finally,
we compute the clustering of the coreset using the al-
gorithm of Arya et al. (2001), swapping one center per
stage. We refer to the entire procedure as Coreset.

We run each algorithm using a sample of points and/or
coreset of the same size, and record the objective value
of the output clustering (specified by a set of centers).
Note that the objective value is computed with respect
to the entire data set. We rerun each algorithm 10
times and report the average objective value. We also
vary the number of clusters (k), and report the results
for k = 50 and k = 100. Figure 2 displays the experi-
mental results for the Covertype data set. Figure 3 and
Figure 4 display the results for the Quantum Physics
and Protein Homology data sets, respectively.

Figure 4: Performance comparison for the Protein
Homology data set. Top: results for k = 50. Bottom:
results for k = 100.

4.1 Evaluation of Center Density

We observe that our γ-center density property holds
for the clusterings in our study for fairly low settings
of γ (see Definition 2.4). In particular, for each data
set we take the best k-median clustering computed by
our algorithm (the one with the lowest objective value),
and consider the distances of the points in each cluster
to the cluster center. For k = 100 we find that γ-center
density holds for c = 0.1 and γ = 0.29, 0.59, 0.62 for the
Covertype, Quantum Physics, and Protein Homology
data sets, respectively. For k = 100 we find that the
property holds for c = 0.1 and γ = 0.32, 0.70, 0.75.

Assuming that the optimal clustering C∗ is structurally
similar to our best clustering, these conditions improve
the bound on α in our theoretic analysis (see Theo-
rem 3.2).

5 Discussion

We design a parallel k-median clustering algorithm that
easily scales to very large data sets. We prove that if the
data has a certain structure, our algorithm computes
a 6-approximation of the optimal objective value in

Konstantin Voevodski

expectation. Our experiments show that we are able
to compute much better clusterings than alternative
methods using samples of the same size.

It may be possible to further relax our assumptions
on the structure of the data. In particular, our anal-
ysis requires that the clustering instance satisfy α-
perturbation stability for α > 3. It is NP-hard to find
the optimal clustering if the data satisfies this property
for α < 2 (Ben-David and Reyzin, 2014). At the same
time, Balcan and Liang (2012) give an algorithm that
finds the optimal clustering for α ≥ 1+

√
2 ≈ 2.41. This

algorithm does not scale well, but these results show
that it may be possible to further relax the assumption
on α for a parallel clustering algorithm.

References

V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Mu-
nagala, and V. Pandit. Local search heuristics for
k-median and facility location problems. In STOC,
pages 21–29, 2001.

P. Awasthi, A. Blum, and O. Sheffet. Center-based
clustering under perturbation stability. Information
Processing Letters, 112(1-2):49–54, 2012.

K. Aydin, M. Bateni, and V. Mirrokni. Distributed bal-
anced partitioning via linear embedding. In WSDM,
pages 387–396, 2016.

O. Bachem, M. Lucic, and A. Krause. Scalable k-means
clustering via lightweight coresets. In KDD, pages
1119–1127, 2018.

M. F. Balcan and Y. Liang. Clustering under pertur-
bation resilience. In ICALP, pages 63–74, 2012.

M. F. Balcan, A. Blum, and S. Vempala. A discrimina-
tive framework for clustering via similarity functions.
In STOC, pages 671–680, 2008.

M. F. Balcan, S. Ehrlich, and Y. Liang. Distributed k-
means and k-median clustering on general topologies.
In NIPS, pages 1995–2003, 2013.

M. Bateni, S. Behnezhad, M. Derakhshan, M. Haji-
aghayi, R. Kiveris, S. Lattanzi, and V. Mirrokni.
Affinity clustering: Hierarchical clustering at scale.
In NIPS, pages 6867–6877, 2017.

S. Ben-David and L. Reyzin. Data stability in cluster-
ing: A closer look. Theoretical Computer Science,
558:51–61, 2014.

M. Charikar, S. Guha, Éva Tardos, and D. B. Shmoys.
A constant-factor approximation algorithm for the
k-median problem. Journal of Computer and System
Sciences, 65(1):129–149, 2002.

M. Charikar, L. O’Callaghan, and R. Panigrahy. Better
streaming algorithms for clustering problems. In
STOC, pages 30–39, 2003.

A. Czumaj and C. Sohler. Sublinear-time approxima-
tion for clustering via random sampling. In ICALP,
pages 396–407, 2004.

D. Dheeru and E. K. Taniskidou. UCI machine learning
repository, 2017. URL http://archive.ics.uci.

edu/ml.

A. Ene, S. Im, and B. Moseley. Fast clustering using
mapreduce. In KDD, pages 681–689, 2011.

D. Feldman and M. Langberg. A unified framework for
approximating and clustering data. In STOC, pages
569–578, 2011.

N. J. A. Harvey, C. Liaw, and P. Liu. Greedy and local
ratio algorithms in the mapreduce model. In SPAA,
pages 43–52, 2018.

K. Jain and V. V. Vazirani. Approximation algorithms
for metric facility location and k-median problems
using the primal-dual schema and lagrangian relax-
ation. Journal of the ACM, 48(2):274–296, 2001.

KDD Cup. Kdd cup 2004: Particle physics; plus pro-
tein homology prediction. https://www.kdd.org/

kdd-cup/view/kdd-cup-2004/Data, 2004.

S. Lattanzi and S. Vassilvitskii. Consistent k-clustering.
In ICML, pages 1975–1984, 2017.

M. Lucic, M. Faulkner, A. Krause, and D. Feldman.
Training gaussian mixture models at scale via core-
sets. Journal of Machine Learning Research, 18(160):
1–25, 2018.

G. Malkomes, M. J. Kusner, W. Chen, K. Q. Wein-
berger, and B. Moseley. Fast distributed k-center
clustering with outliers on massive data. In NIPS,
pages 1063–1071, 2015.

A. Meyerson, L. O’Callaghan, and S. Plotkin. A k-
median algorithm with running time independent of
data size. Machine Learning, 56(1):61–87, 2004.

N. Mishra, D. Oblinger, and L. Pitt. Sublinear time
approximate clustering. In SODA, pages 439–447,
2001.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data

	Introduction
	Our Results
	Related Work

	Preliminaries
	Large Scale K-Median Clustering
	Algorithm Description
	Performance Analysis

	Experiments
	Evaluation of Center Density

	Discussion

