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Abstract

Many applications of Al involve scoring in-
dividuals using a learned function of their
attributes. These predictive risk scores are
then used to take decisions based on whether
the score exceeds a certain threshold, which
may vary depending on the context. The
level of delegation granted to such systems
in critical applications like credit lending and
medical diagnosis will heavily depend on how
questions of fairness can be answered. In
this paper, we study fairness for the problem
of learning scoring functions from binary la-
beled data, a classic learning task known as
bipartite ranking. We argue that the func-
tional nature of the ROC curve, the gold
standard measure of ranking accuracy in this
context, leads to several ways of formulating
fairness constraints. We introduce general
families of fairness definitions based on the
AUC and on ROC curves, and show that our
ROC-based constraints can be instantiated
such that classifiers obtained by threshold-
ing the scoring function satisfy classification
fairness for a desired range of thresholds. We
establish generalization bounds for scoring
functions learned under such constraints, de-
sign practical learning algorithms and show
the relevance our approach with numerical
experiments on real and synthetic data.

1 INTRODUCTION

With the availability of data at ever finer granular-
ity and the development of technological bricks to ef-
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ficiently store and process this data, the infatuation
with machine learning (ML) and artificial intelligence
(AI) is spreading to nearly all fields (science, trans-
portation, energy, medicine, security, banking, insur-
ance, commerce...). Expectations are high. There is no
denying the opportunities, and we can rightfully hope
for an increasing number of successful deployments in
the near future. However, Al will keep its promises
only if certain issues are addressed. In particular, ML
systems that make significant decisions for humans, re-
garding for instance credit lending in the banking sec-
tor (Chenl 2018), diagnosis in medicine (Deo, 2015)) or
recidivism prediction in criminal justice (Rudin et al.|
2018]), should guarantee that they do not penalize cer-
tain groups of individuals.

Hence, stimulated by the societal expectations, notions
of fairness in ML as well guarantees that they can
be fulfilled by models trained under appropriate con-
straints have recently been the subject of a good deal
of attention in the literature, see e.g. (Dwork et al.|
2012} |Kleinberg et al.l |2017) among others. Fairness
constraints are generally modeled by means of a (qual-
itative) sensitive variable, indicating membership to a
certain group (e.g., ethnicity, gender). The vast ma-
jority of the work dedicated to algorithmic fairness in
ML focuses on binary classification. In this context,
fairness constraints force classifiers to have similar true
positive rates (or false positive rates) across sensitive
groups. For instance, [Hardt et al.| (2016)); Pleiss et al.
(2017) propose to modify a pre-trained classifier in or-
der to fulfill such constraints without deteriorating too
much the classification performance. Other work in-
corporates fairness constraints in the learning stage
(see e.g.,|Agarwal et al. 2018} Woodworth et al.l 2017;
Zatar et al., 2017ajb, |2019; Menon and Williamson)
2018} |Bechavod and Ligett, 2017). In addition to al-
gorithms, statistical guarantees (in the form of gen-
eralization bounds) are crucial for fair ML, as they
ensure that the desired fairness constraint will be met
at deployment. Such learning guarantees have been
established by [Donini et al.| (2018) for the case of fair
classification.
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Many real-world problems are however not concerned
with learning a binary classifier but rather aim to learn
a scoring function. This statistical learning problem
is known as bipartite ranking and covers in particu-
lar tasks such as credit scoring in banking, pathology
scoring in medicine or recidivism scoring in criminal
justice, for which fairness is a major concern (Kallus
and Zhou, [2019). While it can be formulated in the
same probabilistic framework as binary classification,
bipartite ranking is not a local learning problem: the
goal is not to guess whether a binary label Y is positive
or negative from an input observation X but to rank
any collection of observations X7, ..., X, by means of
a scoring function s : X — R so that observations with
positive labels are ranked higher with large probabil-
ity. Due to the global nature of the task, evaluating the
performance is itself a challenge. The gold standard
measure, the ROC curve, is functional: it is the PP-
plot of the false positive rate (FPR) vs the true positive
rate (TPR), and the higher the curve, the more accu-
rate the ranking induced by s. Sup-norm optimization
of the ROC curve has been investigated by |Clémencon
and Vayatis| (2009, 2010), while most of the literature
focuses on the maximization of scalar summaries of
the ROC curve such as the AUC criterion (Agarwal
et al.| [2005; |Clémencon et al.l [2008; |Zhao et al.| |2011)
or alternative measures (Rudin, |2006; Clémengon and
Vayatis|, 2007; Menon and Williamson), 2016)).

A key advantage of learning a scoring function over
learning a classifier is the flexibility in thresholding the
scores so as to obtain false/true positive rates that fit
the particular operational constraints in which the de-
cision is taken. A natural fairness requirement in this
context is that a fair scoring function should lead to
fair decisions for all thresholds of interest. To help fix
ideas and grasp the methodological challenge, we de-
scribe below a concrete example to motivate our work.

Example 1 (Credit-risk screening). A bank grants
a loan to a client with socio-economic features X if
his/her score s(X) is above a certain threshold t. As
the degree of risk aversion of the bank may vary, the
precise deployment threshold t is unknown when choos-
ing the scoring function s, although the bank is gener-
ally interested in regimes where the probability of de-
fault is sufficiently small (low FPR). The bank would
like to design a scoring function that ranks higher the
clients that are more likely to repay the loan (ranking
performance ), while ensuring that any threshold in the
regime of interest will lead to similar false negative
rates across sensitive groups (fairness constraint ).

Contributions. In this work, we provide a thorough
study of fairness in bipartite ranking. Our starting
point is a number of fairness measures introduced in-
dependently in recent papers from different communi-
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Figure 1: Illustrating the limitations of AUC-based
fairness. Here, the group-wise positive/negative distri-
butions (top) satisfy AUCHS)G@ = AUC, oo (bot-
tom left), but yield very different TPR’s at low FPR’s
(bottom left). Our new ROC-based constraints can

align scores distributions where it matters, e.g. for
low FPR’s as in Example 1| (bottom right).

ties (Borkan et al., [2019; Beutel et al. 2019; [Kallus
and Zhou, 2019). We first show that these are special
cases of a general family of fairness constraints based
on the AUC, that we precisely characterize. We then
argue that, because it is defined from scalar summaries
of functional curves, AUC-based fairness is oblivious
to potentially large disparities between groups at par-
ticular locations of the score distribution (see Fig.
bottom left). As a consequence, they fail to address
use-cases where fairness is needed at specific thresh-
olds (as in Example [1). To overcome these limita-
tions, we introduce a novel functional view of fairness
based on ROC curves. These richer pointwise ROC-
based constraints can be instantiated to align group-
wise score distributions at specific functional points
(see Fig. [1L bottom right) and thereby ensure that
classifiers obtained by thresholding the scoring func-
tion satisfy classification fairness for a certain range of
thresholds, as desired in cases like Example

Based on the above, we then introduce empirical
risk minimization formulations for learning fair scor-
ing functions under both AUC and ROC-based fair-
ness constraints and establish the first generalization
bounds for fair bipartite ranking. Due to the com-
plex nature of the ranking measures, our proof tech-
niques largely differ from the classification results of
Donini et al.| (2018)) as they require non standard tech-
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nical tools (e.g. to control deviations of ratios of U-
statistics). In addition to our conceptual contributions
and theoretical analysis, we propose efficient training
algorithms based on gradient descent and illustrate the
practical relevance of our approach on synthetic and
real datasets.

Outline. The paper is organized as follows. Section [2]
reviews bipartite ranking as well as existing fairness
notions for classification and ranking. Section [3] stud-
ies AUC-based fairness constraints and propose richer
ROC-based constraints. In Section [} we formulate
the problem of fair scoring under both AUC and ROC-
based fairness constraints and prove statistical learn-
ing guarantees. Section [5] presents numerical experi-
ments, and we conclude in Section [6] Due to space
limitations, some technical details and additional ex-
periments are postponed to the supplementary.

2 BACKGROUND & RELATED
WORK

In this section, we introduce the main concepts in-
volved in the subsequent analysis and review related
work. Here and throughout, the indicator function of
any event £ is denoted by I{£} and the pseudo-inverse
of any cumulative distribution function (c.d.f.) func-
tion F: R — [0,1] by F~1(u) =inf {t e R : F(t) > u}.

2.1 Probabilistic Framework

Let X and Y be two random variables: Y denotes
the binary output label (taking values in {—1,+1})
and X denotes the input features, taking values in a
space X c R? with d > 1 and modeling some informa-
tion hopefully useful to predict Y. For convenience,
we introduce the proportion of positive instances p :=
P{Y = +1}, as well as G and H, the conditional distri-
butions of X given Y = +1 and Y = —1 respectively.
The joint distribution of (X,Y") is fully determined by
the triplet (p, G, H). Another way to specify the dis-
tribution of (X,Y) is through the pair (u,n) where
1 denotes the marginal distribution of X and 7 the
function n(z) ;= P{Y = +1 | X = x}. With these no-
tations, one may write n(x) = p(dG/dH)(x)/(1 —p +
p(dG/dH)(x)) and p = pG + (1 —p)H.

In the context of fairness, we consider a third ran-
dom variable Z which denotes the sensitive attribute
taking values in {0,1}. The pair (X,Y") is said to be-
long to salient group 0 (resp. 1) when Z = 0 (resp.
Z = 1). The distribution of the triplet (X,Y,Z2)
can be expressed as a mixture of the distributions
of X,Y|Z = z. Following the conventions described
above, we introduce the quantities p,, G, H®) as
well as u(*),7*). For instance, po = P{Y = +1|Z = 0}

and the distribution of X|Y = +1,Z = 0 is writ-
ten GO, de for A c X, GO(A) = P{X € A]Y =
+1,Z = 0}. We denote the probability of belonging to
group z by ¢, :=P{Z = 2z}, with g = 1 — ¢;.

2.2 Bipartite Ranking

The goal of bipartite ranking is to learn an order rela-
tionship on X for which positive instances are ranked
higher than negative ones with high probability. This
order is defined by transporting the natural order on
the real line to the feature space through a scoring
function s : X — R. Given a distribution F' over X
and a scoring function s, we denote by Fy the cumula-
tive distribution function of s(X) when X follows F.
Specifically:

ROC analysis. ROC curves are widely used to visu-
alize the dissimilarity between two real-valued distri-
butions in many applications, e.g. anomaly detection,
medical diagnosis, information retrieval.

Definition 1 (ROC curve). Let g and h be two cu-
mulative distribution functions on R. The ROC curve
related to g and h is the graph of the mapping:

ROCj,:a€[0,1]—»1—goh ' (1—a).

When g and h are continuous, it can alternatively be
defined as the parametric curve t € R — (1 — h(t),1 —

g(t)).
The classic area under the ROC curve (AUC) crite-

rion is a scalar summary of the functional measure of
dissimilarity ROC. Formally, we have:

1
AUC 4 := JROCh,g(a)da =P{S > 5"} + 5]?{5 =S5},

where S and S” denote independent random variables,
whose c.d.f.’s are h and g respectively.

In bipartite ranking, one focuses on the ability of the
scoring function s to separate positive from negative
data. This is reflected by ROCp, ., which gives the
false positive rate vs. true positive rate of binary clas-
sifiers gs; :  — 2-I{s(z) > ¢t} — 1 obtained by thresh-
olding s at all possible thresholds ¢ € R. The global
summary AUCp, g, serves as a standard performance
measure (Clémencon et al., [2008)).

Empirical estimates. In practice, the scoring func-
tion s is learned based on a training set {(X;, Y;)}; of
n i.i.d. copies of the random pair (X,Y). Let ny and
n_ be the number of positive and negative data points
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respectively. We introduce é’s and ﬁs, the empirical
counterparts of G4 and H,:

Go(t) := (/) 0 I{Y; = +1,5(X;) < t},
H(t) == (1/n_) X0 I{Y; = —1,5(X;) < t}.

Note that the denominators ny and n_ are sums of
i.i.d. random (indicator) variables. For any two distri-
butions F, F’" over R, we denote the empirical coun-
terparts of AUCg p and ROCpp by AUCEp :=
AUCs 7 and l%\CF,FI(-) := ROCp 7 (+) respectively.
In particular, we have:

AUCH, . = 5 iy K((s(X0),Y5), (s(X;), 7)),

where K((t,y), (¢,y)) = {(y—y)(t—t') > 0} +I{y #
y',t = t'}/2 for any t,t' € R?,y,9 € {—1,+1}%2. Em-
pirical risk minimization for bipartite ranking typically
consists in maximizing AUCy, g, over a class of scor-
ing functions (see e.g. |Clémencon et al., 2008} [Zhao
et al., [2011).

2.3 Fairness in Binary Classification

In binary classification, the goal is to learn a mapping
function g : X — {—1,+1} that predicts the output
label Y from the input random variable X as accu-
rately as possible (as measured by an appropriate loss
function). Any classifier g can be defined by its unique
acceptance set Ay :={r e X | g(z) = +1} c X.

Existing notions of fairness for binary classification
(see|Zafar et al., 2019, for a detailed treatment) aim to
ensure that g makes similar predictions (or errors) for
the two groups. We mention here the common fairness
definitions that depend on the ground truth label Y.
Parity in mistreatment requires that the proportion of
errors is the same for the two groups:

M©O(g) = MM (g), (1)
where M) (g) := P{g(X) # Y | Z = z}. While this

requirement is natural, it considers that all errors are
equal: in particular, one can have a high false positive
rate (FPR) H(")(A,) for one group and a high false
negative rate (FNR) G(®)(A,) for the other. This can
be considered unfair when acceptance is an advantage,
e.g. being granted a loan in Example . A solution is
to consider parity in false positive rates and/or parity
in false negative rates, which respectively write:

HO (Ag) = H(l)(Ag) and G (Ag) = G(l)(Ag>- (2)

Remark 1 (Connection to bipartite ranking). A score
function s : X — R induces an infinite collection of
binary classifiers gs ¢ : © — 2-I{s(x) >t} — 1. While
one could fix a threshold t € R in advance and enforce
fairness on gs:, we are interested here in notions of
fairness for the score function itself (see Example .

2.4 Fairness in Ranking

Fairness for rankings has been mostly considered in
the informational retrieval and recommender systems
communities. Given a set of items with known rel-
evance scores, they aim to extract a (partial) rank-
ing that balances utility and notions of fairness at the
group or individual level, or through a notion of ex-
posure over several queries (Zehlike et al., 2017 |Celis
et all) |2018; Biega et all) 2018; |[Singh and Joachims|
2018)). Singh and Joachims| (2019)) and Beutel et al.
(2019) extend the above work to the learning to rank
framework, where the task is to learn relevance scores
and ranking policies from a certain number of observed
queries that consist of query-item features and item
relevance scores. This is fundamentally different from
the bipartite ranking setting considered here.

AUC constraints. In a setting closer to ours, Kallus
and Zhou (2019) introduce measures to quantify the
fairness of a known scoring function on binary labeled
data (they do not address learning). Their approach is
based on the AUC, which can be seen as a measure of
homogeneity between distributions (Clémencon et al.|
2009)). Similar definitions of fairness are also consid-
ered in (Beutel et al. 2019; [Borkan et al., [2019).

Introduce ng) (resp. HS(Z)) as the c.d.f. of the score on
the positives (resp. negatives) of group z € {0, 1}, i.e.
G () = GA(s(X) < t) and HP (1) = HE) (s(X) <
t), for any t € R. Precise examples of AUC-based fair-

ness constraints include: 1) the intra-group pairwise
AUC fairness (Beutel et al., 2019),

AUC = AUC ) o0, (3)

O G

which requires the ranking performance to be equal
within groups, 2) the Background Negative Subgroup
Positive (BNSP) AUC fairness (Borkan et al., [2019),

AUC AUC, Lo, (4)

H,G" =

which enforces that positive instances from either
group have the same probability of being ranked higher
than a negative example, 3) the inter-group pairwise
AUC fairness (Kallus and Zhou, 2019),

AUCHéo)’ng = AUCH§1)’Ggo)7 (5)

which imposes that the positives of a group can be dis-
tinguished from the negatives of the other group as ef-
fectively for both groups. Many more AUC-based fair-
ness constraints are possible: we give examples (some
of them novel) in the supplementary material.
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3 FROM AUC TO ROC-BASED
FAIRNESS CONSTRAINTS

In this section, we first provide a new general frame-
work to characterize all relevant AUC constraints. We
then highlight some limitations of AUC fairness con-
straints, which serve as motivation to introduce our
richer pointwise ROC-based fairness constraints.

3.1 A Family of AUC Fairness Constraints

All proposed AUC-based fairness constraints in the lit-
erature follow a common structure, which we precisely
characterize.

Denote by (e1,ez,e3,e4) the canonical basis of R?,
as well as by 1 the constant vector 1 = Zi:l €k-
AUC constraints are expressed in the form of equali-
ties of the AUC’s between mixtures of the c.d.f.’s D(s),
with: D(s) := (H”, 7", G, ¢")T. Formally, in-
troducing the probability vectors o, 3, o', 3’ € P where
P={v|veR}, 1Tv = 1}, they write as:

AUC(ITD(S),BTD(S) = AUCO’/TD(S),B/TD(S)' (6)

However, observe that Eq. @ is under-specified in the
sense that it includes constraints that actually give an
advantage to one of the groups.

We thus introduce a general framework to formu-
late all relevant AUC-based constraints (and only
those) as a linear combination of 5 elementary con-
straints. Given a scoring function s, let the vector
C(s) = (C1(s),...,C5(s))T where the C)(s)’s are ele-
mentary fairness measurements. Specifically, the value
of |C1(s)| (resp. |C2(s)|) quantifies the resemblance of
the distribution of the negatives (resp. positives) be-
tween the two sensitive attributes:

01(8) = AUCng())’ngn - 1/2,

Cy(s) =1/2 — AUCG(SO)ngl)7

while C5(s), Cy4(s) and C5(s) measure the difference
in ability of a score to discriminate between positives
and negatives for any two pairs of sensitive attributes:

Cs(s) = AUC — AUC

H§0)7Ggﬂ) H§O),G(51)’
04(8) = AUCHgo),GS) - AUCHél),Ggo)’
05(8) = AUCH£1)7Ggo) — AUCHS),GS)'

The family of fairness constraints we consider is then
the set of linear combinations of the C;(s) = 0:
Cr(s): TTC(s) =3, [iCi(s) =0,  (7)

where I = (Fl, . 7F5)T € R5.

Theorem 1. The following statements are equivalent:

1. Eq. @ is satisfied for any measurable scoring
function s when H® = HO GO = g qand
pn(X) =p) <1,

2. Eq. @ is equivalent to Cr(s) for some ' € R,

3. (e1+e2) [(a—a) = (B-5)] =0

Theorem [1] shows that our general family defined by
Eq. compactly captures all relevant AUC-based
fairness constraints (including those proposed by Beu-
tel et al.| |2019; |Borkan et al.l 2019} [Kallus and Zhoul,
2019) while ruling out the ones that are not satisfied
when H®) = HM and G = GM) (which are in fact
unfairness constraints). Their parameters I' are pro-
vided in Table We refer to the supplementary for
the proof of this result and examples of novel fairness
constraints that can be expressed with Eq. (7).

As we show in Section [4.1] our unifying framework en-
ables the design of general formulations and statistical
guarantees for learning fair scoring functions, which
can then be instantiated to the specific notion of AUC-
based fairness that the practitioner is interested in.

3.2 Limitations of AUC-based Constraints

To illustrate the fundamental limitations of AUC-
based fairness constraints, we will rely on the credit-
risk screening use case described in Example [I} Imag-
ine that the scoring function s gives the c.d.f.’s H
and G shown in Fig. [1] (top). Looking at Ggl), we
can see that creditworthy (Y = +1) individuals of the
sensitive group Z = 1 do not have scores smaller than
0.5 and have an almost constant positive density of
scores between 0.6 and 1. On the other hand, the
scores of creditworthy individuals of group Z = 0 are
sometimes low but are mostly concentrated around 1
(greater than 0.80), as seen from G"). The distribu-
tion of scores for individuals who do not repay their
loan (Y = —1) is the same across groups.

Even though the c.d.f.’s G and GV are very differ-
ent, the scoring function s satisfies the AUC constraint
in Eq. , as can be seen from Fig. [1| (bottom left).
This means that creditworthy individuals from either
group have the same probability of being ranked higher
than a “bad borrower”. However, using high thresh-
olds (which correspond to low probabilities of default
on the granted loans) will lead to unfair decisions for
one group. For instance, using t = 0.85 gives a FNR
of 30% for group 0 and of 60% for group 1, as can be
seen from Fig. [1| (top). If the proportion of creditwor-
thy people is the same in each group (pogo = p1q1),
we would reject twice as much creditworthy people of
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Table 1: Value of I' in our formulation of Eq. for AUC-based constraints introduced in previous work.

AUC-based fairness constraint

Intra-group pairwise (Beutel et al., |2019), subgroup AUC (Borkan et al} 2019) 0
BNSP AUC (Borkan et al.,|2019), pairwise accuracy (Beutel et al.| [2019)) 0
BPSN AUC (Borkan et al., |2019; |Beutel et al., [2019; |Kallus and Zhou, |2019) 0
0
0

Zero Average Equality Gap (Borkan et al., [2019))

Inter-group pairwise (Beutel et al., 2019), xAUC (Kallus and Zhou, 2019)

group 1 than of group 0! This is blatantly unfair in
the sense of parity in FNR defined in Eq. (2).

In general, fairness constraints defined by the equality
between two AUC’s only quantify a stochastic order
between distributions, not the equality between these
distributions. In fact, for continuous ROCs, the equal-
ity between their two AUC’s only implies that the two
ROC’s intersect at some unknown point. As a conse-
quence, AUC-based fairness can only guarantee that
there exists some threshold ¢t € R that induces a non-
trivial classifier g5, : x — 2-I{s(z) > ¢t} —1 satisfying a
notion of fairness for classification (see the supplemen-
tary for details). Unfortunately, the value of ¢ and the
corresponding FPR, of the ROC curves are not known
in advance and are difficult to control. For the distri-
butions of Fig. [l we see that the classifier gs . is fair
in FNR only for ¢ = 0.72 (20% FNR for each group)
but has a rather high FPR (i.e., probability of default)
of ~25%, which may be not sustainable for the bank.

3.3 Learning with Pointwise ROC-based
Fairness Constraints

To impose richer and more targeted fairness condi-
tions, we propose to use pointwise ROC-based fair-
ness constraints as an alternative to AUC-based con-
straints. We start from the “ideal fairness goal” of
enforcing the equality of the score distributions of the
positives (resp. negatives) between the two groups,
i.e. Ggo) = Ggl) (resp. H§°) = HS)). This strong
functional criterion can be expressed in terms of ROC
curves. For « € [0, 1], consider the deviations between
the positive (resp. mnegative) inter-group ROCs and
the identity function:

AG’Q(S) = ROCGgO),Ggl)(Q) — Q,
(resp. Apa(s) := ROCHgo)’Hgl)(a) - a).

The aforementioned condition of equality between the
distribution of the positives (resp. negatives) of the
two groups are equivalent to satisfying Ago(s) = 0
(resp. Apo(s) = 0) for any « € [0,1]. When both
of those conditions are satisfied, all of the AUC-based
fairness constraints covered by Eq. are verified, as
it is easy to see that Cj(s) = 0 for all [ € {1,...,5}.

F1 FQ Fg F4 F5
] 1 1 1
0 (1§ ) : (1§ )
0 90 1_;70 0 g1 1_;’1
0 4q0P0 1 q1pP1
2p 2 2p
1 0 0 0
0 0 1 0

Furthermore, guarantees on the fairness of classifiers
gs,t induced by s hold for all possible thresholds t.
While this strong property is in principle desirable, it
puts overly restrictive constraints on s that will often
completely jeopardize its ranking performance.

We thus propose a general approach to implement the
satisfaction of a finite number of fairness constraints
on Apo(s) and Ag o (s) for specific values of « that
are relevant to the use case at hand. Our criterion
is flexible enough to address the limitations of AUC-
based constraints outlined above. Specifically, a prac-
titioner can choose points for Ag o and Ag  to guar-
antee the fairness of classifiers obtained by threshold-
ing the scoring function at the desired trade-offs be-
tween, say, FPR and FNR. Furthermore, we show in
Propositionbelow (proof in supplementary) that un-
der some regularity assumption on the ROC curve (As-
sumption , if a small number of fairness constraints
mp are satisfied at discrete points a%l), . .,a%mF) of
an interval for F' € {H, G}, then one obtains guar-
antees in sup norm on o — Ap, (and therefore fair

classifiers) in the entire interval [a%), a%mF )]. This re-
sult is crucial in applications where the threshold used
at deployment can vary in a whole interval, such as
biometric verification (Grother and Ngan, 2019) and
credit-risk screening (see Example .

Assumption 1. The class S of scoring functions take
values in (0,T) for some T > 0, and the family of cdfs
K= {ng),Hs(z) :s €S,z e{0,1}} satisfies: (a) any
K € K is continuously differentiable, and (b) there ex-
ists b, B > 0 s.t. V(K,t) e Kx(0,T), b < |K'(t)] < B.
The latter condition is satisfied when scoring functions
do not have flat or steep parts, see |Clémencon and
Vayatig (2007) (Remark 7) for a discussion.

Proposition 1. Under Assumption[]], if 3F € {H,G}

s.t. for every ke {1,...,mp}, [A, @ (s)| <¢, then:
YR

B+b (k+1) (k)
A a <€e+ —— ,
azlé)r,)l] | " (S)| ‘ 2b ke{%l,.a.d.),(m} |a1 o }
with the convention Oé(FO) = 0 and OL(F D =1.

To illustrate how ROC-based fairness constraints can
be designed in a practical case, we return to our credit
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lending example. In Fig. [1| (bottom right), we have
Apgo(s) = 0 for any « € [0,1] since a® = g,
However, Ag,q(s) can be large: this is the case in
particular for small o’s (low FPR). If the goal is to
obtain fair classifiers in FNR for high thresholds (i.e.,
low FPR), we should seek a scoring function s with
Ag,o >~ 0 for any a < amax, where amay is the maxi-
mum TPR the bank will operate at (see Fig. |1} bottom
right). The value of amax can be chosen based on the
performance of a score learned without fairness con-
straint if the bank seeks to limit FPR’s or maximize
its potential earnings. Learning with constraints for
a’s in an evenly spaced grid on [0, &max] Will ensure
that the resulting s yields fair classifiers g, for high
thresholds ¢, as confirmed experimentally in Section 5}

4 LEARNING UNDER AUC AND
ROC FAIRNESS CONSTRAINTS

In this section, we first introduce empirical risk min-
imization problems for learning under the AUC and
ROC-based constraints introduced in Section[3] Then,
we prove statistical learning guarantees in the form of
generalization bounds, which fill a gap in the exist-
ing literature for AUC-based constraints and provide a
theoretical justification for our novel ROC-based con-
straints. Finally, we briefly describe how to empirically
minimize such criteria with gradient-based algorithms.

4.1 Learning with AUC-based Constraints

We first formulate the problem of bipartite ranking
under AUC-based fairness constraints. Introducing
fairness as a hard constraint is tempting, but may be
costly in terms of ranking performance. In general,
there is indeed a trade-off between the ranking per-
formance and the level of fairness. For a family of
scoring functions S and some instantiation I' of our
general fairness definition in Eq. @, we thus define
the learning problem as follows:

maxees AUCqh, g, — )\‘FTC(S)’, (8)
where A > 0 is a hyperparameter balancing ranking
performance and fairness.

For the sake of simplicity and concreteness, in the rest
of this section we focus on a special case of Eq. ,
namely when C(s) corresponds to the fairness defini-
tion in Eq. . One can easily extend our analysis to
any other instance of our general definition in Eq. @
We denote by s} the scoring function that maximizes
the objective Ly(s) of Eq. (8), where:

Ly(s) := — AUC

AUCH, ¢, — A|[AUC

H§O> GE;O)

Hﬁ.l),Ggl)"

Given a training set {(X;,Y;, Z;)}1, of n i.i.d. copies
of the random triplet (X,Y, Z), we denote by n(*) the

number of points in group z € {0, 1}, and by ns_z) (resp.
n(f)) the number of positive (resp. negative) points in
z. The empirical counterparts of Hﬁz) and ng) are:

G(t) = (1/nD) S 1{Z = 2,Y; = —1,5(X;) <t}
O (t) = (/) X0 1{Z = 2,Y; = +1,5(X,) <t} .

Recalling the notation AUCF Froi= AUCF # from Sec-
tion 2.2 the empirical problem writes:

lA},\(s) =

We denote its maximizer by 5). We can now state our
statistical learning guarantees for fair ranking.

QY

AUCq, ¢, — A|JAUC AUC

a0~ AUCm g

Theorem 2. Assume the class of functions S is VC-
major with finite VC-dimension V. < +o0 and that
there exists € > 0 s.t. Min,eqo1y,yef—1,13 P{Y =9, 2 =
2z} = €. Then, for any 6 > 0, for all n > 1, we have
w.p. at least 1 —§:

€ [La(s%) — La(B\)] < C\/V/n - (4) +1/2)
bi(lﬂ : (4/\ + 4+ 2)6) + o).

Theorem [2] establishes a learning rate of O(1/4/n) for
our problem of ranking under AUC-based fairness con-
straints, which holds for any distribution of (X,Y, Z)
as long as the probability of observing each combina-
tion of label and group is bounded away from zero.
As the natural estimate of the AUC involves sums of
dependent random variables, the proof of Theorem
does not follow from usual concentration inequalities
on standard averages. Indeed, it requires controlling
the uniform deviation of ratios of U-processes indexed
by a class of functions of controlled complexity.

4.2 Learning with ROC-based Constraints

We now turn to the problem of bipartite ranking un-
der ROC-based fairness constraints. Recall from Sec-
tion that we aim to satisfy some constraints on
Apg o(s) and Ag o (s) for specific values of . De-
note by mpg,mg € N be the number of constraints
for the negatives and the positives respectively, as

well as oy = [ag),.. agnH)] € [0,1]™# and ag =
[ag), . a(GmG)] € [0,1]™< the points at which they

apply (sorted in strictly increasing order).
With the notation A := (a, Ay, Ag), we can introduce
the learning objective Ly (s) defined as:

mag

mpy
AUCqH, ¢, — Z /\%C)MH@;?)(S)} - Z )‘g)’AG,ag)(S)|’
k=1 k=1
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where Ag = [MP A0 e RTH and Ag =
[)\(1) ...7)\(Gmc)] e R' are hyperparameters.

The empirical counterpart Lx(s) of Ly is defined as:

9= 3B 0,

where AH,Q(S) = RT.\CG(()) ow (@) —a and Ag,a(s) =

ROC 00 o (@) —

mer
AUCq, c. — > AP |A
k=1

H7a(;;)

a for any a € [0, 1].

We now prove statistical guarantees for the maximiza-
tion of La(s). We denote by s} the maximizer of
Lp over §, and by §, the maximizer of Lj over S.

Our analysis relies on the regularity assumption on the
ROC curve provided in Section [3.3] (Assumption [I).

Theorem 3. Under Assumption[1] and those of The-
orem[d, for any § >0, n>1, wp. >1—4:

€ [La(sk) = La(8a)] < C (1/2 4 2¢Cp )/ V /n
+2¢(1+3Ch k) 10?%{5 +O(TL—1),
where Chxx = (1 + B/b)(Ag + \g), with A\g =

ZZLH )\(k) and j\G Z;nc )\(k)

Theorem [3| generalizes the learning rate of O(1/4/n) of
Theorem [2] to ranking under ROC-based constraints.
Its proof also relies on results for U-processes, but fur-
ther requires a study of the deviations of the empirical
ROC curve seen as ratios of empirical processes in-
dexed by S x [0, 1]. In that regard, our analysis builds
upon the decomposition proposed in [Hsieh and Turn-
bull| (1996), which enables the derivation of uniform
bounds over S x [0, 1] from results on standard empir-
ical processes (van der Vaart and Wellner, |1996).

4.3 Algorithmic Details

In practice, maximizing L » Or L A directly by gradient
ascent is not feasible since the criteria are not con-
tinuous. We use classic smooth surrogate relaxations
of the AUCs or ROCs based on the logistic function
o:x— 1/(1 4+ e ®). We also remove the absolute
values in L » and EA, and instead rely on parameters
that are modified adaptively during the training pro-
cess. We solve the problem using a stochastic gradient
ascent algorithm, and modify the introduced parame-
ters every fixed number of iterations based on fairness
statistics evaluated on a small validation set. We refer
to the supplementary material for more details on the
algorithms we use in our experiments.

The hyperparameter A should be tuned to achieve
the desired trade-off between ranking performance and
fairness. For learning under a ROC-based constraint,

0.90 %
=
°
< oo °
0.85 1= : : : T -+
—_ U
®
— 0.2
I
< o.o-—.“—‘ . —8 . @
0 2 4 6 3 10

A

Figure 2: Ranking accuracy (AUC) and a ROC-based
constraint at Apy(1/8) as a function of the hyperpa-
rameter A\, on the Adult dataset.

Fig. 2| provides examples of trade-offs for different A’s
on the dataset Adult presented in Section [5]

5 EXPERIMENTS

In this section, we present a subset of our experimental
results, which we think nicely illustrates the differences
between AUC and ROC-based fairness. It also shows
how these constraints can be used to achieve a trade-off
between ranking performance and the desired notion
of fairness in practical use cases. Due to space limita-
tions, we refer to the supplementary material for the
presentation of all details on the experimental setup,
as well as additional results.

Results are summarized in Fig. [3] which shows ROC
curves for 2-layer neural scoring functions learned with
and without fairness constraints on 2 real datasets:
Compas and Adult (used e.g. in Donini et al., 2018).

Compas is a recidivism prediction dataset. We de-
fine the sensitive variable to be Z = 1 if the indi-
vidual is categorized as African-American and 0 oth-
erwise. In contrast to credit-risk screening, here be-
ing labeled positive (i.e., recidivist) is a disadvan-
tage, so we consider the Background Positive Subgroup
Negative (BPSN) AUC fairness constraint defined as
O g, = AUCHS’,GJ which is equivalent to
Eq. with positive andknegative labels swapped.
BPSN forces the probabilities that a negative from a
given group is mistakenly ranked higher than a posi-
tive to be the same across groups. While the scoring
function learned without fairness constraint system-
atically makes more ranking errors for non-recidivist
African-Americans (Fig. [Bla), we can see that learning
with the AUC-constraint achieves its goal as it makes
the area under ROC 7o . and ROC 7o g, Very sim-
ilar (Fig. [}c). However slightly more of such errors
are still made in the top 25% of the scores, which is
the region where the prediction threshold could be set
in practice for taking decisions such as denying bail.
We thus configure our ROC-based fairness constraints
to align the distributions of positives and negatives
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Figure 3: ROC curves on the test set of Adult and Compas for a score learned without and with fairness con-
straints. Black curves represent ROCp, .. We also report the corresponding ranking performance AUCH, ¢, .

across both groups by penalizing solutions with high
|AG,1/8(8)|a |AG,1/4(5)|7 \AH,1/8(8)| and |AH,1/4(3)|‘ In
line with our theoretical analysis (see the discussion
in Section [3.3), we can see from ROCGE"),G(J) and
ROC ;0 -orin
tion that achieves equality of the positive and negative
distributions in the entire interval [0,1/4] of interest
(Fig. f). In turn, ROC, ) , and ROCHgo)Gg be-
come essentially equal in this fegion as desired ‘(Fig.
[Bte). Note that on this dataset, both the AUC and
ROC constraints are achieved with minor impact on
the ranking performance, as seen from the AUC scores.

v that this suffices to learn a scoring func-

We now turn to the Adult dataset, where we set Z
to denote the gender (0 for female) and ¥ = 1 in-
dicates that the person makes over $50K/year. For
this dataset, we plot ROCH§1>,G§°) and ROCHSO) o
and observe that without fairness constraint, men
who make less than $50K are much more likely to
be mistakenly ranked above a woman who actually
makes more, than the other way around (Fig. [}g).
The learned score thus reproduces a common gender
bias. To fix this, the appropriate notion of AUC-
based fairness is Eq. . We see that learning un-
der this constraint successfully equates the area un-
der ROCHﬁ.l),GEO) and ROCHS’),GS) (Fig. i). How-
ever, this comes at the cost of introducing a small
bias against men in the top scores. As seen from
ROCHSO)’HSU and ROCG@,GQD’ positive women now
have higher scores overall than positive men, while
negative men have higher scores than negative women
(Fig. [3}i). These observations illustrate the limita-
tions of AUC fairness (see Section . To address
them, we use the same ROC constraints as for Compas

so as to align the positive and negative distributions of
each group in [0,1/4]. This is again achieved almost
perfectly in the entire interval (Fig. 1). While the
degradation in ranking performance is more noticeable
on this dataset, a clear advantage from ROC-based
fairness is that the scoring function can be thresholded
to obtain fair classifiers at a wide range of thresholds.

6 DISCUSSION

In this work, we studied the problem of fairness for
scoring functions learned from binary labeled data.
We proposed a general framework for designing AUC-
based fairness constraints, introduced novel ROC-
based constraints, and derived statistical guarantees
for learning scoring functions under such constraints.
Although we focused on ROC curves, our framework
can be adapted to precision-recall curves (as they are
a function of the FPR and TPR (Clémencon and Vay-|
2009)). It can also be extended to similarity rank-
ing, a variant of bipartite ranking covering applications
like biometric authentication (Vogel et al. [2018]).

Recent work derived analytical expressions of optimal
fair models for learning problems other than bipar-
tite ranking (Menon and Williamson| 2018; |Chzhen|
2020). A promising direction for future work is
to derive a similar result for scoring functions. This
would enable us to propose a compelling theoretical
study of the trade-offs between performance and fair-
ness in bipartite ranking, and lay the foundations for
provably fair extensions of ROC curve optimization al-

gorithms based on recursive partitioning (Clémengon

let al., 2011} |Clémengon and Vayatis| [2010).
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