
Experimental Design for Regret Minimization in Linear Bandits

Contents

1 INTRODUCTION 1

2 PRELIMINARIES 2

3 MOTIVATING EXAMPLES 3

4 EXPERIMENTAL DESIGN FOR REGRET MINIMIZATION 4

4.1 Gaussian Width . 4

4.2 Algorithm Overview . 4

4.3 Main Regret Bound . 5

4.4 Computationally E�cient Algorithm . 5

4.5 Pure Exploration with Semi-Bandit Feedback . 6

4.6 Optimization . 6

5 EXPERIMENTAL RESULTS 7

6 DISCUSSION AND PRIOR ART 7

A Action Elimination with Gaussian Width 13

B Regret Bound Proofs 15

C Pure Exploration Proofs 25

C.1 Lower Bound . 27

D Computational Complexity Results 29

D.1 Algorithmic Approach . 29

D.1.1 Subroutines . 33

D.2 Main Optimization Proofs . 34

D.3 Miscellaneous Optimization Lemmas . 43

D.4 Convergence Lemmas . 44

D.5 Di↵erentiability Lemmas . 47

E Rounding 51

F Gaussian Width Results 52

G Lower Bound for Semi-Bandit Feedback and Optimistic Strategies 55

H Additional Experimental Results 59

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

A Action Elimination with Gaussian Width

We first state an algorithm inspired by Lattimore and Szepesvári [2020] and prove a regret bound. This algorithm,
while naive, incorporates the TIS inequality to obtain regret scaling with the Gaussian width. Furthermore, the
analysis is simple and helps aid in the intuition of the proof of our main theorems.

For f 2 {band, semi}, denote:

�(Af(�),X) := E⌘⇠N (0,I)


sup
x2X

x
>
Af(�)

�1/2
⌘

�2

Algorithm 2 Gaussian Width Action Elimination (GW-AE)

1: Input: Set of arms X , confidence �, largest gap �max, rounding parameter ⇣ 2 (0, 1)
2: X̂1 X , ` 1,
3: while |X̂`| > 1 do
4: Let �̂` a minimizer of E⌘[maxx2X̂`

x
>
A(�)�1/2

⌘]2 +maxx2X̂`
kxk

2
A(�)�1

5: ✏` = �max2�`, ⌧` = 2(1 + ⇣)✏�2
` (�(A(�̂`), X̂`) + 2 supx2X̂`

kxk
2
A(�̂`)�1

log(2`2/�))

6: ` ROUND(�̂`, d⌧`e _ q(⇣), ⇣)
7: Pull arm x `,x times, compute ✓̂` from this data

8: X̂`+1 X̂`\{x 2 X̂` : maxx02X̂`
(x0
� x)>✓̂` > 2✏`}

9: ` `+ 1
10: end while

Here ROUND(�, N, ⇣) is a rounding procedure which takes as input � 2 4X , N 2 N, and ⇣ 2 (0, 1) and outputs
an allocation  2 N|X | such that:

�(A(),X) + sup
x2X

kxk
2
A()�1  (1 + ⇣)

✓
�(A(⌧�),X) + sup

x2X

kxk
2
A(⌧�)�1

◆

and
P

x2X
x = N , so long as N � q(⇣). From Katz-Samuels et al. [2020] and Allen-Zhu et al. [2020], we know

such a rounding procedure exists and can be computed e�ciently, and that it su�ces to choose q(⇣) = O(d/⇣2).

Denote:

�̄ae(Af) = sup
✏>0

sup
Y✓X✏

inf
�24Y[x⇤

E⌘


sup
x2Y[x⇤

x
>
Af(�)

�1/2
⌘

�2

where X✏ := {x 2 X : �x  ✏}.

Theorem 5. For f 2 {band, semi}, the absolute regret of GW-AE is bounded as:

c1�max log(�max/�min)d+
c2(�̄ae(Af) + d log(log(�max/�min)/�))

�min

with probability at least 1� � and minimax regret as:

c1�max log(�max/�min)d+ c2

q
(�̄ae(Af) + d log(log(�max/�min)/�))T

with probability at least 1� �. Here c1, c2 are absolute constants.

If desired, noting that ⌧` � ✏
�2
` which implies that we will have at most O(log(T)) rounds, the log(�max/�min)

could be replaced with a term O(log(T)), as in Theorem 1.

While this result closely resembles Theorem 1, there are several major shortcomings. First, this algorithm does
not plan as e↵ectively as it only pulling arms with gap less than ✏`, which could cause it to forego pulling
informative yet suboptimal arms, something Algorithm 1 improves on. In particular, the regret bound stated
for Algorithm 1 in Proposition 1 will not hold for this algorithm. In a sense, this algorithm can be thought of as
being optimistic. Second, it is always the case that �̄(Af)  �̄ae(Af). The parameter �̄ae(Af) could be tightened

Experimental Design for Regret Minimization in Linear Bandits

by altering the constant factors in Algorithm 2 so as to guarantee that, on the good event all arms with gap less
than ✏, for some ✏, are in X̂`. However, even with this tightening we will always have �̄(Af)  �̄ae(Af). Finally,
Algorithm 2 does not seem to admit a computationally feasible solution in the combinatorial bandit setting.

Proof. From Proposition 6, we will have that:

x
>(✓̂` � ✓⇤)  E⌘⇠N (0,I)

"
sup
x2X̂`

x
>
A(`)

�1/2
⌘

#
+
r
2 sup
x2X̂`

kxk2A(`)�1 log(2`2/�)

 ✏`

for all x 2 X̂` simultaneously with probability 1 � �/`2. The second inequality holds by our choice of ⌧` and
Kiefer-Wolfowitz and Proposition 9. Let:

Ex,`(V) = {|hx, ✓̂` � ✓
⇤
i|  ✏`}

where ✓̂` is computed assuming V is the active set in the above algorithm. Then using the following calculation
from Jamieson:

P

2

4
1[

`=1

[

x2X̂`

Ex,`(X̂`)
c

3

5 
1X

`=1

X

V✓X

P
"
[

x2V

Ex,`(V)
c

#
P[X̂` = V]



1X

`=1

X

V✓X

�

`2
P[X̂` = V]

 �

so the good event, that all the arm rewards are well estimated for all rounds, holds with high probability. Assume
henceforth that the good event E = \1`=1 \x2X Ex,`(V) holds. Following identically the argument from Jamieson,

we will have that x⇤ 2 X̂` and maxx2X̂`
(x⇤ � x)>✓⇤  8✏` for all `. We assume the good event holds for the

remainder of the proof.

We can now follow the same argument as Lemma 12 of Katz-Samuels et al. [2020]. Take Y ✓ X✏ for some ✏ and
let �1 2 4Y be the distribution that minimizes:

max
x2Y

kxk
2
A(�)�1

and �2 2 4Y the distribution that minimizes:

E⌘[max
x2Y

x
>
A(�)�1/2

⌘]2

Let � = 1
2 (�1 + �2). Then we will have that:

2A(�i)
�1
⌫ A(�)�1

From this it immediately follows that:

max
x2Y

kxk
2
A(�)�1  2max

x2Y

kxk
2
A(�1)�1  2d

where the last inequality holds by Kiefer-Wolfowitz and Proposition 9. Also:

E⌘[max
x2Y

x
>
A(�)�1/2

⌘]2  2E⌘[max
x2Y

x
>
A(�2)

�1/2
⌘]2  2�̄ae(A)

Since X̂` will always contain only arms with gap less than ✏ for some ✏, we then have that:

⌧`  c(1 + ⇣)✏�2
` (2d log(2`2/�) + �̄ae(A))

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

Using these bounds and noting that dlog2(8�max/(�min _ ⌫))e upper bounds the number of rounds, we can
upper bound the regret as:

X

x2X\{x⇤}

�xTx

 T⌫ +

dlog2(8�max/(�min_⌫))eX

`=1

8✏`(⌧` + q(⇣) + 1)

 T⌫ + 8�maxdlog2(8�max/(�min _ ⌫))e(q(⇣) + 1) +

dlog2(8�max/(�min_⌫))eX

`=1

c(1 + ⇣)✏�1
` (�̄ae(A), X̂`) + 2d log(2`2/�))

 T⌫ + 8�maxdlog2(8�max/(�min _ ⌫))e(q(⇣) + 1) +

dlog2(8�max/(�min_⌫))eX

`=1

c(1 + ⇣)✏�1
` (�̄ae(A) + 2d log(2`2/�))

 T⌫ + 8�maxdlog2(8�max/(�min _ ⌫))e(q(⇣) + 1) +

dlog2(8�max/(�min_⌫))eX

`=1

c(1 + ⇣)
2`

�max
(�̄ae(A) + 2d log(2`2/�))

 T⌫ + 8�maxdlog2(8�max/(�min _ ⌫))e(q(⇣) + 1) +
c(1 + ⇣)(�̄ae(A) + 2d log(2 log22(16�max/(�min _ ⌫))/�))

�min _ ⌫

Optimizing this over ⌫ gives the final regret of:

8�maxdlog2(8�max/(�min))e(q(⇣) + 1) +
p
c(1 + ⇣)(�̄ae(A) + d log(log(�max/(�min))/�))T

and choosing ⌫ = 0 gives the absolute regret bound.

B Regret Bound Proofs

Proof of Theorem 2. Throughout we will let R` denote the regret incurred in round `, and R1:` the regret
incurred from rounds 1 through `. We assume A(⌧) corresponds to the type of feedback received. The first part
of this proof closely mirrors the proof of Theorem 5 of Katz-Samuels et al. [2020]. We will prove this result
for ⌧` being a (⌫, ⇣)-optimal solution to (3), where we calll a solution to (3) (⌫, ⇣)-optimal if dopt  ⌫opt + ⇣,
where dopt is the value of the objective attained by the approximate solution, and opt the value attained by the
optimal solution.

Good event: We will define S` as the following:

S` := {x 2 X : �x  ✏`}

Let �k = �/(2k3) and define the events:

Ek,j =

(
sup

z,z02Sj

|(z � z
0)>(✓̂k � ✓⇤)|  (1 +

p
⇡ log(1/�k))E⌘

"
sup

z,z02Sj

(z � z
0)>A(⌧k)

�1/2
⌘

#)

E =
1\

k=1

k\

j=0

Ek,j

Proposition 6 gives that with probability at least 1� �/k3:

sup
z,z02Sj

|(z � z
0)>(✓̂k � ✓⇤)|  E⌘

"
sup

z,z02Sj

(z � z
0)>A(⌧k)

�1/2
⌘

#
+
r
2 max
z,z02Sj

kz � z0k2A(⌧k)�1 log(1/�k)

(a)
 (1 +

p
⇡ log(1/�k))E⌘

"
sup

z,z02Sj

(z � z
0)>A(⌧k)

�1/2
⌘

#

Experimental Design for Regret Minimization in Linear Bandits

where (a) follows by Lemma 11 of Katz-Samuels et al. [2020]. It follows then that P[Ec
k,j]  �/k

3, which implies
that:

P[Ec] 
1X

k=1

kX

j=0

P[Ec
k,j] 

1X

k=1

kX

j=0

�

k3
 3�

Estimation error: Henceforth we assume E holds. We proceed by induction to show that the gaps are always
well-estimated. First we prove the base case. Let k = 1 and consider any x 2 X . Then:

|(x⇤ � x)>(✓̂1 � ✓⇤)|  sup
z,z02X

|(z � z
0)>(✓̂1 � ✓⇤)|

 (1 +
p
⇡ log(1/�1))E⌘


sup

z,z02X

(z � z
0)>A(⌧1)

�1/2
⌘

�

(a)
= 2(1 +

p
⇡ log(1/�1))E⌘


sup
z2X

(x1 � z
0)>A(⌧1)

�1/2
⌘

�

(b)
 ✏1/8

where (a) follows by Proposition 7.5.2 of Vershynin [2018] and (b) follows since ⌧1 is a feasible solution to (3).

For the inductive step, assume that, for all x 2 Sk:

|(x⇤ � x)>(✓̂k � ✓⇤)|  ✏k/8

and for all x 2 S
c
k:

|(x⇤ � x)>(✓̂k � ✓⇤)|  �x/8

Consider round k + 1 and take x 2 S
c
k+1. There then exists some k

0
 k such that x 2 Sk0\Sk0+1. Then:

|(x⇤ � x)>(✓̂k+1 � ✓⇤)|

�x
 sup

z,z02Sk0

|(z � z
0)>(✓̂k+1 � ✓⇤)|

�x

 (1 +
p
⇡ log(1/�k+1))E⌘

"
sup

z,z02Sk0

(z � z
0)>A(⌧k+1)�1/2

⌘

�x

#

(a)
= 2(1 +

p
⇡ log(1/�k+1))E⌘

"
sup
z2Sk0

(xk+1 � z)>A(⌧k+1)�1/2
⌘

�x

#

(b)
 4(1 +

p
⇡ log(1/�k+1))E⌘

"
sup
z2Sk0

(xk+1 � z)>A(⌧k+1)�1/2
⌘

✏k+1 +�x

#

(c)
 8(1 +

p
⇡ log(1/�k+1))E⌘

"
sup
z2Sk0

(xk+1 � z)>A(⌧k+1)�1/2
⌘

✏k+1 +�z

#

 8(1 +
p
⇡ log(1/�k+1))E⌘


sup
z2X

(xk+1 � z)>A(⌧k+1)�1/2
⌘

✏k+1 +�z

�

(d)
 16(1 +

p
⇡ log(1/�k+1))E⌘


sup
z2X

(xk+1 � z)>A(⌧k+1)�1/2
⌘

✏k+1 + �̂z

�

(e)
 1/8

where (a) follows by Proposition 7.5.2 of Vershynin [2018], (b) follows since �x � ✏k+1 by virtue of the fact that
x 2 S

c
k+1, so �x � (✏k+1 + �x)/2, (c) follows since �x 2 [✏k0+1, ✏k0] and for any z 2 Sk0 , we will have theta

�z  ✏k0 , so ✏k+1 +�x � ✏k+1 + ✏k0+1 � ✏k+1 +�z/2, (d) holds by the inductive hypothesis and Lemma 1 of
Katz-Samuels et al. [2020] and taking �̂z to be the estimate of �z at round k + 1, and (e) holds since ⌧k+1 is a
feasible solution to (3). We can perform a similar calculation to get the same thing for x 2 Sk+1, allowing us to
conclude that, for all x 2 Sk+1:

|(x⇤ � x)>(✓̂k+1 � ✓⇤)|  ✏k+1/8

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

and for all x 2 S
c
k+1:

|(x⇤ � x)>(✓̂k+1 � ✓⇤)|  �x/8

From this and Lemma 1 of Katz-Samuels et al. [2020], it follows that for all ` and x 2 S`:

�x  �̂x + |�̂x ��x|  �̂x + ✏`/2  �̂x + ✏`

and for x 2 S
c
` :

�x  �̂x + |�̂x ��x|  2�̂x  2�̂x + 2✏`

So the objective of (3) upper bounds the real regret. Further, on the good event, using Lemma 1 from Katz-
Samuels et al. [2020], for any ` and x 2 X , we have:

1

2
(✏` +�x)  ✏` + �̂x 

3

2
(✏` +�x) (6)

This implies that if we remove arm x from X̂`:

�̂x > 2✏` =) �̂x + ✏` > 3✏` =)
3

2
(✏` +�x) > 3✏` =) �x > ✏`

So, on the good event, if �̂x > 2✏`, we will have identified the best arm correctly.

Bounding the Round Regret: From the previous section, we know that on the good event all our gaps will
be well-estimated. From (6), it follows that the constraint in (3) is tighter than the following constraint:

E⌘

max
x2X

(x` � x)>A(⌧)�1/2
⌘

✏` +�x

�


1

256(1 +
p
⇡ log(2`3/�))

(7)

so any ⌧ satisfying this inequality is also a feasible solution to (3).

Consider drawing some ⌘ and let x⌘ be the point x 2 X that achieves the maximum above (if the solution is not
unique, break ties by choose x⌘ randomly from the x 2 X for which the maximum is attained). If we assume
that x⌘ 2 S`, then it follows that:

max
x2X

(x` � x)>A(⌧)�1/2
⌘

✏` +�x
= max

x2S`

(x` � x)>A(⌧)�1/2
⌘

✏` +�x

 max
x2S`

(x` � x)>A(⌧)�1/2
⌘

✏`

(a)


X̀

j=1

max
x2Sj

(x` � x)>A(⌧)�1/2
⌘

✏j

where (a) follows since we will always have:

max
x2Sj

(x` � x)>A(⌧)�1/2
⌘

✏j
� 0

since x` 2 Sj for j  ` by Lemma 1 of Katz-Samuels et al. [2020]. Assume that x⌘ 2 Sk\Sk+1. Then:

max
x2X

(x` � x)>A(⌧)�1/2
⌘

✏` +�x
= max

x2Sk\Sk+1

(x` � x)>A(⌧)�1/2
⌘

✏` +�x

(a)
 2 max

x2Sk\Sk+1

(x` � x)>A(⌧)�1/2
⌘

✏k

 max
x2Sk

(x` � x)>A(⌧)�1/2
⌘

✏k



X̀

j=1

max
x2Sj

(x` � x)>A(⌧)�1/2
⌘

✏j

Experimental Design for Regret Minimization in Linear Bandits

where (a) uses the fact that for all x 2 Sk\Sk+1, �x 2 [✏k+1, ✏k], and the last inequality follows as above. We
therefore have that:

E⌘

max
x2X

(x` � x)>A(⌧)�1/2
⌘

✏` +�x

�


X̀

j=1

1

✏j
E⌘


max
x2Sj

(x` � x)>A(⌧)�1/2
⌘

�

Let �gwj be the solution to:

�
gw
j = argmin

�24Sj

E⌘[max
x2Sj

(x` � x)>A(�)�1/2
⌘]

Let ⌧̄ = `
2
P`

j=1 ⌧
gw
j and ⌧gwj = 65536�̄(A)✏�2

j (1 +
p
⇡ log(2`3/�))2�gwj . Then:

E⌘

max
x2Sj

(x` � x)>A(⌧gwj)�1/2
⌘

�
=

E⌘
⇥
maxx2Sj (x` � x)>A(�gwj)�1/2

⌘
⇤

q
⌧
gw
j

=
✏jE⌘

⇥
maxx2Sj (x` � x)>A(�gwj)�1/2

⌘
⇤

p
�̄(A)256(1 +

p
⇡ log(2`3/�))


✏j

256(1 +
p
⇡ log(2`3/�))

Given this:

X̀

j=1

1

✏j
E⌘


max
x2Sj

(x` � x)>A(⌧̄)�1/2
⌘

�
(a)


1

`

X̀

j=1

1

✏j
E⌘


max
x2Sj

(x` � x)>A(⌧gwj)�1/2
⌘

�


1

`

X̀

j=1

1

✏j

✏j

256(1 +
p
⇡ log(2`3/�))

=
1

256(1 +
p
⇡ log(2`3/�))

where (a) holds by the Sudakov-Fernique inequality (Theorem 7.2.11 of Vershynin [2018]). Thus, ⌧̄ satisfies (7)
and so is a feasible solution to (3). Let ⌧⇤` be the optimal solution to (3), then:

X

x2X

2(✏` + �̂x)⌧
⇤

`,x 

X

x2X

2(✏` + �̂x)⌧̄x 
X

x2X

3(✏` +�x)⌧̄x =
X

x2X

3�x⌧̄x + 3✏`⌧̄

The first term can be bounded by the regret bounded given in Lemma 2:

X

x2X

3�x⌧̄x  c1�max`d+
c2`

2 log(`/�)�̄(A)

✏`

By construction we’ll have that:

⌧̄ = c

X̀

k=1

✏
�2
k �̄(A)(1 +

p
⇡ log(2`3/�))2  c�̄(A)(1 +

p
⇡ log(2`3/�))2✏�2

`

so:

3✏`⌧̄ 
c�̄(A) log(2`3/�)

✏`

Recalling that ⌧` is a (⌫, ⇣)-optimal solution to (3), the above implies that:

X

x2X

2(✏` + �̂x)⌧`,x  (1 + ⌫)
X

x2X

2(✏` + �̂x)⌧
⇤

`,x + ⇣  (1 + ⌫)

✓
c1�max`d+

c2`
2 log(`/�)�̄(A)

✏`

◆
+ ⇣ (8)

We in fact play ↵`, as this will attain the same objective value and so the same regret bound. However, ↵` may
not be integer, so we will pull every arm d↵`,xe times. Note that the rounded solution still meets the constraint

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

from (3). Assume we are playing the rounded solution given by Lemma 1, then rounding the solution will incur
additional regret of at most �maxnf. Since

P
x2X

2(✏` + �̂x)⌧x upper bounds the real regret of playing ⌧x, we’ll
have:

R`  (1 + ⌫)

✓
c1�max`d+

c2`
2 log(`/�)�̄(A)

✏`

◆
+�maxnf + ⇣

We can then bound the regret incurred after ` stages as:

R1:` 

X̀

k=1

(1 + ⌫)

✓
c1�maxkd+

c2k
2 log(k/�)�̄(A)

✏k

◆
+ `�maxnf + `⇣

 c1(1 + ⌫)�max`
2
d+ `�maxnf + `⇣ +

X̀

k=1

c2(1 + ⌫)k2 log(`/�)�̄(A)

✏k

 c1(1 + ⌫)�max`
2
d+ `�maxnf + `⇣ + c2(1 + ⌫) log(`/�)�̄(A)

X̀

k=1

k
22k

 c1(1 + ⌫)�max`
2
d+ `�maxnf + `⇣ +

c2(1 + ⌫)`2 log(`/�)�̄(A)

✏`

(9)

Minimax Regret: Denote the objective to (3) at round ` evaluated at ⌧` by:

f` :=
X

x2X

2(✏` + �̂x)⌧`,x

By (8) we can upper bound:

f`  (1 + ⌫)

✓
c1�max`d+

c2`
2 log(`/�)�̄(A)

✏`

◆
+ ⇣

 c1(1 + ⌫)�max`d+ ⇣ +
c2(1 + ⌫)`2 log(`/�)�̄(A)

✏`

=: C1 +
C2

✏`

(10)

Let ¯̀ be the first round for which:

T ✏`  C1 +
C2

✏`

Note that, if ✏` solves this with equality, then:

✏` =
C1

2T
+

1

2

r
4C2

T
+

C2
1

T 2

is the only non-negative solution. It follows then that:

✏¯̀
C1

2T
+

1

2

r
4C2

T
+

C2
1

T 2


C1

T
+

r
C2

T

Since ✏¯̀ is the largest such solution, it follows that 2✏¯̀ doesn’t satisfy this inequality so:

2✏¯̀>
C1

2T
+

1

2

r
4C2

T
+

C2
1

T 2
�

r
C2

T

so in particular:
1

✏¯̀


r
4T

C2

Assume that f`  T ✏` for all `. Using the monotonicity of ✏`, for ` � ¯̀, we’ll have:

f`  T ✏`  T ✏¯̀ C1 +
p
C2T

Experimental Design for Regret Minimization in Linear Bandits

Furthermore, by (9), we’ll have that the total regret up to round ¯̀ will be bounded as:

R1:¯̀ c1(1 + ⌫)�max
¯̀2d+ ¯̀�maxnf + ¯̀⇣ +

c2(1 + ⌫)¯̀2 log(¯̀/�)�̄

✏¯̀

 C1
¯̀+ ¯̀�maxnf +

C2

✏¯̀

 C1
¯̀+ ¯̀�maxnf +

p
4C2T

So in this case, since by Lemma 3 there are at most `max(T) rounds, and since f` +�maxnf upper bounds the
regret of round `, we’ll have that the total regret will be bounded as:

RT  `max(T)
⇣
C1 +�maxnf + 3

p
C2T

⌘

Now assume there is some round such that f` > T ✏` and denote this round as `mle. By construction, it will be
the case that the MLE at this point has gap at most ✏`mle , so the total regret incurred from playing the MLE
for the remainder of time will be bounded as T ✏`mle . Further, note that by (10):

T ✏`mle < f`mle  C1 +
C2

✏`mle

By definition ¯̀ is the first round where T ✏`  C1 +
C2
✏`
, so it follows that `mle �

¯̀. We can then upper bound
the total regret incurred as:

RT 

¯̀X

`=1

f` +
`mle�1X

`=¯̀+1

f` + T ✏`mle + `mle�maxnf

From (9), as above, we can bound:

¯̀X

`=1

f`  C1
¯̀+

C2

✏¯̀
 C1

¯̀+
p

4C2T

Since by definition we’ll have that f`  T ✏` for ` 2 [¯̀+ 1, `mle � 1], the second term can be bounded as:

`mle�1X

`=¯̀+1

f`  T

`mle�1X

`=¯̀+1

✏`  (`mle �
¯̀� 2)T ✏¯̀ (`mle �

¯̀� 2)(C1 +
p
C2T)

Finally:

T ✏`mle  T ✏¯̀ C1 +
p
C2T

Combining this, we have that:

RT  `max(T)(C1 +�maxnf + 4
p
C2T)

Absolute Regret: Assume:

T >
C1

�min
+

C2

�2
min

then we’ll have that ✏¯̀ < �min, so the algorithm will exit before reaching round ✏¯̀. In this case, since there are
at most dlog(4�max/�min)e stages by Lemma 3 and since, as noted above, on the good event, once |X̂`| = 1, we
will have identified the best arm and so will incur 0 regret for the rest of time, (9) gives:

RT  c1(1 + ⌫)�max log2(�max/�min)
2
d+ dlog(4�max/�min)e�maxnf + dlog(4�max/�min)e⇣

+
c2(1 + ⌫)�̄(A) log(log(�max/�min)/�) log2(�max/�min)2

�min

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

By definition, it will always be the case that ✏`mle > �min, if it exists, as we would have otherwise exited the
algorithm already. By (9), we’ll then have:

RT  R1:`mle + T ✏`mle

 c1(1 + ⌫)�max log2(�max/�min)
2
d+ dlog2(4�max/�min)e�maxnf + dlog(4�max/�min)e⇣

+
c2(1 + ⌫)�̄(A) log(log(�max/�min)/�) log2(�max/�min)2

✏`mle

+ T ✏¯̀

(a)
 c1(1 + ⌫)�max log2(�max/�min)

2
d+ dlog2(4�max/�min)e�maxnf + dlog(4�max/�min)e⇣

+
c2(1 + ⌫)�̄(A) log(log(�max/�min)/�) log2(�max/�min)2

✏`mle

+ C1 +
C2

✏¯̀

 2C1 log2(�max/�min) + dlog2(4�max/�min)e�maxnf +
2C2

�min

where (a) holds by the definition of ¯̀. If round `mle is never reached, then the upper bound above still holds, as
we can still bound RT  R1:`mle , the regret we would have incurred had we reached `mle.

Finally, by Theorem 4 we can choose ⌫ = 4, ⇣ = 2, and we will be able to compute the solution e�ciently.

Proof of Theorem 1. The proof of this result is very similar to the proof of Theorem 2 but we include the points
where it di↵ers for the sake of completeness. Unless otherwise noted, all notation is defined as in the proof of
Theorem 2.

Good event: Define the events:

Ek,j =

(
sup

z,z02Sj

|(z � z
0)>(✓̂k � ✓⇤)|  E⌘

"
sup

z,z02Sj

(z � z
0)>A(⌧k)

�1/2
⌘

#
+
r
2 max
z,z02Sj

kz � z0k2A(⌧k)�1 log(1/�k)

)

E =
1\

k=1

k\

j=0

Ek,j

Proposition 6 implies that P[Ec
k,j]  �/k

3 so:

P[Ec] 
1X

k=1

kX

j=0

P[Ec
k,j] 

1X

k=1

kX

j=0

�

k3
 3�

Estimation error: Henceforth we assume E holds. We proceed by induction to show that the gaps are always
well-estimated. First we prove the base case. Let k = 1 and consider any x 2 X . Then:

|(x⇤ � x)>(✓̂1 � ✓⇤)|  sup
z,z02X

|(z � z
0)>(✓̂1 � ✓⇤)|

 E⌘


sup
z,z02X

(z � z
0)>A(⌧1)

�1/2
⌘

�
+
r

2 max
z,z02X

kz � z0k2A(⌧1)�1 log(1/�k)

(a)
= E⌘


sup
z2X

(x1 � z)>A(⌧1)
�1/2

⌘

�
+
r
2 max
z,z02X

kz � z0k2A(⌧1)�1 log(1/�k)

(b)
 ✏1/8

where (a) follows by Proposition 7.5.2 of Vershynin [2018] and (b) follows since ⌧1 is a feasible solution to (2).
For the inductive step, assume that, for all x 2 Sk:

|(x⇤ � x)>(✓̂k � ✓⇤)|  ✏k/8

and for all x 2 S
c
k:

|(x⇤ � x)>(✓̂k � ✓⇤)|  �x/8

Experimental Design for Regret Minimization in Linear Bandits

Consider round k + 1 and take x 2 S
c
k+1. There then exists some k

0
 k such that x 2 Sk0\Sk0+1. Then:

|(x⇤ � x)>(✓̂k+1 � ✓⇤)|

�x
 sup

z,z02Sk0

|(z � z
0)>(✓̂k+1 � ✓⇤)|

�x

 E⌘

"
sup

z,z02Sk0
(z0 � z)>A(⌧k+1)

�1/2
⌘

#
+
r
2 max
z,z02Sk0

kz � z0k2A(⌧k+1)�1 log(1/�k+1)

(a)
= 2E⌘

"
sup
z2Sk0

(xk+1 � z)>A(⌧k+1)�1/2
⌘

�x

#
+

s

8 max
z2Sk0

kzk2A(⌧k+1)�1

�2
x

log(1/�k+1)

(b)
 4E⌘

"
sup
z2Sk0

(xk+1 � z)>A(⌧k+1)�1/2
⌘

✏k+1 +�x

#
+

s

32 max
z2Sk0

kzk2A(⌧k+1)�1

(✏k+1 +�x)2
log(1/�k+1)

(c)
 8E⌘

"
sup
z2Sk0

(xk+1 � z)>A(⌧k+1)�1/2
⌘

✏k+1 +�z

#
+

s

128 max
z2Sk0

kzk2A(⌧k+1)�1

(✏k+1 +�z)2
log(1/�k+1)

 8E⌘

sup
z2X

(xk+1 � z)>A(⌧k+1)�1/2
⌘

✏k+1 +�z

�
+

s

128max
z2X

kzk2A(⌧k+1)�1

(✏k+1 +�z)2
log(1/�k+1)

(d)
 16E⌘


sup
z2X

(xk+1 � z)>A(⌧k+1)�1/2
⌘

✏k+1 +�z

�
+

s

512max
z2X

kzk2A(⌧k+1)�1

(✏k+1 +�z)2
log(1/�k+1)

(e)
 1/8

where (a) follows by Proposition 7.5.2 of Vershynin [2018], (b) follows since �x � ✏k+1 by virtue of the fact that
x 2 S

c
k+1, so �x � (✏k+1 + �x)/2, (c) follows since �x 2 [✏k0+1, ✏k0] and for any z 2 Sk0 , we will have theta

�z  ✏k0 , so ✏k+1 +�x � ✏k+1 + ✏k0+1 � ✏k+1 +�z/2, (d) holds by the inductive hypothesis and Lemma 1 of
Katz-Samuels et al. [2020] and taking �̂z to be the estimate of �z at round k + 1, and (e) holds since ⌧k+1 is a
feasible solution to (3). We can perform a similar calculation to get the same thing for x 2 Sk+1, allowing us to
conclude that, for all x 2 Sk+1:

|(x⇤ � x)>(✓̂k+1 � ✓⇤)|  ✏k+1/8

and for all x 2 S
c
k+1:

|(x⇤ � x)>(✓̂k+1 � ✓⇤)|  �x/8

From here the remaining calculations on the gap estimates performed in the proof of Theorem 2 hold almost
identically.

Bounding the Round Regret: From (6), it follows that the constraint in (2) is tighter than the following
constraint:

E⌘

max
x2X

(x` � x)>A(⌧)�1/2
⌘

✏` +�x

�
+

s

2max
x2X

kxk2A(⌧)�1

(✏` +�x)2
log(2`3/�) 

1

256
(11)

so any ⌧ satisfying this inequality is also a feasible solution to (2).

From here we follow the same pattern as in the proof of Theorem 2. We handle each term in the constraint
separately. For the second term, note that we can upper bound:

max
x2X

kxk
2
A(⌧)�1

(✏` +�x)2
 max

(
max
x2S`

kxk
2
A(⌧)�1

(✏` +�x)2
,max

j<`
max

x2Sj\Sj+1

kxk
2
A(⌧)�1

(✏` +�x)2

)

 2max

⇢
✏
�2
` max

x2S`

kxk
2
A(⌧)�1 ,max

j<`
✏
�2
j max

x2Sj\Sj+1

kxk
2
A(⌧)�1

�

 2max

⇢
✏
�2
` max

x2S`

kxk
2
A(⌧)�1 ,max

j<`
✏
�2
j max

x2Sj

kxk
2
A(⌧)�1

�

 2max
j`

✏
�2
j max

x2Sj

kxk
2
A(⌧)�1

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

We now choose ⌧̄ = `
2
P`

j=1 ⌧j(1) + 1048576d log(2`3/�)
P`

j=1 ✏
�2
j �

kf
j , where �kfj is the distribution minimizing

maxx2Sj kxk
2
A(�)�1 . By the same argument as in the proof of Theorem 2, e↵ectively ignoring the second term,

we will have:

E⌘

max
x2X

(x` � x)>A(⌧̄)�1/2
⌘

✏` +�x

�


1

512

For the second term, by the Kiefer-Wolfowitz Theorem in the bandit case, and Proposition 9 in the semi-bandit
case, we’ll have:

max
j`

✏
�2
j max

x2Sj

kxk
2
A(⌧̄)�1  max

j`
✏
�2
j max

x2Sj

kxk
2
A(cd log(2`3/�)✏�2

j �kf
j)�1


1

cd log(2`3/�)
max
j`

max
x2Sj

kxk
2
A(�kf

j)�1


1

1048576 log(2`3/�)

So: s

2max
x2X

kxk2A(⌧̄)�1

(✏` +�x)2
log(2`3/�) 

1

512

From this it follows ⌧̄ is a feasible solution to (2). Furthermore, by Lemma 2, the total regret incurred by playing

`
2
P`

j=1 ⌧j(1) is bounded by:

c1�max`d+
c2`

2
�̄(A)

✏`

and the total regret incurred playing cd log(2`3/�)
P`

j=1 ✏
�2
j �

kf
j is bounded as:

c1�max`d+
c2d log(2`3/�)

✏`

Following the same argument as in Theorem 2, it follows that:

R`  c1�max`d+
c2(`2�̄(A) + d log(2`3/�))

✏`

From here the argument follows identically to the proof of Theorem 4, so we omit the remainder of the proof.

Lemma 2. Given an ` such that ✏` > �min, let �k be any distribution supported on Sk and for any ⇠ set:

⌧k = ⇠✏
�2
k

Play the distributions k ROUND(�k, d⌧ke _ q(1/2), 1/2) for k = 1, . . . , `, where ROUND is defined as in
Section A. Then the total gap-dependent regret incurred by this procedure is bounded by:

c1�max`d+
c2⇠

✏`

Proof. We can think of this procedure as a deterministic variant of action elimination. We can bound the regret
incurred as:

X

x2X\{x⇤}

�xTx 

X̀

k=1

✏k(⌧k + q(1/2) + 1)

 �max`(q(1/2) + 1) +
X̀

k=1

✏k⌧k

 �max`(q(1/2) + 1) + ⇠

X̀

k=1

✏
�1
k

 �max`(q(1/2) + 1) + ⇠

X̀

k=1

2k

�max

 �max`(q(1/2) + 1) +
c⇠

✏`

Experimental Design for Regret Minimization in Linear Bandits

The results on the rounding procedure follow from Katz-Samuels et al. [2020], Allen-Zhu et al. [2020].

Lemma 3. Given a T , Algorithm 1 will run for at most:

`max(T) := log2

✓
maxx2X kxk2

minx2X kxk2

⇣
diam(X)k✓k2

p

T + 3
⌘◆

+ 1

rounds. Furthermore, regardless of T , Algorithm 1 will run for at most:

dlog2(4�max/�min)e

rounds.

Proof. Note that ⌧` must satisfy:

E⌘

max
x2X

(x` � x)>A(⌧`)�1/2
⌘

✏` + �̂x

�


1

128(1 +
p
⇡ log(2`3/�))

However:

E⌘

max
x2X

(x` � x)>A(⌧`)�1/2
⌘

✏` + �̂x

�
(a)
�

1
p
2⇡

max
x,y2X

�����A(⌧`)
�1/2

x

✏` + �̂x

�
y

✏` + �̂y

!�����
2

�
1
p
2⇡

�����A(⌧`)
�1/2

x
⇤

✏` + �̂x⇤
�

xmax

✏` + �̂xmax

!�����
2

(b)
�

1
p
2⇡⌧`

1

maxx2X kxk2

�����
x
⇤

✏` + �̂x⇤
�

xmax

✏` + �̂xmax

�����
2

�
1

p
2⇡⌧`

1

maxx2X kxk2

kx

⇤
k2

✏` + �̂x⇤
�
kxmaxk2

✏` + �̂xmax

!

(c)
�

1
p
2⇡⌧`

1

maxx2X kxk2

✓
2kx⇤

k2

3✏`
�

2kxmaxk2

�max

◆

�
2

3
p
2⇡⌧`

✓
minx2X kxk2

maxx2X kxk2

1

✏`
�

3

�max

◆

where (a) follows by Proposition 7.5.2 of Vershynin [2018], (b) follows since for any �:

A(�) � (max
x2X

kxk
2
2)I

and (c) follows by (6). Thus:

⌧` �
4(128(1 +

p
⇡ log(2`3/�)))2

18⇡

✓
minx2X kxk2

maxx2X kxk2

1

✏`
�

3

�max

◆2

�

✓
minx2X kxk2

maxx2X kxk2

1

✏`
�

3

�max

◆2

=
1

�2
max

✓
minx2X kxk2

maxx2X kxk2
2` � 3

◆2

where the final equality holds since ✏` = �max2�`. If round ` is the last round the algorithm completes before
terminating, we’ll have that T � ⌧`, so:

T �
1

�2
max

✓
minx2X kxk2

maxx2X kxk2
2` � 3

◆2

=) log2

✓
maxx2X kxk2

minx2X kxk2

⇣
�max

p

T + 3
⌘◆
� `

The first conclusion follows by Lemma 4.

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

For the second conclusion, note that, as we showed above, on the good event we will have that for all x 2 X̂`,
�x  2✏`. Thus, once ✏`  �min/4, we can guarantee that for any x 2 X̂`, �x  �min/2 which implies that x is
the optimal arm so |X̂`| = 1 and the algorithm will have terminated. It follows that:

✏` = �max2
�`
 �min/4 =) `  log2(4�max/�min)

Lemma 4.
�max  k✓k2diam(X)

Proof.
�max = h✓, x⇤

� xmaxi  k✓k2 max
x,y2X

kx� yk2

C Pure Exploration Proofs

For the sake of clarity, we rewrite the pure exploration algorithm (see Algorithm 3).

Algorithm 3 Computationally E�cient Pure Exploration Algorithm Semi-Bandit Feedback

1: Input: Set of arms X , largest gap �max, confidence �, total time T

2: X̂1 = X , ✓̂0 = 0, ` 1
3: while |X̂`| > 1 and total pulls less than T do
4: x` argmaxx2X x

>
✓̂`�1, ✏` �max2�`

5: Let ⌧` be a solution to:

argmin
⌧

X

x2X

⌧x

s.t. E⌘

max
x2X

(x` � x)>A(⌧)�1/2
⌘

✏` + �̂x

�


1

128(1 +
p
⇡ log(2`3/�))

(12)

6: ↵` SPARSE(⌧`, nf)

7: Pull arm x ↵`,x times, compute ✓̂`
8: if MINGAP(b✓`,X) � 3✏`/2 then
9: break

10: end if
11: Pull arm x d⌧`,xe times, compute ✓̂` from this data, form gap estimates �̂x from ✓̂`

12: ` `+ 1
13: end while
14: return argmaxx2X x

>
✓̂`

Theorem (2) shows that we can solve (12) in polynomial-time, but note that it is easier to solve (12) approximately
by calling stochastic Frank-Wolfe to solve

inf
�24

E⌘

max
x2X

(x` � x)>A(⌧)�1/2
⌘

✏` + �̂x

�

and the convergence rate shown in Lemma 5 applies.

The MINGAP subroutine (Algorithm 4), originally provided in Chen et al. [2017], is a computationally scalable
method to compute the empirical gap between the empirically best arm and the empirically second best arm. It
uses at most d calls to the linear maximization oracle.

We note that the correctness and sample complexity proofs are quite similar to the proof of Theorem in Katz-
Samuels et al. [2020], but we include it for the sake of completeness. The main contribution of our paper for

Experimental Design for Regret Minimization in Linear Bandits

Algorithm 4 MINGAP

1: Input: X , estimate ✓̃
2: x̃ � argmaxx2X ✓̃

>
x

3: b�min �1

4: for i = 1, 2, . . . , d s.t. i 2 x̃ do
5:

✓̃
(i) =

(
✓̃j j 6= i

�1 j = i

6: x̃
(i)
 � argmaxx2X x

>
✓̃
(i)

7: if ✓̃>(x̃� x̃
(i))  b�min then

8: b�min � ✓̃
>(x̃� x̃

(i))
9: end if

10: end for
11: return b�min

the pure exploration problem is a computational method to solve (12) even when the number of variables |X | is
exponential in the dimension.

Proof of Theorem 3. Step 1: A good event and well-estimated gaps Using the identical argument to the
first two steps of the proof of Theorem 2, we have that with probability at least 1 � � at every round k, for all
x 2 Sk:

|(x⇤ � x)>(✓̂k+1 � ✓⇤)|  ✏k/8 (13)

and for all x 2 S
c
k+1:

|(x⇤ � x)>(✓̂k+1 � ✓⇤)|  �x/8. (14)

For the remainder of the proof we suppose that this good event holds.

Step 2: Correctness. It is enough to show at round k, if xk 6= x⇤, then the Unique(X , b✓k, ✏k) returns false.

Inspecting Unique, a su�cient condition is to show that (xk � x⇤)>b✓k � ✏k  0. By (13) and (14), we have that

(xk � x⇤)
>b✓k � ✏k = (xk � x⇤)

>(b✓k � ✓)��xk � ✏k

 max(
�xk

8
,
✏k

8
)��xk � ✏k

 0

proving correctness.

Step 3: Bound the Sample Complexity. Letting x̃k = argmaxx 6=xk
b✓>k x, Unique(Z, b✓k, ✏k) at round k

checks whether b✓>k (xk � x̃k) is at least ✏k, and terminates if it is. Thus, (13) and (14), the algorithm terminates
and outputs x⇤ once k � c log(�max/�min).

Thus, the sample complexity is upper bounded by

c log(�max/�min)X

k=1

X

x2X

d↵k,xe  c
0[log(�max/�min)d+

c log(�max/�min)X

k=1

inf
�24

E⌘⇠N(0,I)[max
x2X

(xk � x)>Asemi(�)�1/2
⌘

2�k�+ b✓>k (xk � x)
]2]

(15)

where we used the fact that the rounding procedure can use O(d) points in the semi-bandit case. Thus, it su�ces

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

to upper bound the second term in the above expression. Fix � 2 4. Then,

E⌘⇠N(0,I)[max
x2X

(xk � x)>Asemi(�)�1/2
⌘

✏k + b✓>k (xk � x)
]2  cE⌘⇠N(0,I)[max

x2X

(xk � x)>Asemi(�)�1/2
⌘

✏k +�x
]2

 c
0[E⌘⇠N(0,I)[max

x2X

(x⇤ � x)>Asemi(�)�1/2
⌘

✏k +�x
]2

+ E⌘⇠N(0,I)[max
x2X

(z⇤ � xk)>Asemi(�)�1/2
⌘

✏k +�x
]2]

Fix x0 2 X \ {x⇤}. The first term is bounded as follows.

E⌘⇠N(0,I)[max
x2X

(x⇤ � x)>Asemi(�)�1/2
⌘

✏k +�x
]2

= E⌘⇠N(0,I)[max
x2X\{x⇤}

max(
(x⇤ � x)>Asemi(�)�1/2

⌘

✏k +�x
, 0)]2

 8E⌘⇠N(0,I)[max
x2X\{x⇤}

(x⇤ � x)>Asemi(�)�1/2
⌘

✏k +�x
]2 + 8

kx⇤ � x0k
2
Asemi(�)�1

✏k +�x0)
2

(16)

 8[E⌘⇠N(0,I)[max
x2X\{x⇤}

(x⇤ � x)>Asemi(�)�1/2
⌘

�x
]2

+ max
x 6=x⇤

kx⇤ � xk
2
Asemi(�)�1

�2
x

] (17)

where we obtained line (16) using exercise 7.6.9 in Vershynin [2018].

We also have that

E⌘⇠N(0,I)[max
x2X

(x⇤ � xk)>Asemi(�)�1/2
⌘

✏k +�x
]2  E⌘⇠N(0,I)[max(

(x⇤ � xk)>Asemi(�)�1/2
⌘

✏k
, 0)]2

 c
kx⇤ � xkk

2
Asemi(�)�1

✏2k

 c
kx⇤ � xkk

2
Asemi(�)�1

�2
xk

(18)

 c max
x2X\{x⇤}

kx⇤ � xk
2
Asemi(�)�1

�2
x

(19)

where line (18) follows since (13), (14), and Lemma 1 in Katz-Samuels et al. [2020] imply that xk 2 Sk+2.

(15), (17), and (19) together imply that

c log(�/�min)X

k=1

X

x2X

d↵k,xe  c log(�min/�min)[d+ �
⇤ + ⇢

⇤],

completing the proof.

C.1 Lower Bound

In this section, we prove a lower bound for the combinatorial bandit setting with semi-bandit feedback. Fix a
model ✓ and let ⌫✓,i denote the distribution of the observations when arm i is pulled. In this setting, at each
round t, Z(t)

⇠ N(✓, I) is drawn and

(⌫✓,i)j =

(
Z

(t)
j j 2 xi

0 j 62 xi
.

Experimental Design for Regret Minimization in Linear Bandits

Definition 1. We say that an Algorithm is �-PAC if for any instance (X , ✓⇤), it returns x 2 X with the largest
mean with probability at least 1� �.

Theorem 6. Fix an instance (✓⇤,X) such that X ⇢ {0, 1}d and x⇤ = argmaxx2X x
>
✓ is unique. Let A be a

�-PAC algorithm and let T be its total number of pulls on (✓⇤,X). Then,

E✓⇤ [T] � log(1/2.4�)⇢⇤ := log(1/2.4�) inf
�24

sup
x2X\{x⇤}

kx⇤ � xk
2
Asemi(�)�1

✓>(x⇤ � x)2
.

The proof is quite similar to the proof of Theorem 1 in Fiez et al. [2019].

Proof. For simplicity, label X = {x1, . . . , xm} and x⇤ = x1. Define the set of alternative instances O = {✓ :
argmaxx2X x

>
✓ 6= x1}. Let Ti denote the random number of times that xi is pulled during the game. Then,

noting that the standard transportation Lemma from Kaufmann et al. [2016] easily generalizes to semi-bandit
feedback, we have that for any ✓ 2 O,

nX

i=1

E✓⇤ [Ti]KL(⌫✓⇤,i|⌫✓,i) � ln(1/2.4�)

By a standard argument (see for example Theorem 1 Fiez et al. [2019]), this implies that

E✓⇤ [T] � ln(1/2.4�) min
�24

max
✓2O

1Pm
i=1 �i KL(⌫✓⇤,i|⌫✓,i)

.

Let ✏ > 0. For each k 6= 1, define

✓
(k) = ✓⇤ �

[(x1 � xk)>✓⇤ + ✏]Asemi(�)�1(x1 � xk)

(x1 � xk)>Asemi(�)�1(x1 � xk)
.

Note that

(xk � x1)
>
✓
(k) = ✏

showing that ✓(k) 2 O. Note that using the identity for the KL-divergence for a multivariate Gaussian, we have
that

KL(⌫✓⇤,i|⌫✓(k),i) =
1

2

X

j2xi

(e>j (✓⇤ � ✓
(k))2

=
1

2
(x>

k ✓⇤ + ✏)2
X

j2xi

(x1 � xk)>Asemi(�)�1
eje

>

j Asemi(�)�1(x1 � xk)

[(x1 � xk)>Asemi(�)�1(x1 � xk)]2
.

Then, we have that

E✓⇤ [T] � ln(1/2.4�) min
�24

max
✓2O

1Pm
i=1 �i KL(⌫✓⇤,i|⌫✓,i)

� ln(1/2.4�) min
�24

max
k 6=1

1Pm
i=1 �i KL(⌫✓⇤,i|⌫✓(k),i)

= 2 ln(1/2.4�) min
�24

max
k 6=1

kx1 � xkk
4
Asemi(�)�1

(x>

k ✓⇤ + ✏)2
Pm

i=1 �i
P

j2xi
(x1 � xk)>Asemi(�)�1eje

>

j Asemi(�)�1(x1 � xk)

= 2 ln(1/2.4�) min
�24

max
k 6=1

kx1 � xkk
4
Asemi(�)�1

(x>

k ✓⇤ + ✏)2(x1 � xk)>Asemi(�)�1Asemi(�)Asemi(�)�1(x1 � xk)

= 2 ln(1/2.4�) min
�24

max
k 6=1

kx1 � xkk
2
Asemi(�)�1

(x>

k ✓⇤ + ✏)2
.

Since ✏ > 0 was arbitrary, we may let ✏ �! 0, obtaining the result.

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

Next, we state and prove a lower bound for the non-interactive MLE : it chooses an allocation {xI1 , xI2 , . . . , xIT } 2

X prior to the game, then observes yt,i = ✓⇤,i + ⌘t,i, 8i 2 xIt where ⌘t ⇠ N (0, I), and forms the MLE ✓̂i =
1
Ti

PT
t=1,xIt,i=1 yt,i and outputs bx = argmaxx2X z

>b✓. Since the non-interactive MLE may use knowledge of ✓⇤
in choosing its allocation and the estimator and recommendation rules are very natural, we view the sample
complexity of the non-interactive MLE as a good benchmark to measure the sample complexity of algorithms
against. The following lower bound for the non-interactive MLE resembles Theorem 3 in Katz-Samuels et al.
[2020].

Theorem 7. Fix X ⇢ {0, 1}d and ✓⇤ 2 Rd. Let � 2 (0, 0.015]. There exists a universal constant c > 0 such that
if the non-interactive MLE uses less than c(�⇤+log(1/�)⇢⇤) samples, it makes a mistake with probability at least
�.

The proof is quite similar to the proof of Theorem 3 in Katz-Samuels et al. [2020], so we merely sketch it here.

Proof. Consider the combinatorial bandit protocol with X ⇢ {0, 1}d as the collection of sets: at each round
t 2 N, the agent picks Jt 2 [d] and observes ✓Jt + N(0, 1) (see Katz-Samuels et al. [2020] for a more precise
definition). Let T 0

2 N and fix an allocation I1, . . . , IT 0 2 [d]. Define

�
⇤

combi(I1, . . . , IT 0) = E⌘⇠N(0,I)[sup
x2X\{x⇤}

(x⇤ � x)>(
PT 0

s=1 eIse
>

Is
)�1/2

⌘

�x
]2

⇢
⇤

combi(I1, . . . , IT 0) = sup
x2X\{x⇤}

kx⇤ � xk
2
(
PT 0

s=1 eIse
>
Is

)�1

�2
x

.

Theorem 3 in Katz-Samuels et al. [2020] shows that there exists a universal constant c > 0 such that if c 
�
⇤(I1, . . . , IT 0) or c  log(1/�)⇢⇤(I1, . . . , IT 0), the with probability at least �, the oracle MLE makes a mistake.

Now, consider the semi-bandit problem and wlog suppose that X = {x1, . . . , xm}. Now, fix an alloca-

tion xJ1 , . . . , xJT 2 X for the semi-bandit problem. Define �i = 1
T

PT
s=1 {Js = i}. Suppose that

T  1/2 1
c log(1/�)⇢

⇤ + �
⇤]  1

c max(log(1/�)⇢⇤, �⇤). Then,

cT  �
⇤ = min

�24

�
⇤(�)  �⇤(�)

where

�
⇤(�) := E⌘

"
sup

x2X\{x⇤}

(x⇤ � x)>Asemi(�)�1/2
⌘

✓>
⇤
(x⇤ � x)

#2

.

Now, rearranging the above inequality,we have that

c  �
⇤(T�).

Note that the allocation T� for the semi-bandit problem specifies an allocation I1, . . . , IT 0 for the combinatorial
bandit problem and the stochastic process (and non-interactive MLE algorithm) is the same on both problems.
Thus, �⇤(T�) can be interpreted as �⇤combi(I1, . . . , IT 0) in the combinatorial bandit protocol for some allocation
I1, . . . , IT 0 , and we may apply the proof of Theorem 3 to obtain that with probability at least �, the oracle MLE
makes a mistake.

D Computational Complexity Results

D.1 Algorithmic Approach

In this section, we present the main computational algorithms and results in the paper, culiminating in the proof
of Theorem 8, which immediately implies Theorem 4. For simplicity label X = {x1, . . . , xm}. We can always

Experimental Design for Regret Minimization in Linear Bandits

find x̃1, . . . , x̃d 2 X such that [di=1x̃i = [d] in d linear maximization oracle calls. For each i 2 [d], create a cost
vector:

v
(i)
j =

(
1 j = i

0 j 6= i

and set x̃i = argmaxx2X x
>
v
(i). Thus, by reordering we may suppose that [di=1xi = [d]. Now, define

4̃ = {� 2 4 : �i � 8i 2 [d]}

where  1/d. We optimize over 4̃ due to its computational benefits,e.g., controlling the second partial order
derivatives of the Lagrangian of (5).

Algorithm 5 is the main algorithm (see Theorem 8 for its guarantee); it essentially does a grid search over the
time horizon variable, ⌧ 2 [T]. Note that for a fixed ⌧ 2 [T], we have that for all � 2 4

⌧

X

x2X

[� + ✓̄
>(x̄� x)]�x = ⌧� + ⌧

X

x2X

✓̄
>(x̄� x)�x

and thus we can ignore the term ⌧�. Thus, Algorithm 5 calls Algorithm 6 to solve for a fixed ⌧ 2 [T] the following
optimization problem.

min
�24̃

⌧

X

x2X

✓̄
>(x̄� x)�x (20)

s.t. E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C

To solve the above optimization problem, we convert it into a series of convex feasibility programs of the following
form: 9?� 2 4̃ such that

⌧

X

x2X

✓̄
>(x̄� x)�x  [OPT

s.t. E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C

and perform binary search over [OPT . To solve each of these convex feasibility programs, we employ the
Plotkin-Shmoys-Tardos reduction to online learning and apply Algorithm 7, a multiplicative weights update
style algorithm. Lemmas 6 and 7 provide the guarantees for the multiplicative weights update algorithm and for
the binary search procedure, respectively.

The Plotkin-Shmoys-Tardos reduction requires a method for solving for arbitrary 1,2 2 [0, 1]:

min
�24̃

L(1,2; ⌧ ;�) := 1⌧

X

x2X

✓̄
>(x̄� x)�x + 2(E⌘


max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�
�
p
⌧C).

To solve the above optimization problem, we use stochastic Frank-Wolfe (see Algorithm 8). Defining for a fixed
⌘ 2 Rd,

L(1,2; ⌧ ;�; ⌘) = 1⌧

X

x2X

✓̄
>(x̄� x)�x + 2(max

x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)
�
p
⌧C).

we see that

E⌘⇠N(0,I)[L(1,2; ⌧ ;�; ⌘)] = L(1,2; ⌧ ;�).

See Lemma 5 for our convergence result on stochastic Frank-Wolfe.

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

Finally, we note that each of our algorithms uses a global variable tol, which for the theory we set to (
p
2�1)C
4 .

We note that C scales as 1p
log(1

�)
and thus a polynomial dependence on 1/tol results in a polynomial dependence

on log(1/�).

Algorithm 5 Main

1: Input: Tolerance parameter tol 2 (0, 1), � 2 (0, 1)
2: k � 1, ⌧̄k � 2k

3: while ⌧̄k  T do
4: (feasiblek,�k) � binSearch(⌧̄k,

�
log2(T))

5: k � k + 1, ⌧̄k � 2k

6: end while
7: if feasiblek is False for all k then
8: return ”Program is not feasible”
9: end if

10: bk⇤ � argmink{⌧̄k
P

x2X
✓̄
>(x̄� x)�k,x : feasiblek is True }

11: return (2⌧̄bk⇤
,�bk⇤

)

Algorithm 6 Binary Search (binSearch)

1: Input: ⌧̄ > 0, � 2 (0, 1), Tolerance parameter tol > 0
2: LOW � 0, HIGH � 2Td
3: (feasible, �̄) � MW(⌧̄ ,high, �

dlog2(2Td/tol)e+1) Check if program is feasible

4: if feasible is False then
5: return (feasible, �̄)
6: end if
7: while HIGH� LOW � tol do . Initiate binary search

8: [OPT �
LOW+HIGH

2

9: (feasible, �̄) � MW(⌧̄ , [OPT ,
�

dlog2(2Td/tol)e+1)
10: if feasible then
11: LOW � [OPT

12: else
13: high � [OPT

14: end if
15: end while
16: (feasible, �̄) � MW(⌧̄ ,high, �

dlog2(2Td/tol)e+1)

17: return (feasible, �̄)

Experimental Design for Regret Minimization in Linear Bandits

Algorithm 7 Multiplicative Weights Update Algorithm for Combinatorial Bandits with Semi-Bandit Feedback
(MW)

1: Input: ⌧̄ > 0, [OPT > 0, Failure probability � 2 (0, 1), Tolerance parameter tol > 0
2: ⇢ = max(2dT, c d

� 1/2) for an appropriately chosen universal constant c > 0 (see the proof of Lemma 6)

3: ⌘ = min(tol4⇢ , 1/2), R �
16⇢2 ln(2)

tol2

4: Feasible � True . Assume feasible program

5: w
(1)
i � 1 for i 2 [2] . Initiate weights

6: for r = 1, 2, . . . , R do

7: p
(r)
1 � w

(r)
1 /(w(r)

1 + w
(r)
2) and p

(r)
2 � w

(r)
2 /(w(r)

1 + w
(r)
2)

8: �
(r)
 � SFW(p(r)1 , p

(r)
2 ,

�
2R)

9: Define

h1(�) := ⌧̄

X

x2X

✓̄
>(x̄� x)�x � [OPT

bh2(�
(r)) = estSup(�(r),

�

3R
)�
p
⌧C

bh(r)(�(r)) := p
(r)
1 h1(�

(r)) + p
(r)
2
bh2(�

(r))

10:

11: if bh(r)(�(r)) > 2tol then
12: Feasible � False . Declare infeasible program
13: Break
14: end if
15: w

(r+1)
1 � w

(r)
1 (1 + ⌘h1(�(r))) . Update weights

16: w
(r+1)
2 � w

(r)
2 (1 + ⌘bh2(�(r)))

17: end for
18: �̄(r) = 1

r

Pr
s=1 �̄s

19: return (feasible, �̄(r))

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

Algorithm 8 Stochastic Frank-Wolfe for Semi-Bandit Feedback (SFW)

1: Input: ⌧ � 0, 1,2 2 [0, 1], � 2 (0, 1).

2: RSFW =
8 1

� 5/2 d

tol
3: (qr)r2[R] 2 [0, 1]R such that qr = 2

r+1 and (pr)r2[R] 2 NR such that pr = c
1

d 2qr
log(r2/�) for an appropriately

chosen universal constant c > 0 (see the proof of Lemma 5)
4: Initialize �1 2 4̃ by setting �1,i = 1/d if i 2 [d] and otherwise set �1,i = 0.
5: for r = 1, 2, . . . , RSFW do
6: Draw ⌘

(1)
, . . . , ⌘

(pr) ⇠ N(0, I)
7: Compute

r̃r =
1

pr

prX

j=1

rL(1,2; ⌧ ;�r; ⌘j)

8: Compute

ir � argmax
i2[m]

�r̃r,i = �[1⌧ ✓̄
>
xi + 2

1

2

1

pr

prX

j=1

1

[� + ✓̄>(x̄� x̃j)]

X

k2(x̄�x̃j)\xi

⌘k

(
P

l:k2xl
�l)3/2

]

where

x̃j = argmax
x2X

P
i2x̄�x

⌘(j)iP
x0:i2x0 �x0

� + ✓̄>(x̄� x)
.

is computed using Algorithm 9.
9:

(vr)i =

8
>>>>>><

>>>>>>:

8
><

>:

0 i 62 [d]

 i 2 [d] \ {ir}

1� (d� 1) i = ir

, ir 2 [d]

(
 i 2 [d]

1� d i = ir
, ir 62 [d]

10:

�r+1 � qrvr + (1� qr)�r

11: end for
12: return �RSFW

D.1.1 Subroutines

Algorithm 9, originally provided in Katz-Samuels et al. [2020], uses binary search and calls to the linear maxi-
mization oracle to compute

(x̄� x)>A(�)�1/2
⌘

� + ✓̄>(x̄� x)
.

Algorithm 10 estimates

E⌘[max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)
].

Experimental Design for Regret Minimization in Linear Bandits

Algorithm 9 computeMax

1: Define the following functions

g(�; ⌘;x) :=
(x̄� x)>A(�)�1/2

⌘

� + ✓̄>(x̄� x)

g(�; ⌘; r) := max
x2X

x
>(A(�)�1/2

⌘ + r✓̄)� r(� + ✓̄
>
x)� x̄

>
A(�)�1/2

⌘

g(�; ⌘; r;x) := x
>(A(�)�1/2

⌘ + r✓̄)� r(� + ✓̄
>
x̄)� x̄

>
A(�)�1/2

⌘

2: Define

low = 0, high = 2

3: while g(�; ⌘ : high) � 0 do
4: high � 2 · high
5: end while
6: while g(�; ⌘; low) 6= 0 do
7: if g(�; ⌘; 1

2 (high+ low)) < 0 then
8: low � 1

2 (high+ low)
9: else

10: high � 1
2 (high+ low)

11: low � g(�; ⌘;x0) for some x
0
2 argmaxx2X g(�; ⌘; low;x)

12: end if
13: end while
14: Return low

Algorithm 10 Estimate expected suprema (estimateSup)

1: Input: � 2 4̃, failure probability � > 0, Tolerance parameter tol > 0, ,
2: t = c log(1/�) d

�2 tol2

3: Draw ⌘1, . . . , ⌘t ⇠ N(0, I)

4: Compute gs = maxx2X

(x̄�x)>Asemi(�)
�1/2⌘s

�+✓̄>(x̄�x)
for s = 1, . . . , t using Algorithm 9.

5: return 1
t

Pt
s=1 gs

D.2 Main Optimization Proofs

For the sake of simplicity, we assume that T is a power of 2, and that the optimization problem is feasible. If the
optimization problem is infeasible, we can determine this by applying stochastic Frank-Wolfe (see Lemma 5).
For simplicity, we also assume that ✓̄>(x̄�x)  �max  2d since typically it is assumed that k✓k

1
 1 and whp���b✓`

���
1

= O(1) at every round `. Further, note that whenever the algorithm is applied C  1, and we assume

this henceforth. We introduce the following functions to bound the number of linear maximization oracle calls:

A(d,�, ,tol, 1/�, 1/⇠) = O(
d
2

tol3�4 8
[d+ log(

d

�⇠ tol
)])

B(d,�, ,tol, 1/�, 1/⇠) = O(log(1/�)
d

�2 tol2
[d+ log(

d�max

�⇠
)])

C(d,�, ,tol, 1/�, 1/⇠) =
(dT)2 + d2

�2

tol2
[A(d,�, ,tol, 1/�, 1/⇠) + B(d,�, ,tol, 1/�, 1/⇠)]

Note these are polynomial in (d,�, , 1/tol, log(1/�), 1/⇠). Our algorithms share a global parameter tol; it

su�ces to set tol = (
p
2�1)C
4 . Define

M = log2(T) log2(
2Td

tol
).

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

We say a random variable X is sub-Gaussian with parameter �2 and write X 2 SG(�2) if for all � 2 R

E[e�(X�E[X])]  e
�2�2/2

.

The following Lemma provides the convergence guarantee for stochastic Frank-Wolfe in the semi-bandit setting
(see Algorithm 8).

Lemma 5. Let � 2 (0, 1), ⇠ 2 (0, 1], 1,2 2 [0, 1]. With probability at least 1�� Algorithm 8 returns �RSFW 2 4

such that

L(1,2; ⌧ ;�RSFW)  min
�24̃

L(1,2; ⌧ ;�) + tol

Furthermore, with probability at least 1� c⇠
2d , the number of oracle calls is bounded by

A(d,�, , 1/tol, log(1/�), 1/⇠).

Proof. For simplicity, we focus on the case where 1 = 2 = 1 (the other cases are similar). We write L(�) and
L(�; ⌘) as abbreviations for L(1,2;�) and L(1,2;�; ⌘).

Step 1: Bound the number of iterations of stochastic Frank-Wolfe. L(�) is convex in � by Proposition
7. Furthermore, max�,�024̃

k�� �
0
k1  2. Thus, by Proposition 8, it su�ces to show

1. Smoothness: krL(�)�rL(�0)k
1
 L k�� �

0
k1 for an appropriate choice of L

2. Small deviation with high probability: pr is chosen su�ciently large to ensure that with probability
at least 1� �/r2

���err �rL(�r�1)
���
1


Lqr

2

Step 1.1: Smoothness. Let �,�0 2 4̃ and fix i 2 [m]. It su�ces to show that

|
@L(�)

@�i
�
@L(�0)

@�0i

|  L k�� �
0
k1 .

For the sake of abbreviation, define g(�) := @L(�)
@�i

. By Lemma 13, we have that L(�) is twice di↵erentiable and
that

@
2
L(�)

@�i@�j
= E[@

2
L(�; ⌘)

@�i@�j
{B}]

= E[3
4

1

(� + ✓̄>(x̄� x̃)

X

k2(x̄�x̃)\xi\xj

⌘k

(
P

l:k2xl
�l)5/2

: x̃ = argmax
x2X

P
i2x̄�x

1P
x0:i2x0 �x0

� + ✓̄>(x̄� x)
]

where

B = {⌘ : | argmax
x2X

P
i2x̄�x

1P
x0:i2x0 �x0

� + ✓̄>(x̄� x)
| = 1}.

For any � 2 4̃,

|
@g(�)

@�j
| = |E[3

4

1

(� + ✓̄>(x̄� x̃)

X

k2(x̄\x̃)\xi\xj

⌘k

(
P

l:k2xl
�l)5/2

{B} : x̃ = argmax
x2X

P
i2x̄�x

1P
x0:i2x0 �x0

� + ✓̄>(x̄� x)
.]|

 E[|3
4

1

(� + ✓̄>(x̄� x̃)

X

k2(x̄\x̃)\xi\xj

⌘k

(
P

l:k2xl
�l)5/2

| {B} : x̃ = argmax
x2X

P
i2x̄�x

1P
x0:i2x0 �x0

� + ✓̄>(x̄� x)
.]

 E3

4

1

�

dX

k=1

|⌘k|

 c
1

� 5/2
d.

Experimental Design for Regret Minimization in Linear Bandits

where we used Jensen’s inequality and c > 0 is a universal constant.

Now, by the mean value theorem, there exists s 2 [0, 1] such that

|g(�)� g(�0)|  |rg(s�+ (1� s)�0)>(�� �0)|

 krg(s�+ (1� s)�0)k
1
k�� �

0
k1

 c
1

� 5/2
d k�� �

0
k1

where the second inequality follows by Holder’s Inequality. Thus,

krL(;�)�rL(;�0)k
1
 c

1

� 5/2
d k�� �

0
k1

For the sake of brevity, we write L = 1
� 5/2 d

3/2 for the remainder of the proof.

Step 1.2: Small deviation with high probability. Now, we show that pr is chosen su�ciently large to
ensure that with probability at least 1� �/r2

���err �rL(�r�1)
���
1


Lqr

2
. (21)

Recall that

[err �rL(�r�1)]i = [err �rL(�r�1)]i

=
1

pr
[
prX

j=1

1

2

1

[� + ✓̄>(x̄� x̃j)]

X

k2(x̄�x̃j)\xi

⌘k

(
P

l:k2xl
�l)3/2

� E[(1
2

1

[� + ✓̄>(x̄� x̃)]

X

k2(x̄�x̃)\xi

⌘k

(
P

l:k2xl
�l)3/2

: x̃ = argmax
x2X

P
i2x̄�x

1P
x0:i2x0 �x0

� + ✓̄>(x̄� x)
.]

where

x̃j = argmax
x2X

P
i2x̄�x

⌘(j)iP
x0:i2x0 �x0

� + ✓̄>(x̄� x)
..

Note that

|
1

pr

prX

j=1

1

2

1

[� + ✓̄>(x̄� x̃j)]

X

k2x̃j\xi

⌘k

(
P

l:k2xl
�l)3/2

| 
1

2

1

pr

1

� 3/2

dX

k=1

|⌘k|.

Since

1

2

1

pr

1

� 3/2

dX

k=1

|⌘k| 2 SG(
c

1
�2 3 d

pr
)

we then have that by Lemma 2.6.8 in Vershynin [2018],

[err �rL(�r�1)]i 2 SG(
c

1
�2 3 d

pr
).

Therefore, since |X |  2d and since pr = c

1
�2 3 d2

L2q2r
for an appropriately chosen universal constant, by a standard

sub-Gaussian tail bound (21) follows.

Step 2: Bound the number of linear maximization oracle calls. Next, we bound the number of linear
maximization oracle calls. At each round r, there is one linear maximization oracle call from finding the mini-
mizing direction wrt the gradient over 4̃, but the dominant source of linear maximization oracles at each round

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

is due to applying Algorithm 9 several times. Thus, it su�ces to bound the number of linear maximization oracle
calls due to Algorithm 9. Define the following event

Ek = { the kth application of Algorithm 9 requires O(d+ log(
d

�
) + log(�max⇠k

2)) oracle calls}

E = \kEk

Then, we have that

Pr(E) =
1Y

r=1

Pr(Er| \
r�1
s=1 Es) �

1Y

r=1

(1�
⇠

2dr2
) =

sin(⇡ ⇠
2d)

⇡ + ⇠
2d

� 1�
⇠

2d
.

where we used the independence of each draw of a multivariate Gaussian in the algorithm and Lemma 9. The
number of calls of Algorithm 9 at each iteration is upper bounded by O(pRSFW) and, thus, the total number of
oracle calls is upper bounded by

O(RSFW · pRSFW [d+ log(
d

�
) + log(�maxRSFW/⇠)])

 O(
d
2

tol3�4 8
[d+ log(

d

�⇠
) + log(

d
2

tol3�4 8
)]

= O(
d
2

tol3�4 8
[d+ log(

d

�⇠ tol
)])

= A(d,�, ,tol, 1/�, 1/⇠).

The following Lemma shows that the Multiplicative Weight Update algorithm (Algorithm 7) either finds an
approximately feasible solution or if there is no approximately feasible solution, determines infeasibility.

Lemma 6. Fix ⌧, [OPT � 0 and let � 2 (0, 1). Define

P✏ = {� 2 4̃ : E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�
�
p
⌧C  ✏,

⌧

X

x2X

✓̄
>(x̄� x)�x � [OPT  ✏}

With probability at least 1� � � 1
2dM , if MW(⌧, [OPT) does not declare infeasibility, then MW(⌧, [OPT) returns

�̄ 2 P4tol and if MW(⌧, [OPT) declares infeasibility, then P0 is infeasible. Furthermore, on the same event,

MW(⌧, [OPT) uses at most C(d,�, ,tol, 1/�, 1/⇠) linear maximization oracle calls.

Proof. The algorithm uses the Plotkin-Shmoys-Tardos reduction to online learning and essentially runs the
multiplicative weights update algorithm (see Arora et al. [2012]) where there is an expert for each constraint.
Define

h1(�) := ⌧̄

X

x2X

✓̄
>(x̄� x)�x � [OPT

h2(�) := E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�
�
p
⌧̄C

h
(r)(�) := p

(r)
1 h1(�) + p

(r)
2 h2(�).

At each round r, the algorithm chooses a distribution, p(r)1 and p
(r)
2 , over the constraints and the adversary uses

the stochastic Frank-Wolfe algorithm to find �(r) such that

h
(r)(�(r))  min

�24̃

h
(r)(�) + tol.

Experimental Design for Regret Minimization in Linear Bandits

The reward for expert/constraint 1 is h1(�(r)) and the reward for expert/constraint 2 is bh2(�(r)).

Let Er denote the event that �(r) = SFW(p(r)1 , p
(r)
2 ,

�
2R) satisfies

h
(r)(�(r))  min

�24̃

h
(r)(�) + tol.

uses at most A(d,�, ,tol, 1/�, 1/⇠) linear maximization oracle calls. Define E = \rEr Further, define the
following events

Fr = {|estSup(�(r), ,
�

2R
)� E⌘


max
x2X

(x̄� x)>Asemi(�(r))�1/2
⌘

� + ✓̄>(x̄� x)

�
|  tol

and estSup uses B(d,�, ,tol, 1/�, 1/⇠) oracle calls}

F = \rFr

By Lemmas 5 and 8 applied with ⇠ = 1
RM and the law of total probability, we have that

Pr(Ec
[F

c) 
RX

r=1

Pr(Ec
r [F

c
r | \

r�1
s=1 Es \ Fs) 

RX

r=1

�

R
+

1

2dRM
= � +

1

2dM

Now, for the remainder of the proof we assume that E \ F occurs.

Suppose that at some round r 2 [R] Algorithm 8 returns �(r) such that bh(r)(�(r)) > 2tol. Then, since F implies
that

|h
(r)(�(r))� bh(r)(�(r))|  |estSup(�(r), ,

�

2R
)� E⌘


max
x2X

(x̄� x)>Asemi(�(r))�1/2
⌘

� + ✓̄>(x̄� x)

�
|  tol

we have that on E \ F

2tol < bh(r)(�(r))  tol+ h
(r)(�(r))  min

�24̃

h
(r)(�) + 2tol.

Therefore, it follows that for every � 2 4̃,

max(E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�
�
p
⌧C, ⌧

X

x2X

✓̄
>(x̄� x)�x � [OPT) > 0.

Thus, the algorithm correctly declares infeasibility of the convex feasibility program.

Next, suppose that the Algorithm 8 returns �(r) such that bh(r)(�(r))  2tol at every round r. Then, we show
that the algorithm returns �̄(R)

2 P4tol. To apply Theorem 9, a standard result for the multiplicative weights
update algorithm, we must show that for any �(r) 2 4̃ returned during the execution of the Algorithm

max(h1(�
(r)),bh2(�

(r)))  ⇢ = max(2dT, c
d

� 1/2
) (22)

where ⇢ is defined in Algorithm 7. We have that

h1(�
(r)) := ⌧̄

X

x2X

✓̄
>(x̄� x)�(r)x �

[OPT  2dT

since ⌧̄  T , [OPT � 0, and we assume that ✓̄>(x̄� x)  2d. Furthermore,

bh2(�
(r)) = estSup(�(r),

�

3R
)�
p
⌧C

 E⌘

max
x2X

(x̄� x)>Asemi(�(r))�1/2
⌘

� + ✓̄>(x̄� x)

�
|+ tol�

p
⌧C


1

� 1/2
E[

dX

i=1

|⌘i|]

 c
d

� 1/2

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

for a suitably chosen constant c > 0 where we used that fact that tol = (
p
2�1)C
4 .

Thus, we have shown (22) and therefore may apply Theorem 9, which implies on E \ F that

P
r E⌘

h
maxx2X

(x̄�x)>Asemi(�
(r))�1/2⌘

�+✓̄>(x̄�x)

i
�
p
⌧C

R
=

P
r h2(�(r))

R



P
r
bh2(�(r)) + tol

R

 2tol+

P
r
bh(r)(�(r))

R

 4tol

Now, finally, applying Lemma 7, we have that

E⌘

"
max
x2X

(x̄� x)>Asemi(
1
T

P
t �

(r))�1/2
⌘

� + ✓̄>(x̄� x)

#
�
p
⌧C 

P
r E⌘

h
maxx2X

(x̄�x)>Asemi(�
(r))�1/2⌘

�+✓̄>(x̄�x)

i
�
p
⌧C

R
 4tol

This shows that �̄(R) approximately satisfies one of the constraints; showing approximate satisfaction of the
other constraint follows by a similar argument. Thus, we conclude that �̄(R)

2 P4tol.

The following Lemma shows that Algorithm 6 approximately solves the optimization problem (20).

Lemma 7. Fix ⌧ 2> 0 and let � 2 (0, 1). Let gopt⌧ be the value of

min
�24

⌧

X

x2X

[� + ✓̄
>(x̄� x)]�x

s.t. E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C.

If for all � 2 4̃,

E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�
>
p
⌧C + 4tol.

then with probability at least 1� � � 1
log2(T)2d Algorithm 6 declares the program infeasible. If

E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C

then with probability at least 1� � � 1
log2(T)2d Algorithm 6 returns �̄ 2 4̃ such that

⌧

X

x2X

✓̄
>(x̄� x)�̄x  gopt⌧ + 4tol

E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C + 4tol.

Furthermore, Algorithm 6 uses a number of oracle calls that is upper bounded by log2(2Td/tol) ·

C(d,�, ,tol, 1/�, 1/⇠).

Proof. Algorithm 6 applies Algorithm 7 at most log2(2Td/tol) times on a using a predetermined set of values

for [OPT 2 [0, 2Td], which we denote [OPT 1, . . . , [OPT l. Define the event

Ei = {if MW(⌧, [OPT i) does not declare infeasibility, then MW(⌧, [OPT i) returns �̄ 2 P4tol

and if MW(⌧, [OPT i) declares infeasibility,P0 is infeasible.}

\ {MW(⌧, [OPT i) uses at most C(d,�, ,tol, 1/�, 1/⇠) oracle calls }

E = \iEi.

Experimental Design for Regret Minimization in Linear Bandits

where P✏ is defined in Lemma 6. Then, by the union bound, we have that Pr(E) � 1� � � 1
2d log2(T) . Suppose E

occurs for the remainder of the proof.

First, consider the case that for all � 2 4̃,

E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�
>
p
⌧C + 4tol.

Then, on the event E , we have that the Algorithm 6 declares infeasibility of the program.

Now, suppose there exists � 2 4̃ such that

E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C.

Note that for any � 2 4, we have that

⌧

X

x2X

[� + ✓̄
>(x̄� x)]�x = �⌧ +

X

x2X

✓̄
>(x̄� x)�x

and thus the objective does not depend on � and � can be dropped from the objective. Using the event E , if

Q([OPT) := {� 2 4̃ :E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�
�
p
⌧C  4tol,

⌧

X

x2X

✓̄
>(x̄� x)�x � [OPT  4tol}

is empty, then Algorithm 7 declares the program infeasible; otherwise, Algorithm 7 finds �̄ 2 Q([OPT). Then,
by a standard binary search argument, the result follows.

The following Theorem establishes that Algorithm 5 approximately solves the main optimization problem (5).
It directly implies Theorem 4.

Theorem 8. Let � 2 (0, 1). Suppose tol = (
p
2�1)C
4 , = min(1

4d�maxT
,

1
4d). Let opt be the value of

min
⌧2[T],�24

⌧

X

x2X

[✏+ ✓̄
>(x̄� x)]�x (23)

s.t. E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C.

With probability at least 1� � � 1
2d , Algorithm 5 returns (⌧̄ , �̄) such that �̄ 2 4, ⌧̄  2T , and

⌧̄

X

x2X

[✏+ ✓̄
>(x̄� x)]�̄x  4opt+ 2

E⌘

max
x2X

(x̄� x)>Asemi(�̄)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧̄C.

Furthermore, Algorithm 5 uses a number of oracle calls that is polynomial in (d,�, , log(1/�))

Proof. Step 0. Let gopt be the value of

min
⌧2[T],�24̃

⌧

X

x2X

[� + ✓̄
>(x̄� x)]�x

s.t. E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C.

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

and let goptk be the value of

min
�24

⌧̄k

X

x2X

[� + ✓̄
>(x̄� x)]�x

s.t. E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧̄kC.

Let Ek denote the event that if for all � 2 4̃,

E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�
>
p
⌧̄kC + 4tol.

then binSearch(⌧̄k,
�

log2(T)) declares the program infeasible and if

E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C

then binSearch(⌧̄k,
�

log2(T)) returns �̄k that satisfies

⌧

X

x2X

[� + ✓̄
>(x̄� x)�̄k,x]  gopt⌧̄k + 4tol

E⌘

max
x2X

(x̄� x)>Asemi(�̄k)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C + 4tol.

Further, define E = \kEk. By Lemma 7 and a union bound, we have that Pr(E) � 1 � � � 1
2d . We suppose E

holds for the rest of the proof.

Step 1. First, we show that Algorithm 5 returns (⌧̄ , �̄) such that

⌧̄

X

x2X

[� + ✓̄
>(x̄� x)]�̄x  gopt+ 4tol

E⌘

max
x2X

(x̄� x)>Asemi(�̄)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧̄C.

By assumption the optimization problem in (5) is feasible and, hence, opt 6= 1 and thus by the event E , the
algorithm finds at least one nearly feasible solution, i.e., feasiblek is not False for all k. Let (⌧⇤,�⇤) attain the
optimal value in the optimization problem (5). Let k⇤ such that ⌧̄k⇤ 2 [⌧⇤, 2⌧⇤]. By event E binSearch(⌧̄k⇤ ,

�
log2(T))

finds �̄k⇤ such that

⌧̄k⇤

X

x2X

[� + ✓̄
>(x̄� x)]�̄k⇤,x  goptk⇤ + 4tol

E⌘

max
x2X

(x̄� x)>Asemi(�̄k⇤)
�1/2

⌘

� + ✓̄>(x̄� x)

�

p
⌧̄k⇤C + 4tol.

Algorithm 5 outputs (⌧̄ ,�bk⇤
), which satisfies by Lemma 7 and by construction,

⌧̄

X

x2X

[� + ✓̄
>(x̄� x)�̄bk⇤,x

] = 2⌧̄bk⇤

X

x2X

[� + ✓̄
>(x̄� x)�̄bk⇤,x

] (24)

 2⌧̄k⇤

X

x2X

[� + ✓̄
>(x̄� x)]�̄k⇤,x

 2[goptk + 4tol]

 2goptk + 1 (25)

where in the last line we used tol = (
p
2�1)C
4  1/8, which bounds the objective value of (⌧̄ ,�bk⇤

).

Experimental Design for Regret Minimization in Linear Bandits

Next, we show feasiblity of (⌧̄ ,�bk⇤
). Observe that

E⌘

max
x2X

(x̄� x)>Asemi(�̄k⇤)
�1/2

⌘

� + ✓̄>(x̄� x)

�

p
⌧̄bk⇤

C + 4tol


p
2⌧̄bk⇤

C

=
p
⌧̄C (26)

where we used the fact that ⌧̄ = 2⌧̄bk⇤
and tol = (

p
2�1)C
4 .

Step 2: Relate goptk to gopt. Next, we show that

goptk⇤  2gopt.

Define the function

f(�, ⌧) =⌧
X

x2X

[� + ✓̄
>(x̄� x)]�x

s.t. E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C.

Recall that we let (⌧⇤,�⇤) attain the optimal value in the optimization problem (5). Let k⇤ such that ⌧̄k⇤ 2

[⌧⇤, 2⌧⇤]. Note that

E⌘

max
x2X

(x̄� x)>Asemi(�⇤)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧̄k⇤C

Thus,

goptk⇤ = f(�̄k, ⌧̄k)  f(�⇤, ⌧̄k)  2f(�⇤, ⌧⇤) = 2gopt, (27)

where we used the fact that

E⌘

max
x2X

(x̄� x)>Asemi(�⇤)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧⇤C 

p
⌧̄k⇤C.

This proves the claim.

Step 3: Relate gopt to opt. Next, we show that

gopt  2opt+ T d�max.

Define

�̌i =

(
1
d : i 2 [d]

0 : i 62 [d]
.

and

�̃ = d�̌+ (1� d)�⇤

⌧̃ = 2⌧⇤.

By the hypothesis, we have that d  1
4 and, thus, �̃ is a convex combination of �̌ and �⇤.

Next, we show that (�̃, ⌧̃) are a feasible solution to (23) and show that it is approximately optimal. Note that

Asemi(�̃) � (1� d)Asemi(�
⇤),

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

which implies that

1

1� d
Asemi(�

⇤)�1
� Asemi(�̃)

�1
.

Then, by Sudakov-Fernique, we have that

E⌘

"
max
x2X

(x̄� x)>Asemi(�̃)�1/2
⌘

� + ✓̄>(x̄� x)

#
 [1� d]�1/2E⌘


max
x2X

(x̄� x)>Asemi(�⇤)�1/2
⌘

� + ✓̄>(x̄� x)

�


p
2E⌘


max
x2X

(x̄� x)>Asemi(�⇤)�1/2
⌘

� + ✓̄>(x̄� x)

�


p
2⌧⇤C

=
p

⌧̃C

showing feasibility (�̃, ⌧̃). Furthermore, we have that

⌧̄

X

x2X

�̃x[✓̄
>(x̄� x) + �]  2opt+ ⌧̃ d

X

x2X

�̃x[✓̄
>(x̄� x) + �]

 2opt+ T d2�max

 2opt+ 1 (28)

where in the last line we used = min(1
4d�maxT

,
1
4d).

Step 4: Putting it together. Putting together (26), (25), (27), and (28), we have that Algorithm 5 returns
(⌧̄ , �̄) such that �̄ 2 4, ⌧̄  2T , and

⌧̄

X

x2X

[� + ✓̄
>(x̄� x)]�̄x  4opt+ 2

E⌘

max
x2X

(x̄� x)>Asemi(�̄)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧̄C.

D.3 Miscellaneous Optimization Lemmas

Lemma 8. Let � 2 4̃. With probability at least 1� � � ⇠
2d , Algorithm 10 returns bµ such that

|bµ� E⌘

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�
|  tol

and the number of linear maximization oracle calls is bounded above by

O(log(1/�)
d

�2 tol2
[d+ log(

d�max

�⇠
)]).

Proof. We first show that

max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)
2 SG(c

d

�2
).

Note that

|max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)
| 

1

� 1/2

dX

i=1

|⌘i|

Experimental Design for Regret Minimization in Linear Bandits

and

1

� 1/2

dX

i=1

|⌘i| 2 SG(c
d

�2
).

The estimation results by applying a standard subGaussian tail bound. The bound on the number of oracle calls
follows since Algorithm 9 is applied O(log(1/�) d

�2 tol2) times and by Lemma 9 and a union bound.

The following Lemma shows that the binary search procedure in Algorithm 9 is e�cient with very high probability
and it follows immediately from the proof of Lemma 2 of Katz-Samuels et al. [2020].

Lemma 9. Draw ⌘ ⇠ N(0, I) and consider the optimization problem

x̃ = argmax
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)
.

With probability at least 1� 2⇠
2d , Algorithm 9 returns x̃ using at most O(d+ log(d�max

�⇠)) oracle calls.

Next, we describe a result on the multiplicative weights update algorithm that follows immediately from Corollary
4 in Arora et al. [2012]. Consider the experts problem. The set of events is denoted by P . Suppose there are m

experts. At each round t, the agent picks an expert i 2 [m] and the adversary picks an outcome j
t
2 P and the

agent obtains reward M(i, jt). The multiplicative weights update algorithm mains a distribution D
t over the

experts and chooses an expert randomly from D
t (see Arora et al. [2012] for details on how this distribution is

chosen). The adversary may have knowledge of the D
t when choosing j

t. The following provides a lower bound
on the expected reward obtained by the multiplicative weights update algorithm.

Theorem 9. Let ⇠ > 0 denote an error parameter. Suppose there are m experts and |M(i, j)|  ⇢. If the multi-

plicative weights algorithm sets the learning rate as ✏ = min(⇠4⇢ ,
1
2), after T = 16⇢2 ln(m)

⇠2 , then the multiplicative
weights algorithm achieves the following bound on its average expected reward: for any expert i,

P
t M(i, jt)

T
 ⇠ +

P
t M(Dt

, j
t)

T
.

D.4 Convergence Lemmas

The objective in semi-feedback is convex (by a similar argument to the proof in Katz-Samuels et al. [2020]).

Proposition 7. Fix V ⇢ Rd.

f(�) = E⌘⇠N(0,I)[max
v2V

v
>
Asemi(�)

�1/2
⌘]

is convex.

Proof. Fix �, 2 4|X | and ↵ 2 [0, 1]. By matrix convexity,

diag(
1P

x2X
↵�x,i + (1� ↵)x,i

)1/2 � ↵ diag(
1P

x2X
�x,i

)1/2 + (1� ↵) diag(
1P

x2X
x,i

)1/2.

Furthermore, since the above matrices are diagonal,

diag(
1P

x2X
↵�x,i + (1� ↵)x,i

) � [↵ diag(
1P

x2X
�x,i

)1/2 + (1� ↵) diag(
1P

x2X
x,i

)1/2]2.

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

Then, by Sudakov-Fernique inequality (Theorem 7.2.11 in Vershynin [2018]),

f(↵�+ (1� ↵)) = E⌘⇠N(0,diag(1P
x2X ↵�x,i+(1�↵)x,i

)) sup
v2V

v
>
⌘

 E⌘⇠N(0,[↵ diag(1P
x2X �x,i

)1/2+(1�↵) diag(1P
x2X x,i

)1/2]2) sup
v2V

z
>
⌘

= E⌘⇠N(0,I) sup
v2V

v
>[↵ diag(

1P
x2X

�x,i
)1/2 + (1� ↵) diag(

1P
x2X

x,i
)1/2]⌘

 ↵E⌘⇠N(0,I) sup
v2V

v
> diag(

1P
x2X

�x,i
)1/2⌘

+ (1� ↵)E⌘⇠N(0,I) sup
v2V

v
> diag(

1P
x2X

x,i
)1/2⌘

= ↵f(�) + (1� ↵)f()

Next, we turn to analyzing stochastic Frank-Wolfe. Although a convergence result for stochastic frank wolfe is
provided in Hazan and Luo [2016], our setup is slightly di↵erent, so we include a convergence analysis for our
setting for the sake of completeness. The proof is quite similar to the proof in Hazan and Luo [2016].

Algorithm 11 Generic Stochastic Frank-Wolfe

1: Input: f : Rm
⇥ Rd

�! R, constraint set ⌦ ⇢ Rm, (pr)r 2 N1, (qr)r 2 [0, 1]1.
2: Initialize w1 2 ⌦
3: for r = 1, 2, . . . do
4: Draw ⌘1, . . . , ⌘pr ⇠ N(0, I)
5: Compute

r̃r =
1

pr

prX

j=1

rf(wr; ⌘j)

6: Compute

vr = argmin
v2⌦

r̃
>

r v

7:

wr+1 � qrvr + (1� qr)wr

8: end for

Proposition 8. Let f : Rm
⇥ Rd

�! R and ⌦ ⇢ Rm. Define f(x) = E⌘⇠N(0,I)f(x; ⌘) and define

w
⇤ = argmin

w2⌦
E⌘f(x; ⌘).

Suppose that supw,w02⌦ kw � w
0
k  D. Suppose that f is convex, krf(x)�rf(y)k

⇤
 L kx� yk, and pr in

Algorithm 11 is chosen such that with probability at least 1� �/r2

���err �rf(wr�1)
���
⇤


LDqr

2

where qr = 2
k+1 . Then, with probability at least 1� c�,

f(wr)� f(w⇤) 
4LD2

r + 2
.

Experimental Design for Regret Minimization in Linear Bandits

Proof. The proof follows closely the analysis of SFW in Hazan and Luo [2016] but uses smoothness wrt k·k
⇤
. We

have that

f(wr)  f(wr�1) +rf(wr�1)
>(wr � wr�1) +

L

2
kwr � wr�1k

2
1 (29)

= f(wr�1) + qrrf(wr�1)
>(vr � wr�1) +

Lq
2
r

2
kvr � wr�1k

2
1

 f(wr�1) + qr
er>

r (vr � wr�1) + qr(rf(wr�1)� err)
>(vr � wr�1) +

LD
2
q
2
r

2

 f(wr�1) + qr
er>

r (w⇤ � wr�1) + qr(rf(wr�1)� err)
>(vr � wr�1) +

LD
2
q
2
r

2
(30)

= f(wr�1) + qrrf(wr�1)
>(w⇤ � wr�1) + qr(rf(wr�1)� err)

>(vr � w⇤) +
LD

2
q
2
r

2

 f(wr�1) + qrrf(wr�1)
>(w⇤ � wr�1) + qr

���rf(wr�1)� err

���
⇤

D +
LD

2
q
2
r

2
� (31)

where line (29) uses smoothness (Lemma 11), line (30) uses the optimality of vr, and line (31) uses the definition
of the dual norm. Now, define the event

Er = {

���err �rf(wr�1)
���
⇤


LDqr

2
}.E = \rEr

By hypothesis, pr is chosen such that with probability at least 1� �/r2,
���err �rf(wr�1)

���
⇤


LDqr

2 . Therefore,

we have that

Pr(E) =
1Y

r=1

Pr(Er| \
r�1
s=1 Es) �

1Y

r=1

(1�
�

r2
) =

sin(⇡�)

⇡ + �
� 1� �.

Now, suppose E occurs. Then, we have that for all r 2 N,

f(wr)� f(w⇤)  (1� qr)[f(wr�1)� f(w⇤)] + LD
2
q
2
r .

The proof is concluded by simple induction.

The following Lemma shows that Algorithm 8 is an instantiation of stochastic Frank-Wolfe over 4̃.

Lemma 10. Fix v 2 Rm. Let

I := argmin
i2[m]

vi.

Define

�̄i =

8
>>>>>><

>>>>>>:

8
><

>:

0 i 62 [d]

 i 2 [d] \ {I}

1� (d� 1) i = I

, I 2 [d]

(
 i 2 [d]

1� d i = I
, I 62 [d]

Then, �̄ 2 argmin�24̃
v
>
�.

Proof. This follows by a straightforward case by case analysis.

The following is standard smoothness Lemma from convex optimization.

Lemma 11. Let f : Rm
�! R satisfy krf(x)�rf(y)k

⇤
 L kx� yk. Then,

f(x)� f(y)�rf(y)>(�y) 
L

2
kx� yk

2
.

Proof. This is standard (see Bubeck [2014]).

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

D.5 Di↵erentiability Lemmas

In this section, we show that L(1,2;�) is twice-di↵erentiable wrt �. We set 1,2 = 1 for simplicity and
write L(�) instead of L(1,2; ⌧ ;�) for the sake of brevity. The following Lemma shows that L(1,2; ⌧ ;�) is
di↵erentiable wrt �.

Lemma 12. Fix i 2 [m], and � 2 4̃. Fix ⌘ 2 Rd such there exists a neighborhood of ⌘ such that

x̃ = argmax
x2X

P
i2x̄�x

⌘iP
x0:i2x0 �x0

� + ✓̄>(x̄� x)
.

Then,

@L(�; ⌘)

@�i
= ⌧ ✓̄

>(x̄� xi)�
1

2

1

[� + ✓̄>(x̄� x̃)]

X

k2(x̄�x̃)\xi

⌘k

(
P

j:k2xj
�j)3/2

Furthermore, L(�) is di↵erentiable at every � 2 4̃ and

@L(�)

@�i
= E⌘⇠N(0,I)[

@L(�; ⌘)

@�i
{B�}]

where

B� = {⌘ : | argmax
x2X

P
i2x̄�x

⌘iP
x0:i2x0 �x0

� + ✓̄>(x̄� x)
| = 1}.

Proof. The calculation of @L(�;⌘)
@�i

follows by the chain rule.

Fix � 2 4̃. Since � 2 4̃, we have that Asemi(�)�1/2 is full rank.

Step 1: First, we show that L(�; ⌘) is Lipschitz with an absolutely integrable Lipschitz constant. Define

J (�; ⌘;x) = ⌧

X

x2X

✓̄
>(x̄� x)�x + (

x
>
Asemi(�)�1/2

⌘

� + ✓̄>(x̄� x)
�
p
⌧C).

and note that

|
@J (�; ⌘;x)

@�i
| = |✓̄

>(x̄� xi)�
1

2

1

[� + ✓̄>(x̄� x)]

X

k2(x̄�x)\xi

⌘k

(
P

j:k2xj
�j)3/2

|

 |✓̄
>(x̄� xi)|+

1

2

1

[� + ✓̄>(x̄� x)]

X

k2(x̄�x)\xi

|⌘k|

 3/2

< |✓̄
>(x̄� xi)|+

1

2

1

�

X

k2(x̄�x)\xi

|⌘k|

 3/2
:= C⌘

Let �,�0 2 4̃. Thus, by the mean value theorem, we have that for all x 2 X ,

|J (�; ⌘;x)� J (�; ⌘;x)|  C⌘ k�� �
0
k1

Since L(�; ⌘) := maxx2X J (�; ⌘;x) and the maximum of C⌘-Lipschitz functions is C⌘-Lipschitz, we have that

|L(�; ⌘)� L(�; ⌘)|  C⌘ k�� �
0
k1

Step 2: Now, we show that the partial derivatives exist. Define the event

B� = {⌘ : | argmax
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)
| = 1},

Experimental Design for Regret Minimization in Linear Bandits

Since Asemi(�)�1/2 is full rank and each

x

� + ✓̄>(x̄� x)

is distinct, if ⌘ ⇠ N(0, I), then with probability 1 B� holds and L(�; ⌘) is di↵erentiable at �.

Since L(�; ⌘) is C⌘-Lipschitz (because � 2 4̃, we have

|
L(�+ eih; ⌘)� L(�; ⌘)

h
|  C⌘.

Since in addition EC⌘ <1, by the dominated convergence theorem,

lim
h�!0

E[L(�+ eih; ⌘)� L(�; ⌘)

h
] = lim

h�!0
E[L(�+ eih; ⌘)� L(�; ⌘)

h
{B�}]

= E[lim
h�!0

L(�+ eih; ⌘)� L(�; ⌘)

h
{B�}]

= E[rL(�; ⌘)>ei {B�}]

where the last equality follows since on B� and � 2 4̃, @L(�;⌘)
@�i

exists. Thus, the partial derivative @L(�)
@�i

exists

at every point � 2 4̃ and

@L(�)

@�i
= E[rL(�; ⌘)>ei {B�}]

Step 3: We claim that the partial derivative is continuous in � 2 4̃, which would show that that L(�) is
di↵erentiable at every � 2 4̃ Munkres [2018]. Let �(n) be a sequence in 4̃ such that �(n) �! �. Note that since
�
(n)
2 4̃, we have that

rL(�(n); ⌘)>ei {B�(n)} = |✓̄
>(x̄� xi)|+ c

1

[� + ✓̄>(x̄� x̃)]

X

k2(x̄�x̃)\xi

|⌘k|

 3/2

for an appropriate universal constant c > 0, which has finite expectation. Further, since �(n) 2 4̃, the calculation
showing that L(�; ⌘) is Lipschitz in � implies that Asemi(�)�1/2 is Lipschitz in �, so Asemi(�(n))�1/2 can be made

arbitrarily close to Asemi(�)�1/2. If | argmaxx2X

(x̄�x)>Asemi(�)
�1/2⌘

�+✓̄>(x̄�x)
| = 1, this implies that:

(x̄� x⌘)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x⌘)
�

(x̄� x
0)>Asemi(�)�1/2

⌘

� + ✓̄>(x̄� x0)
+ ✏⌘

for some ✏⌘ > 0, x⌘ the unique value the argmax is attained at, and x
0
6= x⌘. As we can make Asemi(�(n))�1/2

arbitrarily close to Asemi(�)�1/2, it follows that for large enough n, we can guarantee:

(x̄� x⌘)>Asemi(�(n))�1/2
⌘

� + ✓̄>(x̄� x⌘)
�

(x̄� x
0)>Asemi(�(n))�1/2

⌘

� + ✓̄>(x̄� x0)
+ ✏⌘/2

so the maximizer will be unique. As this is true for all ⌘ 2 B�, it follows that limn!1 B�(n) ✓ B�. An identical
argument implies B� ✓ limn!1 B�(n) , so limn!1 B�(n) = B�. Then, by the dominated convergence theorem,

lim
n�!1

E[rL(�(n); ⌘)>ei {B�(n)}] = E[lim
n�!1

rL(�(n); ⌘)>ei {B�(n)}]

= E[rL(�; ⌘)>ei {B�}]

where in the last line we used the continuity of rL(�; ⌘)>ei {B�} in � on 4̃ for a fixed ⌘. Thus, the partial
derivatives are continuous, proving di↵erentiability at every � 2 4̃.

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

The following Lemma shows that L(1,2; ⌧ ;�) is twice-di↵erentiable wrt �.

Lemma 13. L(�) is twice-di↵erentiable at every � 2 4̃ and

@
2
L(�)

@�i@�j
= E[@

2
L(�; ⌘)

@�i@�j
{B�}]

where

B� = {⌘ : | argmax
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)
| = 1}.

Proof. Step 0: Setup. From Lemma 12, L(�) is di↵erentiable at every � 2 4̃ . Therefore, it su�ces to show

that rL(�) is di↵erentiable at every � 2 4̃ . It su�ces to show that the 2nd order partial derivatives exist and

are continuous. For the sake of abbreviation, define g(�) := @L(�)
@�j

and g(�; ⌘) := @L(�;⌘)
@�j

. Note that we have that

@g(�; ⌘)

@�i
{B�} = {B�}

3

4

1

(� + ✓̄>(x̄� x̃)

X

k2(x̄�x̃)\xi\xj

⌘k

(
P

l:k2xl
�l)5/2

(32)

where x̃ = argmax
x2X

P
i2x̄�x

⌘iP
x0:i2x0 �x0

� + ✓̄>(x̄� x)
.. (33)

To begin, we show that the 2nd order partial derivatives exist using a truncation argument. Let ' > 0. Fix
� 2 4̃. Define

q(x; ⌘) =

P
i2x̄�x

⌘iP
x0:i2x0 �x0

� + ✓̄>(x̄� x)

Define

B' = {⌘ : x̃ = argmax
x2X

q(x; ⌘), 8x0
6= x̃

q(x0; ⌘)

k⌘k2

<
q(x̃; ⌘)

k⌘k2

� '}.

Note that

lim
'�!0

B' = B�.

Step 1. First, we show that

lim
h!0

E

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}

�
= E


@g(�, ⌘)

@�i
{B'}

�
(34)

Define

Vx =
x̄� x

� + ✓̄>(x̄� x)

for x 2 X . Note that since for any fixed x 2 X , Asemi(�)�1/2
Vx is Lipschitz in � on 4̃, there exists L depending

on ,�, x̄ such that for all x 2 X

���[Asemi(�)
�1/2

�Asemi(�+ hei)
�1/2]Vx

���
2
 L h.

Let hmin = '
4L

. Let h 2 [0, hmin]. Let ⌘ 2 Rd such that it satisfies B' and let x̃ = argmaxx2X q(x; ⌘). Let

x 2 X \ {x̃}. Then,

'

4
+

v
>

x̃ A(�+ hei)�1/2
⌘

k⌘k2

�
v
>

x̃ A(�)�1/2
⌘

k⌘k2

� '+
v
>
x A(�)�1/2

⌘

k⌘k2

�
3'

4
+

v
>
x A(�+ hei)�1/2

⌘

k⌘k2

Experimental Design for Regret Minimization in Linear Bandits

which implies that x̃ = argmaxx2X v
>
x A(�+ hei)�1/2

⌘. Thus, on B', for all h 2 [0, hmin], argmaxx2X v
>
x A(�+

hei)�1/2
⌘ is the same and hence g(�+hei, ⌘) = Vx̃A(�+hei)�1/2

⌘ for all h 2 (0, hmin) and is thus di↵erentiable
for all h 2 (0, hmin). Thus, by the mean value theorem, we have that

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'} =

@g(�+ h
0
ei; ⌘)

@�i
{B'}

for some h
0
2 (0, h]. Inspection of (33) shows that using � 2 4̃

E[|@g(�; ⌘)
@�i

|] <1.

Thus, we may apply the dominating convergence theorem to obtain

lim
h!0

E

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}

�
= E


lim
h!0

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}

�

= E

@g(�, ⌘)

@�i
{B'}

�

Step 2. Now, we show that

lim
'�!0

E

@g(�, ⌘)

@�i
{B'}

�
= E


@g(�, ⌘)

@�i
{B�}

�
. (35)

Define

Z(⌘) =
3

4

1

(� + ✓̄>(x̄� x̃)

X

k2(x̄�x̃)\xi\xj

|⌘k|

(
P

l:k2xl
�l)5/2

where x̃ = argmax
x2X

P
i2x̄�x

⌘iP
x0:i2x0 �x0

� + ✓̄>(x̄� x)
.

Note that for every ' > 0

|
@g(�, ⌘)

@�i
{B'}|  Z(⌘)

and EZ(⌘) <1. Therefore, by the dominating convergence theorem,

lim
'�!0

E

@g(�, ⌘)

@�i
{B'}

�
= E


lim
'�!0

@g(�, ⌘)

@�i
{B'}

�
= E


@g(�, ⌘)

@�i
{B�}

�
.

Step 3. Now, we show that

lim
'�!0

lim
h!0

E

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}

�
= lim

h!0
E

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B�}

�
(36)

By step 1, for every ' > 0,

lim
h!0

E

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}

�
= E


@g(�, ⌘)

@�i
{B'}

�
 E


|
@g(�, ⌘)

@�i
{B�}|

�
 C

for some constant C > 0. Therefore, by the bounded convergence theorem for limits, we have that

lim
'�!0

lim
h!0

E

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}

�
= lim

h!0
lim
'�!0

E

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}

�

More formally, consider some sequence 'm, hn such that 'm ! 0 as m ! 1 and hn ! 0 as n ! 1. Let

amn = E
h
(g(�+hnei,⌘)�g(�,⌘)

hn
) {B'm}

i
. If limm!1 limn!1 amn = limn!1 limm!1 amn then the result is

proven. Let cmn = amn� am,n�1 and cm0 = 0. Note that for finite m, cmn is uniformly bounded for all n. Then
the Bounded Convergence Theorem applied to the counting measure gives that:

lim
m!1

1X

n=0

cmn =
1X

n=0

lim
m!1

cmn

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

However,
P

1

n=0 cmn = limN!1

PN
n=0 cmn, so the above implies:

lim
m!1

lim
N!1

NX

n=0

cmn = lim
N!1

lim
m!1

NX

n=0

cmn

By construction, we have
PN

n=0 cmn = amN , which proves the result.

Fix h > 0. Define

Y (h) = |
g(�+ hei, ⌘)� g(�, ⌘)

h
)| {B�}.

Note that for every ' > 0

|(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}|  Y (h)

and EY (h) <1. Thus, by the dominating convergence theorem,

lim
'�!0

E

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}

�
= E


lim
'�!0

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}

�

= E

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B�}

�
.

This completes the step.

Step 4. Putting together (34), (35), and (36), we have shown that

lim
h�!0

E

[(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B�}

�
= lim
'�!0

lim
h�!0

E

(
g(�+ hei, ⌘)� g(�, ⌘)

h
) {B'}

�

= lim
'�!0

E

@g(�, ⌘)

@�i
{B'}

�

= E

@g(�, ⌘)

@�i
{B�}

�

Thus, we have that that the second order partial derivatives exist and derived an expression for them. Showing
that the second order partial derivatives are continuous proceeds as in the proof of Lemma 12 (apply the
dominating convergence theorem).

E Rounding

Theorem 10 (Caratheodory’s Theorem). For any point y in the convex hull of a set P ✓ Rd, y can be written
as a convex combination of at most d+ 1 points in P.

Proof. This is a standard result in convex geometry, see for instance Eggleston [1958].

Lemma 14. Given any � 2 4X , in the bandit setting, there exists a distribution �0 2 4X that is (d2 + d+ 1)-
sparse and:

Aband(�) = Aband(�
0),

X

x2X

�xx =
X

x2X

�
0

xx

In the semi-bandit setting, when X ✓ {0, 1}d, there exists a distribution �0 2 4X that is (d+ 1)-sparse and:

Asemi(�) = Asemi(�
0),

X

x2X

�xx =
X

x2X

�
0

xx

Experimental Design for Regret Minimization in Linear Bandits

Proof. This is a direct corollary of Caratheodory’s Theorem. Take � 2 4|X | and let z� 2 Rd+d2

, which we define
as:

z� =

"
X

x2X

�xx; vec

X

x2X

�xxx
>

!#

Define the set:

V :=
�⇥
x; vec(xx>)

⇤
: x 2 X

✓ Rd+d2

For any �, we see that z� lies in the convex hull of V. Caratheodory’s Theorem then immediately implies the
result in the bandit case, since vec

�P
x2X

�xxx
>
�
uniquely determines Aband(�).

In the semi-bandit case, we note that the diagonal of Asemi(�) is equal to
P

x2X
�xx. Thus, we only need to

consider a d-dimensional space, so Caratheodory implies we can find a d+ 1 sparse distribution.

Proof of Lemma 1. Given some allocation ⌧ , let � the corresponding distribution, and ⌧̄ =
P

x2X
⌧x (so ⌧ = ⌧̄�).

Since we only care about the sparsity of �, consider ⌧̄ fixed. Then, given a solution � to (2) or (3), the value of
the constraint and objective the solution achieves achieves are fully specified by Af(�) and

P
x2X

�xx. To see
the latter, note that

P
x2X

(✏ +�x)�x = ✏ +
P

x2X
✓
>(x⇤ � x)�x = ✏ + ✓

>
x⇤ + ✓

>
P

x2X
�xx. Lemma 14 then

implies that there exists a distribution � that is (d2 + d+ 1)-sparse in the bandit case and (d+ 1)-sparse in the
semi-bandit case that achieves the same value of the constraint and objective of (2) or (3).

To see the second part of the result, note that if we run the procedure of Theorem 4, we will run stochastic
Frank Wolfe for a polynomial number of steps, each increasing the support of our distribution by at most 1, so
we will obtain an approximate solution that has at most n = poly(d,�min, T, 1/�) non-zero entries. By Theorem
6 in Maalouf et al. [2019], it then follows that we can compute the (d+1)-sparse distribution achieving the same
value of the constraint and objective in time O(nd).

F Gaussian Width Results

Proposition 9.

inf
�24X

max
x2X

kxk
2
Asemi(�)�1 = d (37)

Proof. This proof closely mirrors the proof of Theorem 21.1 of Lattimore and Szepesvári [2020].

Let:

f(�) = log detAsemi(�)

Noting that:

d

dt
det(A(t)) = Trace

✓
adj(A(t))

d

dt
A(t)

◆

and A
�1 = adj(A)>/ det(A) Lattimore and Szepesvári [2020], we can compute the gradient of f(�) as:

d

d�x
f(�) =

1

detAsemi(�)
Trace

�
adj(Asemi(�)) diag(xx

>)
�
= Trace

�
Asemi(�)

�1 diag(xx>)
�

Since Asemi(�) is diagonal, we have:

Trace
�
Asemi(�)

�1 diag(xx>)
�
=

dX

i=1

x
2
i

[Asemi(�)]i
= x

>
Asemi(�)

�1
x = kxk2Asemi(�)�1

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

Note also that, by the identity above, for any �:
X

x2X

�xkxk
2
Asemi(�)�1 =

X

x2X

�x Trace
�
Asemi(�)

�1 diag(xx>)
�

= Trace

Asemi(�)

�1

X

x2X

�x diag(xx
>)

!!

= Trace
�
Asemi(�)

�1
Asemi(�)

�

= Trace(I)

= d

Then, since log detX is concave and Asemi(�) is linear in �, it follows that f(�) is concave. Applying standard
first-order optimality conditions and denoting �⇤ the solution to (37), we have, for any �:

0 � hf(�⇤),�� �⇤i

=
X

x2X

�xkxk
2
Asemi(�⇤)�1 �

X

x2X

�
⇤

xkxk
2
Asemi(�⇤)�1

=
X

x2X

�xkxk
2
Asemi(�⇤)�1 � d

Choosing � to be the distribution putting all its mass on x, we have:

d � kxk
2
Asemi(�⇤)�1

To see the equality, note that the above implies:

d =
X

x2X

�
⇤

xkxk
2
Asemi(�⇤)�1  max

x2X

kxk
2
Asemi(�⇤)�1  d

Proof of Proposition 2. Let S = {x 2 X : �x  ✏} for some fixed ✏ > 0. Therefore, x⇤
2 S. Define

S1 = {(x, x⇤

m+1:n+m) : x 2 {0, 1}m s.t. there exists x0
2 S s.t. ⇧[m]x

0 = x}

S2 = {(x⇤

1:m, x) : x 2 {0, 1}n s.t. there exists x0
2 S s.t. ⇧[n+m]\[m]x

0 = x}

where ⇧A is the coordinate wise projection onto the coordinates A ⇢ N. Then, using the fact that
E[(x⇤)>A(�)�1/2

⌘] = 0, we have that

min
�24|S|

E[sup
x2S

x
>
A(�)�1/2

⌘]2  min
�24|S|

E[sup
x12S1

mX

i=1

x1,i[A(�)�1/2
⌘]i + sup

x22S2

n+mX

i=m+1

x2,i[A(�)�1/2
⌘]i]

2

= min
�24|S|

E[sup
x12S1

mX

i=1

x1,i[A(�)�1/2
⌘]i + sup

x22S2

n+mX

i=m+1

x2,i[A(�)�1/2
⌘]i

+
n+mX

i=1

x
⇤

i [A(�)�1/2
⌘]i]

2

= min
�24|S|

E[sup
x12S1

x
>

1 A(�)�1/2
⌘ + sup

x22S2

x
>

2 A(�)�1/2
⌘]2

 min
�24|S|

c[E[sup
x12S1

x
>

1 A(�)⌘]2 + E[sup
x22S2

x
>

2 A(�)⌘]2]

 min
�24|S|

c
0[k log(m) max

x12S1

kx1k
2
A(�)�1 + ` log(n) max

x22S2

kx2k
2
A(�)�1]

 c
00[k log(m) min

�24|S|
max
x12S1

kx1k
2
A(�)�1 + ` log(n) min

�24|S|
max
x22S2

kx2k
2
A(�)�1]

Experimental Design for Regret Minimization in Linear Bandits

We begin by bounding the first term. Notice that S1 ⇢ S since S = {x 2 X : �x  ✏} for some fixed ✏ > 0 and
thus if x 2 {0, 1}m s.t. there exists x0

2 S s.t. ⇧[m]x
0 = x, then (x, x⇤

m+1:n+m) 2 S. Furthermore, the span of
the vectors in S1 has dimension at most m+ 1 since for any x1 2 S1, for all i � m+ 1, we have that

[x1 � (~01:m, x
⇤

m+1:n+m)]i = 0.

Thus, by the Kiefer-Wolfowitz Theorem Lattimore and Szepesvári [2020]:

min
�24|S|

max
x12S1

kx1k
2
A(�)�1  m+ 1.

and:

min
�24|S|

max
x22S2

kx2k
2
A(�)�1  n.

Therefore,

min
�24|S|

E[sup
x2S

x
>
A(�)�1/2

⌘]2  c[k log(m)m+ ` log(n)n].

To lower bound |X |, note that:

|X | =

✓
m

k

◆✓
n

`

◆
�

⇣
m

k

⌘k ⇣n
`

⌘`

For the second conclusion we set ` = O(1), k =
p
m, and n = m

3/2 and apply our regret bound.

For the regret bound of competing algorithms, LinUCB will scale as eO(d
p
T) = eO(m3/2

p
T). Given the above

lower bound on |X |, the regret of action elimination will scale as eO(m
p
T). In the semi-bandit setting, Kveton

et al. [2015] obtain a regret bound of eO(m
p
T) and, ignoring logarithmic terms, Degenne and Perchet [2016]

obtain the same bound. Other existing works [Combes et al., 2015, Perrault et al., 2020a] do not state minimax
bounds but, using the standard analysis to obtain a minimax bound from a gap-dependent bound, their regret
will also scale as eO(m

p
T). Note that in this comparison we have ignored log(T) terms and have taken the

dominate term to be the term with leading m dependence that hits the
p
T .

Proof of Proposition 3. E⌘[maxx2X x
>
A(�)�1/2

⌘] is the Gaussian width of the set {A(�)�1/2
x : x 2 X}. By

Proposition 7.5.2 of Vershynin [2018]:

E⌘[max
x2X

x
>
A(�)�1/2

⌘]  c

p

ddiam({A(�)�1/2
x : x 2 X})

and:
diam({A(�)�1/2

x : x 2 X}) = max
x1,x22X

kA(�)�1/2(x1 � x2)k  2max
x2X

kxkA(�)�1

Taking the infimum over � 2 4X , in the bandit feedback case Kiefer-Wolfowitz gives
inf�24X maxx2X kxkA(�)�1 

p
d, and in the semi-bandit case, Proposition 9 gives the same result. Since X

was chosen arbitrarily, it follows that �̄(X)  d
2.

For the second bound, Exercise 7.5.10 of Vershynin [2018] gives that:

E⌘[max
x2X

x
>
A(�)�1/2

⌘]  c

p
log |X |diam({A(�)�1/2

x : x 2 X})

from which the result follows immediately.

Proof of Proposition 4. If X ✓ {0, 1}d and k = maxx2X kxk1, then X at most contains all subsets of size k and
less so:

|X | 

kX

j=1

✓
d

j

◆
 c

kX

j=1

(d/j)j  c

kX

j=1

d
j = c

d(dk � 1)

d� 1
 cd

k

Thus, Proposition 3 gives:
�
⇤
 cdk log d

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

Proof of Proposition 5. Consider the Top-k problem in the semi-bandit feedback regime, but augment the action
set by adding the vector of all 1s to it. In this case, then, we can either query a subset of size k, or we can
query every point at once. Assume that ✓i � 0 for all i. Note that by our assumption on ✓i, 1 will always be
in the action set regardless of how we are filtering on the gaps. If we put all our mass on 1, we will have that
Asemi(�) = I. Thus:

�̄(Asemi) = sup
✏>0

inf
�24X✏

E⌘[sup
x2X✏

x
>
A(�)�1/2

⌘]2

 E⌘[sup
x2X✏

x
>
⌘]2

 E⌘[max
x2X

|x
>
⌘|]2

 c

✓
E⌘[max

x2X\1
|x

>
⌘|]2 + E⌘[|1>

⌘|]2
◆

 c

✓
E⌘[max

x2X\1
|x

>
⌘|]2 + d

◆

 c

✓
k
2E⌘[max

z:kzk11
|z

>
⌘|]2 + d

◆

 c(k2 log d+ d)

where the last inequality follows since the gaussian complexity is within a constant of the Gaussian width when
the set contains 0, by Exercise 7.6.9 of Vershynin [2018]. The result then follows by choosing k =

p
d.

Theorem 11 (Tsirelson-Ibragimov-Sudakov Inequality Tsirelson et al. [1976]). Let S ✓ Rd be bounded. Let
(Vs)s2S be a Gaussian process such that E[Vs] = 0 for all s 2 S. Define �2 = sups2S E[V 2

s]. Then, for all u > 0:

P[| sup
s2S

Vs � E sup
x2S

| � u]  2 exp

✓
�u

2

2�2

◆

Proof of Proposition 6. The proof in the bandit setting is identical to the proof given in Katz-Samuels et al.
[2020] and we therefore omit it.

In the semibandit setting, we have that:

✓̂i = ✓i +
1

Ti

TX

t=1

xt,i⌘t,i

so E[✓̂i] = ✓i and:

E[(✓̂i � ✓i)2] =
1

T 2
i

TX

t=1

xt,i =
1

Ti

Furthermore, since the noise is uncorrelated between coordinates, we have E[(✓̂i � ✓i)(✓̂j � ✓j)] = 0. Since
xt 2 {0, 1}d, it follows then that:

✓̂
distribution

= ✓⇤ + eA�1/2
⌘

for ⌘ ⇠ N (0, I). Now consider the Gaussian process Vx := x
>(✓̂ � ✓⇤) = x

> eA�1/2
⌘ for x 2 X . Noting that

E[V 2
x] = x

> eA�1
x  maxx2X kxk

2
eA�1

, we can then apply Theorem 11 to this process, which gives the result.

G Lower Bound for Semi-Bandit Feedback and Optimistic Strategies

A policy ⇡ is consistent if for all ✓ and p > 0, R⇡✓ (T) = o(T p). Let Tx denote the number of times that x 2 X is
pulled and Ti the number of times that i 2 [d] is pulled.

Experimental Design for Regret Minimization in Linear Bandits

Theorem 12. Let ⇡ be a consistent policy such that Ti � 1 for all i 2 [d] with probability 1, ✓ 2 Rd such that

there is a unique optimal arm in X . Let GT = E[
PT

t=1 diag(xtx
>
t)] where xt is chosen at round t 2 [T]. Then,

lim sup
T�!1

log(T) kxk2G�1
T


�2
x

2

for all x 2 X . Furthermore,

lim sup
T�!1

R
⇡
✓ (T)

log(T)
� c(X , ✓)

where

c(X , ✓) := min
⌧2[0,1)|X|

X

x2X

⌧x�x

s.t.
X

i2x

1P
x0:i2x0 ⌧x0


�2

x

2
8x 2 X \ {x⇤}.

Proof. We use a similar argument to the proof of Theorem 1 in Lattimore and Szepesvari [2017]. We construct
an alternative instance ✓0 to obtain an asymptotic lower bound. Let P

0 denote the probability measure of the
associated instance (which we will specify shortly). We note that the Divergence Lemma (Lemma 15.1 Lattimore
and Szepesvári [2020]) is easily adapted to the semi-bandit feedback setting. Thus, by a standard argument that
applies the Divergence Lemma and the Bretagnolle–Huber inequality (Theorem 14.2 in Lattimore and Szepesvári
[2020]), we have that

1

2
k✓ � ✓

0
k
2
GT
� log(

1

2P(E) + 2P0(Ec)
) (38)

for any event E. Define

✓
0 = ✓ +

G
�1
T [x� x⇤](�x + ✏)

kx� x⇤k
2
G�1

T

.

Note that

(x� x⇤)
>
✓
0 = ✏ > 0.

Let R0

T denote the regret of ⇡ on the alternative instance ✓0. Choose E = {Tx⇤ 
T
2 }. We have that

RT =
X

x

E[Tx]�x � �min
T

2
P(Tx⇤  T/2).

Furthermore,

R
0

T =
X

x

E[Tx]�
0

x �
✏T

2
P0(Tx⇤ � T/2).

Thus, assuming that ✏  �min, we have that

RT +R
0

T

✏T
� P(E) + P0(Ec). (39)

Then, inequalities (38) and (39) imply that

(�x + ✏)2

2 kx� x⇤k
2
G�1

T

� log(
✏T

2[RT +R0

T]
).

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

Dividing both sides by log(T), we have that

(�x + ✏)2

2 kx� x⇤k
2
G�1

T

� 1�
log(1/2✏)

log(T)
�

log(2RT �R
0

T)

log(T)
.

Consistency of the policy ⇡ implies that

lim inf
T�!1

(�x + ✏)2

2 kx� x⇤k
2
G�1

T
log(T)

� 1.

Rearranging, we have that

(�x + ✏)2

2
� lim sup

T�!1

kx� x⇤k
2
G�1

T
log(T).

This establishes the first claim in the lower bound. The second claim follows by a similar argument to the
argument in Corollary 2 of Lattimore and Szepesvari [2017].

Proof of Proposition 1. Proof of lower bound for optimism: Define the following problem instance

✓i =

8
>>><

>>>:

1 i = 1

1� ✏ i 2 {2, . . . ,m}

�1 + ✏ i 2 {m+ 1, . . . , 2m� 1}

�1 i 2 {2m, . . . , 2m+
p
m}

with X = {{1}, . . . , {m}, [2m +
p
m]}. Let x(i) = {i} for i  m and x

(m+1) = [2m +
p
m]. Note that �i = ✏ if

i  m and �m+1 =
p
m+ 1. Then, the optimization problem in Theorem 12 becomes

min
⌧2[0,1)|X|

X

im

⌧i✏+ ⌧m+1(
p
m+ 1)

s.t.
1

⌧i + ⌧m+1
 ✏

2
/2 8i 2 {2, . . . ,m}

X

i2[m]

1

⌧i + ⌧m+1
+

m+
p
m

⌧m+1


(
p
m+ 1)2

2

Consider the solution is ⌧m+1 = 4
✏2 and ⌧i = 0 otherwise. This attains a value of

O(

p
m

✏2
).

Now, consider the performance of the generic optimistic algorithm. Let Ti denote the number of times that arm
i is chosen. Define the event

E = {|x
>(b✓t � ✓)|  CB(x, {xs}s2[t�1])8x 2 X , 8t 2 [T]}.

Suppose E holds. Now, suppose that Tm+1 = 4↵ log(T). Then,

[x(m+1)]>b✓t +CB(x(m+1)
, {xs}

t�1
s=1)  [x(m+1)]>✓ + 2CB(x(m+1)

, {xs}
t�1
s=1)

 �
p
m+ 2

q
↵ kxk

2
(
Pt�1

s=1 xsx>
s)�1 log(T)

 0.

On the other hand, on E , we have that [x(1)]>(b✓t +CB(x(1)
, {xs}

t�1
s=1)) � 1 and hence x

(m) is pulled at 4↵ log(T)
times. Since P(Ec)  1

T , we have that

E[Tm+1]  4↵ log(T) + 1 (40)

Experimental Design for Regret Minimization in Linear Bandits

Recall that GT = E[
PT

t=1 diag(xtx
>
t)]. By Theorem 12, we have that

lim sup
T�!1

log(T)
���x(1)

� x
(i)
���
2

G�1
T

 ✏
2
/2

for all i, which together with (40) implies that

E[Ti]/ log(T) = ⌦(1/✏2)

for all i 2 {2, . . . ,m}. Thus,

lim sup
T�!1

R
optimistic
✓ (T)

log(T)
= ⌦(m/✏).

Proof of upper bound for Algorithm 1: From the proof of Theorem 2, we know that, for all ` simultaneously,
with probability at least 1� �:

R` min
⌧

X

x2X

2(✏` + �̂x)⌧x

s.t. E⌘

max
x2X

(x` � x)>Asemi(⌧)�1/2
⌘

✏` + �̂x

�


1

128(1 +
p
⇡ log(2`3/�))

and a ⌧ satisfying:

E⌘

max
x2X

(x` � x)>Asemi(⌧)�1/2
⌘

✏` +�x

�


1

512(1 +
p
⇡ log(2`3/�))

is also feasible for the problem above. Note that if we put all our mass on 1 we will have Asemi(⌧) = ⌧I, so a
feasible solution to the above problem requires that:

✓
512(1 +

p
⇡ log(2`3/�))E⌘


max
x2X

(x` � x)>⌘

✏` +�x

�◆2

 ⌧

we can upper bound:

E

max
x2X

(x` � x)>⌘

✏` +�x

�
= E


max

⇢
x
>

` ⌘

✏` + ✏
+

maxi=1,...,m�⌘i

✏` + ✏
,
(x` � 1)>⌘

✏` +
p
m

��


1

✏` + ✏
E[|x>

` ⌘|] +
1

✏` + ✏
E[max

i=1,...,m
|⌘i|] +

1

✏` +
p
m
E[|(x` � 1)>⌘|]

Since x` is a candidate for the best arm at round `, on the good event we must have that �x`  c✏`. In particular,
then, we will either have that kx`k1 = 1, or ✏` = O(

p
m), so regardless of `, 1

✏`+✏
E[|x>

` ⌘|]  c/✏`. By Vershynin

[2018], since each ⌘i has unit variance, we’ll have E[maxi=1,...,m |⌘i|]  c
p
log(m). Finally, noting that x`�1 has

at most c(m+
p
m) non-zero entries, (x`�1)>⌘ has variance bounded as c(m+

p
m), so E[|(x`�1)>⌘|]  O(

p
m).

We conclude that:

E

max
x2X

(x` � x)>⌘

✏` +�x

�
 O

✓p
logm

✏`

◆

It follows that:

⌧ � O

✓
log(`3/�) logm

✏2`

◆

is su�cient. Since this is a feasible solution, we’ll then have that:

R` 

X

x2X

2(✏` + �̂x)⌧
⇤

`,x  O

✓
(✏` +

p
m)

log(`3/�) logm

✏2`

◆
 O

✓
p
m
log(`3/�) logm

✏2`

◆

where the last inequality holds since
p
m = �max. Ignoring log factors that do not involve �, and noting that

there are at most log(
p
m/✏) rounds, the total regret is bounded as:

O

0

@
log(

p
m/✏)X

`=1

p
m log(1/�)

✏2`

1

A  O

✓p
m log(1/�)

m
4log(

p
m/✏)

◆
= O

✓p
m log(1/�)

✏2

◆

Andrew Wagenmaker⇤ Julian Katz-Samuels⇤ Kevin Jamieson

Choosing � = 1/T completes the proof.

Failure of Thompson Sampling for semi-bandit feedback: We now provide a sketch as to why Thompson
sampling fails on the instance in Proposition 1. Intuitively, Thompson Sampling is optimistic in a randomized
fashion, so we would expect it to fail in the same way as optimistic algorithms. Slightly more formally, consider
a typical version of Thompson sampling where at each round t, e✓t ⇠ N(b✓t, (

Pt�1
s=1 diag(xsx

>
s))

�1)) where xs is

the arm chosen at time s and xt = argmaxx2X x
>e✓t. Note that with high probability, we will have that:

|x
>e✓t � x

>
✓⇤| 

q
↵kxk2

(
Pt�1

s=1 diag(xsx>
s))�1

log(T)

so we will essentially only pull an arm when
q
↵kxk2

(
Pt�1

s=1 diag(xsx>
s))�1

log(T) > �x. In the case of 1, we will

have:

kxk
2
(
Pt�1

s=1 diag(xsx>
s))�1 ⇡

p
m

Tm+1

where Tm+1 are the total pulls of 1. Since �m+1 =
p
m, the above inequality reduces to:

s
↵
p
m log(T)

Tm+1
>
p
m =)

log(T)
p
m

> Tm+1

so arm 1 will only be pulled a logarithmic number of times in T , which, as with optimism, is not su�cient to
achieve optimal regret.

H Additional Experimental Results

(a) ✏ = 0.0005 (b) ✏ = 0.001 (c) ✏ = 0.005

Figure 4: Regret against time plots for data points in Figure 3

We remark that, when running RegretMED, we do not use the exact constants specified in the algorithm.
These constants are likely somewhat loose due to looseness in our analysis. In addition, we do not run the
computationally e�cient procedure derived formally but instead found that a much simpler heuristic—running
stochastic Frank-Wolfe on the Lagrangian relaxation—works well in practice. We also do not use the precise
value of �max, and instead use an upper bound that can be computed using only knowledge of the arms.

The algorithms we compare against do not contain significant hyperparameters, and we choose reasonable values
for the parameters they do require. In particular, for LinUCB, we use the regularization � = 1.

	INTRODUCTION
	PRELIMINARIES
	MOTIVATING EXAMPLES
	EXPERIMENTAL DESIGN FOR REGRET MINIMIZATION
	Gaussian Width
	Algorithm Overview
	Main Regret Bound
	Computationally Efficient Algorithm
	Pure Exploration with Semi-Bandit Feedback
	Optimization

	EXPERIMENTAL RESULTS
	DISCUSSION AND PRIOR ART
	Action Elimination with Gaussian Width
	Regret Bound Proofs
	Pure Exploration Proofs
	Lower Bound

	Computational Complexity Results
	Algorithmic Approach
	Subroutines

	Main Optimization Proofs
	Miscellaneous Optimization Lemmas
	Convergence Lemmas
	Differentiability Lemmas

	Rounding
	Gaussian Width Results
	Lower Bound for Semi-Bandit Feedback and Optimistic Strategies
	Additional Experimental Results

