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A Action Elimination with Gaussian Width

We first state an algorithm inspired by [Lattimore and Szepesvari|[2020] and prove a regret bound. This algorithm,
while naive, incorporates the TIS inequality to obtain regret scaling with the Gaussian width. Furthermore, the
analysis is simple and helps aid in the intuition of the proof of our main theorems.

For f € {band, semi}, denote:

2
’Y(Afo\)v X) = IEn~N(0,I) sug ITAf(/\)flﬂn
xe

Algorithm 2 Gaussian Width Action Elimination (GW-AE)
1: Input: Set of arms X, confidence 9, largest gap Amax, rounding parameter ¢ € (0,1)
2: Xy X,Aé — 1,
3: while |X,| > 1 do
4: Let \; a minimizer of E,[max, 5, T ANV 2% + max, ¢, ||$H?4(>\)71
€0 = Amax2™", 70 = 2(1+ Qg *(7(A(Ae), Xe) + 25up, g, N1z 5, Log(267/9))

5

6: Ky ROUNDO\E» (TA \ q(C)’ C) R
7
8

Pull arm z k¢, times, compute 6, from this data
: ;’EM — ?E'g\{:r eEX : max,, . g, (2" — I)Tég > 2¢}
9: L+ (+1
10: end while

Here ROUND(A, N, €) is a rounding procedure which takes as input A € Ay, N € N, and ¢ € (0,1) and outputs
an allocation x € NIl such that:

Y(A(K), X) + sup [|2]|% -1 < (14+C) ( V(ATA), X) + sup 2] %0
zeX reX

and ) .y ke = N, solong as N > ¢(¢). From Katz-Samuels et al. [2020] and |Allen-Zhu et al. [2020], we know
such a rounding procedure exists and can be computed efficiently, and that it suffices to choose ¢(¢) = O(d/¢?).

Denote:

2
Vac(As) =sup sup  inf E, [ sup xTAf()\)_l/zn}
>0 YC X, AEDYUL, TEYUT,

where X :={z € X : A, <€}
Theorem 5. For § € {band, semi}, the absolute regret of GW-AE is bounded as:

C2 ('_Yae(Af) + dlog(log(Amax/Amin)/0))
Amin

C1 Amax log(Amax/Amin)d +

with probability at least 1 — § and minimax regret as:

C1 Amax log(Amax/Amin)d + C2 \/(ﬁae (Af) + d IOg(log(AmaX/Amin)/§))T

with probability at least 1 — §. Here c1,co are absolute constants.

If desired, noting that 7, > ¢, 2 which implies that we will have at most O(log(7')) rounds, the 1og(Amax/Amin)
could be replaced with a term O(log(T)), as in Theorem

While this result closely resembles Theorem [1} there are several major shortcomings. First, this algorithm does
not plan as effectively as it only pulling arms with gap less than e;, which could cause it to forego pulling
informative yet suboptimal arms, something Algorithm [1] improves on. In particular, the regret bound stated
for Algorithm [1]in Proposition [I] will not hold for this algorithm. In a sense, this algorithm can be thought of as
being optimistic. Second, it is always the case that ¥(A;) < 4ac(A;j). The parameter J,.(A;j) could be tightened



Experimental Design for Regret Minimization in Linear Bandits

by altering the constant factors in Algorithm [2fso as to guarantee that, on the good event all arms with gap less
than e, for some €, are in X;. However, even with this tightening we will always have (A;) < ¥ac(A45). Finally,
Algorithm [2| does not seem to admit a computationally feasible solution in the combinatorial bandit setting.

Proof. From Proposition [ we will have that:

z (0, —6,) < E,A0,1) lsup x " A(ke) "V %
TEX)

+ \/2 sup [[2]%,,,-+ log(2¢2/6)

ZGX[
< e

for all z € X, simultaneously with probability 1 — §/¢2. The second inequality holds by our choice of 7, and
Kiefer-Wolfowitz and Proposition [9] Let:

Ev (V) = {[(2, 0, — 07)] < &}

where 0, is computed assuming V is the active set in the above algorithm. Then using the following calculation
from lJamieson:

U U Eee(Xe) Z
t=lge, £=1
D

so the good event, that all the arm rewards are well estimated for all rounds, holds with high probability. Assume
henceforth that the good event £ = N3, Nyex £;,¢(V) holds. Following identically the argument from |Jamieson,
we will have that z, € )24 and max, . p, (zs — x)TH* < 8¢ for all /. We assume the good event holds for the
remainder of the proof.

We can now follow the same argument as Lemma 12 of Katz-Samuels et al.| [2020]. Take J C X, for some € and
let A\ € Ay be the distribution that minimizes:

2
max ||z _
nax ] % x)

and A2 € Ay the distribution that minimizes:

E TA A —-1/2,,12
i AQ) )

Let A = 2(A\; + A2). Then we will have that:
2A(0) 1 = A
From this it immediately follows that:

2 2
mase % 5y < 2mase o3 5,0 < 2d

where the last inequality holds by Kiefer-Wolfowitz and Proposition [0} Also:

E, [mag}( 2T AN T2 < QEn[ma)i(xTA()\g)*l/zn]z < 29,40(A)
xTE re

Since X, will always contain only arms with gap less than e for some €, we then have that:

70 < e(1 4 ¢)e; 2(2d10g (262 /8) + Fae(A))
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Using these bounds and noting that [logs(8Amax/(Amin V ¥))] upper bounds the number of rounds, we can
upper bound the regret as:

> AT

reX\{z*}
[ogs (8 Amax/(AminVy))]
<Tv+ > 8eo(re + q(¢) + 1)
=1
[1og2 (SAmax/(Aminvy)ﬂ “
< T+ 8 [1085(8 A/ (Banin V )1 (@) + 1) + > e+ Qe (ae(A), Xr) + 2d10g(2£2/0))
=1
[logs (8 Amax/(Amin V)]
< T 4 8 [1085 (88 mae/ (Dmin V 2)] (4(0) + 1) + > e+ Qe (ne(4) + 2dTog(26/8))
/=1
[1Og2(SAmax/(Aminvy))] ¥4
< T + 8 max [1083 (8 / (Aumin V )] (0(0) + 1) + ) (1t Ox Oae(4) +2d108(26%/5))
ezl max
1 Vae A 2d 1 21 2 16Amax Amin \ J
< Tv + 8Anax [1025 (8 Amax/(Amin V) 1(q(¢) +1) + U0l * Ogi -Og\rz/(u . A

Optimizing this over v gives the final regret of:

8Amax[10gs (8Amax/(Amin))1(g(¢) +1) + \/C(l + () (Fae(A) + dlog(log(Amax/(Amin))/0))T

and choosing v = 0 gives the absolute regret bound. O

B Regret Bound Proofs

Proof of Theorem [2. Throughout we will let R, denote the regret incurred in round ¢, and Ry the regret
incurred from rounds 1 through ¢. We assume A(7) corresponds to the type of feedback received. The first part
of this proof closely mirrors the proof of Theorem 5 of Katz-Samuels et al.| [2020]. We will prove this result
for 7, being a (v, ()-optimal solution to , where we calll a solution to (v, ¢)-optimal if OPT < vOPT + (,
where OPT is the value of the objective attained by the approximate solution, and OPT the value attained by the
optimal solution.

Good event: We will define Sy as the following:
Sri={zxeX : A, <e}
Let 6 = 0/(2k3) and define the events:

Erj= { S]’JepS» [(z—2) T (0 — 0,)] < (1+ Vmlog(1/dx))E, l sup (z — Z/)TA(Tk)_l/Qn] }

2,2’ €S;

o k
€= &k

k=1j=0

Proposition |§| gives that with probability at least 1 — &/k3:

sup [(z—2) T (0 — 0,)| <E,

sup (2 —2')TA(m)"?n
z,2' €S

z,2' €S

< (14 /g5 E,

+ ¢2 a2 = 21 - low(1/04)

sup (2 — Z/)TA(Tk)l/QU]

2,2/ €S,
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where (a) follows by Lemma 11 of Katz-Samuels et al. [2020]. It follows then that P[Ef ;] < 6/k®, which implies
that:
ook o k 5
<3S pr < 33 <o
k=1j=0 k=1 j=0

Estimation error: Henceforth we assume £ holds. We proceed by induction to show that the gaps are always
well-estimated. First we prove the base case. Let kK = 1 and consider any x € X. Then:

(s =) T (01 = 0.)] < sup_|(z—2")T (61 —6.)]

z,2'€X
1 -+ 7T10g 1/51 |: SupX 2 — 2 )TA(Tl) 1/2n:|
z,2' €
_) 2(1 + Wlog(l/él))En |:Su£(x1 _ Z/)TA(TI)_1/2W:|
ze
(b)
< e/8

where (a) follows by Proposition 7.5.2 of [Vershynin| [2018] and (b) follows since 7, is a feasible solution to (3).

For the inductive step, assume that, for all z € S:

(s —2) (O = 0.)] < er/8

and for all z € S;:
(@ — )T (O — 0.)] < Ay /8

Consider round k + 1 and take x € Sgﬂ. There then exists some k' < k such that € Sg/\Sk/+1. Then:

(2 = 2) T (Ohr1 — 6.)] (2 = ) (i1 — 6.)]

< su
Ag N Z,z’egk/ A,
—NTA —-1/2
< (1+ /7log(1/0k+1))E, | sup (z—2") Almi+1)”/*n
2,2' €Sy A,
[ —2)TA —-1/2,)]
2 2(1+ /7log(1/0k+1))Ey | sup (@ht1 —2) AlTki1) n
_zeSk/ A, |
[ —\TA —-1/2,,]
4(1 4 /7log(1/dk+1))E, | sup (@1 — 2) A(Th+1) n
| 2E€Sy €x+1 + Ayp ]
—ATA —1/2,,]
8(1 + ﬂ]og(1/5k+1))En sup ($k+1 Z) (Tk+1) n
| #€Sk/ €rt1+ Az ]
—ATA -1/2
8(1+ v/mlog(1/0k+1))E, [sup (Trt1 — 2) A(Th+1) 7
2€X €1 + A,
(d) o ATA 121
< 16(1 + /7 log(1/dk+1))Ey, {Sup (r41 = 2) (TAk-i-l) U]
Z€X €rr1+ A, |
(e)
<1/8

where (a) follows by Proposition 7.5.2 of |[Vershynin [2018], (b) follows since A, > €41 by virtue of the fact that
v € Spy, 50 Ay > (erg1 + Az)/2, (c) follows since A, € [egr41, €x] and for any z € Sp/, we will have theta
A, < epr, S0 €1+ Ay > €pr1 + €prr1 > exr1 + AL /2, (d) holds by the inductive hypothesis and Lemma 1 of
Katz-Samuels et al.|[[2020] and taking A. to be the estimate of A, at round k + 1, and (e) holds since 711 is a
feasible solution to . We can perform a similar calculation to get the same thing for = € Si41, allowing us to
conclude that, for all z € Sg11:

(@ —2) (B — 0)] < i /8
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and for all z € §f_ ;:
(e = 2)T O — 0.)] < A8
From this and Lemma 1 of [Katz-Samuels et al. [2020], it follows that for all ¢ and x € S;:

A1§A1+|AI_AJJ|SAw+€Z/2SAw+6€

and for z € S

So the objective of upper bounds the real regret. Further, on the good event, using Lemma 1 from |Katz-
Samuels et al.[ [2020], for any ¢ and x € X', we have:

1 .
(et +A;) <er+A; <

2 (EZ + AZL’) (6)

N W

This implies that if we remove arm z from Xj:
" . 3
Ay >2¢) = Ay +e >3¢g — §(GE+A1) >3e = AL > ¢

So, on the good event, if A, > 2¢y, we will have identified the best arm correctly.

Bounding the Round Regret: From the previous section, we know that on the good event all our gaps will
be well-estimated. From @, it follows that the constraint in is tighter than the following constraint:

T ~1/2
E, |max (ze—x) Alr) i < ! (7)
TeX e+ Ay 256(1 + /7 log(2¢3/4))

so any 7 satisfying this inequality is also a feasible solution to .

Consider drawing some 1 and let z,, be the point € X that achieves the maximum above (if the solution is not
unique, break ties by choose z, randomly from the € X' for which the maximum is attained). If we assume
that z, € Sy, then it follows that:

_oa\T —1/2 _oaT —1/2
(we—2)TAM Py _ (o =) A

glea?}(( €0+ A, €S, €+ Ay
AT ~1/2
< g (F = BTAM)
TESy €
(a) L _oa\T 1/2
O =) A
TES; €5

where (a) follows since we will always have:

_ T —-1/2
max FZ B AD T
z€S; €;

since xy € §; for j < £ by Lemma 1 of [Katz-Samuels et al. [2020]|. Assume that z, € S;\Sk+1. Then:
J n +

(e —a) TA(T) P (z¢ — )T A(T) "2

max = max
TEX €+ Am 2€SK\Sk+1 €0 + Agc

(a) T —1/2

Dy e @D TA@

wESk\Sk+1 €L
AT ~1/2
< e (2= DA
zESy €k

4 — T A(r)-1/2
N (72 )AL

— zE€S; €5

j=1
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where (a) uses the fact that for all z € Sg\Sk+1, Az € [€x+1, €x], and the last inequality follows as above. We
therefore have that:

(e —a)TA(T) "/
E
K I;lea)){( T AW

Let A%™ be the solution to:
A8V = arg min B, [max(z, — z)TAN) Y 2]
AEAS; T€S;
Let 7= (230 78" and 78" = 655367 (A)e; 2(1 + /7 log(203/6))2A%™. Then:

E, [maxges, (z — )T A(XEY)~1/2
E, |max(e — 2)T A(rE) 12| = n [maxges, (@ — x) TANE") "1/ 2]

z€S; Tjgw

7 6 E, [maxweg (o — l‘)TA()\gw)_l/Q ]

V&G 256 1+ /mlog(263/0))
<
256(1 + \/Wlog (203/4))

Given this:

(1

¢ 1 ¢ 1
2:: 6— {max (z¢ — x)TA(f)l/zﬂ} < - Z : [I%%X(.’Eg - ﬂf)TA( gw) 1/2

z€S;
j:

—~

1 1
< = -
_E ‘€

||M~

256(1 + \/ﬂlog (203/6))
256(1 + \/ﬂlog(263/5))

where (a) holds by the Sudakov-Fernique inequality (Theorem 7.2.11 of [Vershynin| [2018]). Thus, 7 satisfies (7))
and so is a feasible solution to (3). Let 7; be the optimal solution to (3)), then:

Z (€(+A T€Z<Z eg+A T$<2364—|—A Z3A Ty + 3€T

reX zeX reX rzeX

The first term can be bounded by the regret bounded given in Lemma [2}

c2l? log(¢/8)7(A)

€¢

Z SAw'fw < ClAmaxfd +

zeX

By construction we’ll have that:

4
T=cY g A1+ /7log(23/6))* < cy(A)(1+ \/mlog(263/5))%€, >
k=1

so: c7(A) log(26°/6)

€¢

3eT <
Recalling that 74 is a (v, {)-optimal solution to , the above implies that:

cal?log(€/8)7(A)

€¢

S 2+ Ad)e < (L+v) Y 2+ A, + (< (1+v) (clAmaXEd +

zeX reEX

)+< )

We in fact play ay, as this will attain the same objective value and so the same regret bound. However, oy may
not be integer, so we will pull every arm [ay ;| times. Note that the rounded solution still meets the constraint
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from (3] . Assume we are playing the rounded solution given by Lemma |1} ' then rounding the solution will incur
additional regret of at most Apaxny. Since Yy 2(e + A «)Tz upper bounds the real regret of playing 7., we’ll

have:
cal? log(£/8)7(A)
€

Re < (1+v) (clAmaXEd + ) + Amaxnj + ¢

We can then bound the regret incurred after ¢ stages as:

+@wm$mwm

4
R1:£ S Z(l -+ I/) <01Amaxkd > + ZAmaxnf + KC
k=1

c2(1 +v)k?log(£/5)7(A)
= ° ©)

<1 (1 + 1) Apaxl?d 4+ LA paxn; + ¢ +

¢
< 61(1+1/)AmaX€ d + CAmaxns + €0 + c2(1 +v) log(€/6)7 Z K22k
k=1

ca(1+v)2log(€/8)7(A)

< e1(1 + V) Apaxl?d + (A paxns + ¢ +
€

Minimax Regret: Denote the objective to at round /¢ evaluated at 74 by:

fo:= Z 2er + Ay)7oz

reX

By we can upper bound:

fo<(4v) <C1Ama 1+ 22108t/ 5)7(‘4)) +¢

€¢
co(1+ v)0*log(¢/8)7(A) (10)

€¢

<c(l+v)Apaxld+ ¢+
C
=C+ —2
€¢

Let £ be the first round for which:

T€g<C1+7
€

Note that, if ¢, solves this with equality, then:

c, 1 [ac, 2

“=r N T T

is the only non-negative solution. It follows then that:

+*\/&+i —H/OQ
62—2T ™S

Since €7 is the largest such solution, it follows that 2e¢; doesn’t satisfy this inequality so:
Cl 1 402 012 02
2> —+ =\ — 4+ = >/ —
“CoatINT TEENT

1 4T
<L =
e~V Co
Assume that f; < Te, for all £. Using the monotonicity of e, for £ > £, we’ll have:

fg S Teg S TG[S 01 + \/CQT

so in particular:
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Furthermore, by @, we’ll have that the total regret up to round ¢ will be bounded as:

ca(1+v)0%log(l/8)7

€7

Riz < c1(l + ) Amaxl?d + CA maxns + £C +

S Clz+ EAmaxnf + @
€7

< Clg-‘r EAmaX’I’Lf +\/4C,T

So in this case, since by Lemma [3| there are at most fpax(7) rounds, and since fy + Apaxns upper bounds the
regret of round ¢, we’ll have that the total regret will be bounded as:

7?/T S emax<T) (Cl + Ama»xnf + 3 V CQT)

Now assume there is some round such that f, > T, and denote this round as ¢y1.. By construction, it will be
the case that the MLE at this point has gap at most €,_,_, so the total regret incurred from playing the MLE
for the remainder of time will be bounded as Te, Further, note that by :

mle *

Cs

Limle

<Ci+

mle —

Tefmlc < fe

By definition ¢ is the first round where Te, < Cy + %2, so it follows that £pe > £. We can then upper bound
the total regret incurred as:

l Lmie—1
RT < Z f@ + Z f@ + Telmlc + gmleAmaan
£=1 (=041

Since by definition we’ll have that f, < Te, for £ € [E+ 1, 4m1e — 1], the second term can be bounded as:

limle—1 linle—1
S f<T Y e < (fme — €= 2)Te; < (bnie — £ — 2)(C1 +1/CaT)
(=041 L=0+1

Finally:
Tep,. <Tep < C1+VCoT

Combining this, we have that:
RT S Emax(T) (Cl + Amaxnf + 4\/ C2T)

Absolute Regret: Assume:

Cy Cs
T -
~ Amin " AI2nin

then we’ll have that €; < Apnin, so the algorithm will exit before reaching round ;. In this case, since there are
at most [log(4Amax/Amin)]| stages by Lemma and since, as noted above, on the good event, once |Xy| = 1, we
will have identified the best arm and so will incur 0 regret for the rest of time, @ gives:

RT S Cc1 (1 + V)Amax logQ(Amax/Amin)zd + ﬂog(4Amax/Amin)—| Amaxnf + (log(zlAmax/Aminﬂ C

. 21+ )7(A) log(log(Amax/Amin) /0) 1085 (Amax/ Amin)”
Amin
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By definition, it will always be the case that e, _,. > Anin, if it exists, as we would have otherwise exited the
algorithm already. By @, we’ll then have:

Rr < Rip, + Tee

S Cl(1 + V)Amax 1Og2(Amax/Amin)2d + |_10g2 <4Amax/Amin)-| Amaxnf + [log(4Amax/Amin)—|C

+ c2(1 +v)y(A)log(log(Amax/Amin)/J) logy (AmaX/Amin)2
€

mle

+ TGZ

mle

(a)

S C1 (1 + V)Amax 10g2 (Amax/Amin)zd + ﬂogQ (4Amax/Amin)—| Amaxnf + ﬂog(4Amax/AminﬂC

+ c2(14+v)y(A) IOg(IOg(Ama:/Amin)/a) log, (AmaX/Amin)2 1O+ %
L ’

mle

2C!
S 26Vl 10g2 (AmaX/Amin) + |—10g2 (4Amax/Amin)—|Amaxnf + A 2

where (a) holds by the definition of £. If round /. is never reached, then the upper bound above still holds, as
we can still bound Ry < Ri.p the regret we would have incurred had we reached £ p,c.

mle

Finally, by Theorem |4 we can choose v = 4, ( = 2, and we will be able to compute the solution efficiently. [

Proof of Theorem[1. The proof of this result is very similar to the proof of Theorem [2] but we include the points
where it differs for the sake of completeness. Unless otherwise noted, all notation is defined as in the proof of
Theorem 2

Good event: Define the events:

Ekj = { sup |(z — z’)T(ék —0,)| <E, | sup (z— 2T A() Y2
z,2' €S; z,2' €S,

+ W max 2= 1Py, 1og<1/5k>}

oo k
€=

k=1;5=0
Proposition |§| implies that P[Ef ;] < §/k* so:
c© k o k S
PET<D D PlERI<D D 3 <30
k=1 j=0 k=1 j=0

Estimation error: Henceforth we assume £ holds. We proceed by induction to show that the gaps are always
well-estimated. First we prove the base case. Let k = 1 and consider any € X'. Then:

(z. —2) T (61— 0.)] < sup_ (2= 2) " (61 — 6.)]
z,z2' €

O N\T —1/2 _ 2
<8, [ sup (o= 7 A) 0] o = B s/

D, [supar — )7 A(m) 0] + | e o1/

©]
< e/8

where (a) follows by Proposition 7.5.2 of [Vershynin [2018] and (b) follows since 7 is a feasible solution to (2.
For the inductive step, assume that, for all z € S:

(e = 2)T (O = 0.)| < x/8

and for all z € S
(20 —2) T (6k — 0.)] < A, /8
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Consider round k + 1 and take z € S;, ;. There then exists some k' <k such that © € Sk \Sg/+1. Then:

(22 = 2) " (41 — 6.)] (2 = ) T (Brsr — 6.)]

< sup
Am z,2' €Sy Az
. I N\T —-1/2 P
<E, z,f}é%k,@ z) A(me41)” +\/2Z’g}g§k, 12 = 2" 1%y y 1 )-1 108(1/ Ok 1)
r . 2
(a) (zh41 — 2) T A1) Y29 120% sy
= 2E, Zsetgl)d A, + 821221(/ Az log(1/6k+1)
®© [ (kg = 2) T A(megn) 2] 1215 sy
< 4E, | su +1/32 max 7“10 1/6
K _zesIZ, A AW | 2€8, (ext+1 + Ag)? 5(1/%k+1)
(2) SE [ ($k+1 —z)TA(Tk_,'_l)*l/Qn \/128 H ||2 Arega) -1 ) g(1/5 )
< sup max ———=~2 1o
K B €r+1 + A | 2€8y (€py1 + AL)? k+1

(Th41 — Z)TA(TkJrl)l/zn} [l ||A(7'Ic+1 -1
< 8K, |su 128 ma 710 1/5
- Leg €1 + A, zejf (ent1+ A2 g(1/0k+1)

@ (Tt _z)TA(Tk+1)_1/277:| (e ya—
< 16E 512 max —— ) og(1/5
B ! EEE €1 + A, nax (1 + A,)2 0g(1/6k+1)

(e)
< 1/8

where (a) follows by Proposition 7.5.2 of |Vershynin [2018], (b) follows since Ay > €41 by virtue of the fact that
r € S5, 50 Ay > (epy1 + Az)/2, (c) follows since A, € [exry1, €] and for any z € Sys, we will have theta
A, < e, S0 €pi1 + Dy > €1 + €1 > exr1 + AL/2, (d) holds by the inductive hypothesis and Lemma 1 of
Katz-Samuels et al. [2020] and taking A, to be the estimate of A at round k4 1, and (e) holds since 7441 is a
feasible solution to . We can perform a similar calculation to get the same thing for x € Sg11, allowing us to
conclude that, for all z € Sk,1:

(@ — 2) T (Brs1 — 0.)] < €x11/8
and for all z € S|
(s = 2) T (Bra1 = 0.)] < Ao /8

From here the remaining calculations on the gap estimates performed in the proof of Theorem [2| hold almost
identically.

Bounding the Round Regret: From @, it follows that the constraint in is tighter than the following
constraint:
(g —x)TA(T)" Y2 k3 ||A (r)-1
E 2 —_ 203/6
P ——— T\ 2max e Ay 08(26/0) <
so any 7 satisfying this inequality is also a feasible solution to .

256 (11)

From here we follow the same pattern as in the proof of Theorem We handle each term in the constraint
separately. For the second term, note that we can upper bound:

2
X X X
H ||A (r)—* < { H ||A (r)—* H ||A (r)—* }

m max ————— , 1nax

e (e0 + Ay)? zeS, (ep+ Ay)? i<t zes; \SJH (e0 + Ay)?

<9 —2 2 -2 2

> max{ee gg’ijHA(ﬂ 1>f§12<% xeglii‘?jﬂ 1] ()
—2 2 -2 2

< 2maX{ée max |[]f 7)1, maxe; ggllxllm)l}

-2 2
< 2maxe;” max 2] % 7)1
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We now choose 7 = (2 E 7;(1) 4 1048576d log (203 /) ZJ 16 2)\kf Xt

maXges, l|z||? A1 By the same argument as in the proof of Theorem I effectively ignoring the second term,
we will have:

, where \¥' is the distribution minimizing

(z¢ — ) TA(T) "V 1
E < —
" ex o+ A, =512
For the second term, by the Kiefer-Wolfowitz Theorem in the bandit case, and Proposition [9]in the semi-bandit
case, we’ll have:

I?gfej gggj ||$||,24(;)—1 < I;(lgag( €

gé%’j Hx”i(cd log(263 /8); 2 \kf) ~1
<; max max ||z||? -

= cdlog(203/68) j<t wes; AN

< 1

= 1048576 log (263 /3)

So:

|12 A7 1
2 A 10203 /6) < —
\/ MK T 1 a2 08200) <
From this it follows 7 is a feasible solution to . Furthermore, by Lemma I, the total regret incurred by playing
0? E§:1 7;(1) is bounded by:
CQ[Q:}/(A)
€
—2 /\kf

c1Amaxld +

and the total regret incurred playing cdlog(2¢3/8) 3¢ is bounded as:

i=15j
cadlog(203)6)
€
Following the same argument as in Theorem [2| it follows that:
es(25(A) + dlog(2636))
€
From here the argument follows identically to the proof of Theorem [4] so we omit the remainder of the proof. [

ClAmaxgd +

RZ S ClAmaxgd +

Lemma 2. Given an £ such that €p > Apin, let M\ be any distribution supported on Sy and for any & set:
=6’

Play the distributions K < ROUND(MA, [1%] V ¢(1/2),1/2) for k = 1,...,¢, where ROUND is defined as in

Section[A] Then the total gap-dependent regret incurred by this procedure is bounded by:

e Aptd + 28
€

Proof. We can think of this procedure as a deterministic variant of action elimination. We can bound the regret
incurred as:

J4
Yo AT <Y elm+q(1/2)+ 1)
k=1

zeX\{z*}

IN

14
Amaxg(q(l/Q) + 1) + Z €LTE
k=1

l
< Apaxl(q(1/2) +1) +5Z e

k:
Amaux

< Amaxl(q(1/2) +1) +£Z

< Aumanl(a(1/2) +1) + 5
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The results on the rounding procedure follow from Katz-Samuels et al. [2020], |Allen-Zhu et al.| [2020]. O

Lemma 3. Given a T, Algorithm [I will run for at most:

lnax (T) == log, (Hm(zeXHLUHz (diam(?()||9||2\/f+ 3)) +1

mingex ||1‘||2

rounds. Furthermore, regardless of T', Algorithm [I will run for at most:

|—1Og2 (4Amax/Amin)—|

rounds.

Proof. Note that 7, must satisfy:

_ TA 1/2 1
E, [max (¢ — ) (ATE) 77} < -
zeX €+ A, 128(1 + /7 log(263/6))
However:
_ TA —-1/2 (a) 1
E, [max (ze — 2) (ATZ) 77] max || A(ry)~Y/? AN
zeX €+ A, V2 v yeX e +A, €+ Ay 9

> i A(Te)_l/z x*A B .’L'mAaX

2 T A T STA VI 2
(;) 1 1 x* Tmax
T V2rmmaxgex [[zll2 |lep + Ay e+ Azmx 9

o1 1 2"l l[Zmaxll2
V271 maxgen ||zl 6£+Am* 6£+A

© 1 L (2l 2ey)
T V2rm maxgex |2 3ep Amax

- 2 <minm€x [zl 1 3 )

T 3V2r7m \maxeex |[zll2 €0 Amax

where (a) follows by Proposition 7.5.2 of [Vershynin| [2018], (b) follows since for any A:

) 2
A = (ma 2]3)1
and (c) follows by (6)). Thus:

. 4(128(1 + /7 log(267/5)))” (mmmean 13 )

= 187

N (mmzex =2 1 3 >

maXgex ||=TH2 € a AmaX

. 2
1 o
_ <m1n cX ||‘rH2 2@ _ 3)

- A% \maxgex [zl

maXg;ex ||$||2 €¢ Amax

where the final equality holds since €, = Apax2~¢. If round £ is the last round the algorithm completes before
terminating, we’ll have that T" > 7, so:

_ 2
. 1 <m1nz€;( [l ot _ 3) — log, (HMX“"GXM”Q (Amax\/f+ 3)) >/

B A1%(1'0\)( maXgex ||Z‘H2 minwEX ||J}||2

The first conclusion follows by Lemma
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For the second conclusion, note that, as we showed above, on the good event we will have that for all z € éfg,
A, < 2¢p. Thus, once € < Anmin/4, we can guarantee that for any x € Xp, A, < Apin/2 which implies that  is
the optimal arm so |X;| = 1 and the algorithm will have terminated. It follows that:

€ = Amax27Z S Amin/4 ==/ S 10g2 (4Amax/Amin)

O
Lemma 4.
Amax < ||0]|2diam(X)
Proof.
Amaxzey*_ maxge -
(0,27 = max) < |10ll2 max [lz —yl|2
O
C Pure Exploration Proofs
For the sake of clarity, we rewrite the pure exploration algorithm (see Algorithm .
Algorithm 3 Computationally Efficient Pure Exploration Algorithm Semi-Bandit Feedback
1: Input: Set of arms X, largest gap Amax, confidence d, total time T
2: X :XUGO :O,KH 1
3: while |X,| > 1 and total pulls less than T' do
4: Ty < argmax,c y 0, 1, €0 ¢ Apax2 ¢
5: Let 7, be a solution to:
arg min Z T
T zeX (12)
o TA —1/2 1
s.t. B, [max (e ) ET) " <
TeX €+ A, 128(1 4 /7 log(263/6))
6: Qy — SPARSE(T[, nf)
7: Pull arm = ay , times, compute ég
8: if MINGAP(0y, X') > 3¢,/2 then
9: break
10: end if . R .
11: Pull arm = [74,] times, compute 6, from this data, form gap estimates A, from 6,

12: {+—0+1
13: end while A
14: return argmax, ¢y z ' 0;

Theorem shows that we can solve in polynomial-time, but note that it is easier to solve approximately
by calling stochastic Frank-Wolfe to solve

- TA —-1/2
inf E, |max (2 — ) A(T) 1
AEA TzeX €+ A,

and the convergence rate shown in Lemma [5| applies.

The MINGAP subroutine (Algorithm, originally provided in [Chen et al.[[2017], is a computationally scalable
method to compute the empirical gap between the empirically best arm and the empirically second best arm. It
uses at most d calls to the linear maximization oracle.

We note that the correctness and sample complexity proofs are quite similar to the proof of Theorem in Katz-
Samuels et al.| [2020], but we include it for the sake of completeness. The main contribution of our paper for
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Algorithm 4 MINGAP

1: Input: X, estimate 0
2! I +— arg max,cy 0z
3: gmin — 00
4: for 1 =1,2,...,ds.t. i€z do
5:
5 — {‘9j JF#i
—00 J=1
6: 0 «— arg max,c T
7. if 07(% — ") < A, then
8: Apin «— 07 (8 — 30)
9: end if
10: end for

11: return A,,;,

the pure exploration problem is a computational method to solve (12) even when the number of variables |X] is
exponential in the dimension.

Proof of Theorem[3. Step 1: A good event and well-estimated gaps Using the identical argument to the
first two steps of the proof of Theorem [2| we have that with probability at least 1 — § at every round k, for all
T € Sg:

(@0 = @) T (Ors1 = 0.)] < e1,/8 (13)
and for all z € S ;:

(@ —2) (s — 0.)] < Ay/8. (14)

For the remainder of the proof we suppose that this good event holds.

Step 2: Correctness. It is enough to show at round k, if zp # x., then the UNIQUE(X,é\k, €x) returns false.
Inspecting UNIQUE, a sufficient condition is to show that (zj — x*)TOk —€; < 0. By and , we have that

(:Ek — (E*)Té\k — € = (l’k — x*)T(ék — 9) — Azk — €k

Ay
< max( Sk,%)*AIk — €

<0
proving correctness.

Step 3: Bound the Sample Complexity. Letting ), = argmax, ., @er, UNIQUE(Z,é\k,ek) at round k

checks whether @ (zr — Z) is at least €, and terminates if it is. Thus, and , the algorithm terminates
and outputs x, once k > clog(Amax/Amin)-

Thus, the sample complexity is upper bounded by

c log(Amax/Amin) c log(Amax/AInin) T 71/2
. (l'k - x) AsemiO‘) 42
agz] < log(Amax/Amin)d + inf E, .y r)[max
P PR S T e

(15)

where we used the fact that the rounding procedure can use O(d) points in the semi-bandit case. Thus, it suffices
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to upper bound the second term in the above expression. Fix A € A. Then,

(-Tk - x)TAsemi(A)_1/2n (LUk - -T)TAsemi<)\)_1/277

EnNN(O,I) [max

]2

2
<
I < Eywio.nmax

reX Ek+é;r(:17kfl‘) €r + Ay
— )T Asemi(\) /%1
< d[E. (e — )" Asemi 2
< Bl = 2
(Z* - xk)TAsemi(A)_l/Qn 2
E, -
+ By N0, [glea)%( ot A, Il
Fix zg € X \ {x.}. The first term is bounded as follows.
(JJ* - Jj)TAsemi()\)_l/zn 2
E
L ey
(.’I}* - m)TAsemi()‘)_l/Qn 2
= ]E ~ 70
n~N(0,I) [xegl\%{);*} max( o+ A, )l
2
(20 — )T AgemiN) Y21, T =20l -
< 8E, . ma + 8 e 16
>~ n~N(0,I) [wEX\{);*} h - Az ] e+ Awo)2 ( )
(zs — x)TAsemi()‘)_l/zn 2
< 8[E,
< 8Enonl, B A, 1
2
T _m|“‘se’“‘(*’fl] (17)
where we obtained line using exercise 7.6.9 in |Vershynin [2018].
We also have that
(e — @) T Asemi(\) 7215 (e = 2) T Asemi V)20 o
Eyn 0,1 [max o :BAI ]° < Eyon(o,r) [max( eke ,0)]
2
Ty — T -
< Bl A i 01
k
2
||x* - xk”Asemi(/\)_l
<ot (15)
Tk
<c¢ max Iz =l iscmi(/\rl (19)
T zeX\{z.} A2
where line follows since 7 , and Lemma 1 in [Katz-Samuels et al. [2020] imply that xx € Skyo.
, , and together imply that
CIOg(F/Amin)
Z [ak,x—l S CIOg(Amin/Amin)[d + "Y* + p*]7
k=1 zeX
completing the proof.
O

C.1 Lower Bound

In this section, we prove a lower bound for the combinatorial bandit setting with semi-bandit feedback. Fix a

model 6 and let v ; denote the distribution of the observations when arm ¢ is pulled. In this setting, at each
round ¢, Z®) ~ N(#,I) is drawn and

70 jeum,
o)y =450 7 cm
0 J & x
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Definition 1. We say that an Algorithm is 6-PAC if for any instance (X, 6.), it returns © € X with the largest
mean with probability at least 1 — §.

Theorem 6. Fiz an instance (0., X) such that X C {0,1}¢ and z, = argmax .z "0 is unique. Let A be a
0-PAC algorithm and let T be its total number of pulls on (0., X). Then,

70 = 2l i
Eg, [T] > log(1/2.49)p* := log(1/2.49) )}ng ;1\1? 0 (@ a)?
fAS fo *

The proof is quite similar to the proof of Theorem 1 in |[Fiez et al.| [2019].
Proof. For simplicity, label X = {z1,...,2,} and z. = 1. Define the set of alternative instances O = {6 :
arg max,c y 270 # r,1}. Let T; denote the random number of times that z; is pulled during the game. Then,

noting that the standard transportation Lemma from Kaufmann et al.| [2016] easily generalizes to semi-bandit
feedback, we have that for any 6 € O,

> Eolr

By a standard argument (see for example Theorem 1 |[Fiez et al.| [2019]), this implies that

§) > In(1/2.46)

1
Ey.[T] > In(1/2.45
0.[T) > In(1/2.40) pin e s~

Vg 1)

Let € > 0. For each k # 1, define

e(k) =0, — [(xl B xk)—re* + E}Ascmi()\)il(.xl — xk‘)
T @ ) AN o - )

Note that
(z) —21) "0 = ¢

showing that %) € O. Note that using the identity for the KL-divergence for a multivariate Gaussian, we have
that

1
KL (vp, ilvgm ;) = 3 Z(e}(ﬂ* — 92
JEx;

_ 1 T 2 (fEl - xk)TAsemi()\)_leje;‘rAsemi(A)_l(fl - .’Ek)
B 2($1€ O +e) Z [(wl - mk)TAsemi()‘)il(xl - xk)]z

JET;

Then, we have that

1
Eo. [T] > In(1/2.46
o. [T} = In(1/ )%12 =4 S A KL(v, ilve )

1
Uy M KL(vg, ilvgon ;)

> 1n(1/2.40) mln max

|21 — il

Asemi(N) 1
= 21n(1/2.46 —
n(1/249) minmax - L0 4 2 NS jen (@1 — @) T Asemi(N) " Lej0] Awemi(N) (21 — 1)

|21 — il

Asemi(A) 1
=21In(1/2.46
B2 e (o 2 (a1 — )™ Ao ()" st () Ao ) (21 — 1)

2
L1 — Tk (V)=
= 2In(1/2.44) Inlnmax I — HASemn(A) !
k1 (zk 0* + 6)2

Since € > 0 was arbitrary, we may let ¢ — 0, obtaining the result. O
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Next, we state and prove a lower bound for the non-interactive MLE: it chooses an allocation {zr,, zr,,..., 2.} €
X prior to the game, then observes y;; = 0. ; + 1, Vi € x5, where n; ~ N(0,1I), and forms the MLE 6; =
T% ZtT=1,ac1t,i=1 Y+, and outputs T = argmax, ¢y z'#. Since the non-interactive MLE may use knowledge of 6,
in choosing its allocation and the estimator and recommendation rules are very natural, we view the sample
complexity of the non-interactive MLE as a good benchmark to measure the sample complexity of algorithms
against. The following lower bound for the non-interactive MLE resembles Theorem 3 in [Katz-Samuels et al.
[2020].

Theorem 7. Fiz X C {0,1}¢ and 0, € R%. Let § € (0,0.015]. There exists a universal constant ¢ > 0 such that

if the non-interactive MLE uses less than c(v* +1og(1/8)p*) samples, it makes a mistake with probability at least
J.

The proof is quite similar to the proof of Theorem 3 in Katz-Samuels et al. [2020], so we merely sketch it here.

Proof. Consider the combinatorial bandit protocol with X C {0,1}? as the collection of sets: at each round
t € N, the agent picks J; € [d] and observes 6, + N(0,1) (see Katz-Samuels et al.| [2020] for a more precise
definition). Let 77 € N and fix an allocation Iy, ..., I7 € [d]. Define

T’ -
(2 = 2) T (s eref,) P,

Yeombi (115 - I17) = Epun(o.n[ sup A ]
zeX\{z.} x
fombi (11, - I17) Iz — iz, er e
Pcombildly -« dT7) = sup 5= s 1s
o veX\{z.} Az

Theorem 3 in [Katz-Samuels et al.| [2020] shows that there exists a universal constant ¢ > 0 such that if ¢ <
Y*(I1y...,I) or ¢ <log(1/6)p*(I1,...,Ir’), the with probability at least ¢, the oracle MLE makes a mistake.

Now, consider the semi-bandit problem and wlog suppose that X = {zi,...,z,,}. Now, fix an alloca-
tion zj,...,x5. € X for the semi-bandit problem. Define \; = %ZSTZI 1{Js = 4}. Suppose that
T < 1/2110g(1/6)p* + 7*] < L max(log(1/8)p*,7*). Then,

< ~F = . * < ~F
I < 7" =miny"(A) <7°(Y)

where

2
* (37* - m)TAsemi()‘)_l/2n
¥\ =E sup .
) ! zeX\{z.} 0 (z. — )

Now, rearranging the above inequality,we have that
c <~ (TN).

Note that the allocation T'A for the semi-bandit problem specifies an allocation Iy,..., I for the combinatorial
bandit problem and the stochastic process (and non-interactive MLE algorithm) is the same on both problems.
Thus, v*(T'A\) can be interpreted as v’ .;(I1,- .., 1) in the combinatorial bandit protocol for some allocation
Iy,..., I, and we may apply the proof of Theorem 3 to obtain that with probability at least J, the oracle MLE
makes a mistake.

O

D Computational Complexity Results

D.1 Algorithmic Approach

In this section, we present the main computational algorithms and results in the paper, culiminating in the proof
of Theorem |8, which immediately implies Theorem [4 For simplicity label X = {z1,...,z,,}. We can always
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find #1,...,%4 € X such that U ,7; = [d] in d linear maximization oracle calls. For each i € [d], create a cost

vector:
U(-i) _ oo =1
J 0 j#i

and set ¥; = argmax ¢ y z v, Thus, by reordering we may suppose that U, z; = [d]. Now, define
A={ eA:\>yVield}

where ¢ < 1/d. We optimize over A due to its computational benefits,e.g., controlling the second partial order
derivatives of the Lagrangian of .

Algorithm [5]is the main algorithm (see Theorem [§] for its guarantee); it essentially does a grid search over the
time horizon variable, 7 € [T]. Note that for a fixed 7 € [T], we have that for all A € A

T Z[ﬁ + éT(f —) A\ =78+T Z éT(i‘ — )y
reX TeEX

and thus we can ignore the term 73. Thus, Algorithm calls Algorithm@to solve for a fixed 7 € [T] the following
optimization problem.

minTt 0" (z — 2)\s 20
niyr 332 ) (20
(7 — )" Agemi(N)™1/2n
— <
st. E, [r;lea/%( 510 (2 —2) <VJTC

To solve the above optimization problem, we convert it into a series of convex feasibility programs of the following
form: 37\ € A such that

T Z 07 (z — )\, < OPT
TEX

T <o

=T (\)—1/2
s.t. E, |max (z-2) 1_4sen_n(>\)
TEX B+4+07 (T —x)

and perform binary search over OPT. To solve each of these convex feasibility programs, we employ the
Plotkin-Shmoys-Tardos reduction to online learning and apply Algorithm [7] a multiplicative weights update
style algorithm. Lemmas [6] and [7] provide the guarantees for the multiplicative weights update algorithm and for
the binary search procedure, respectively.

The Plotkin-Shmoys-Tardos reduction requires a method for solving for arbitrary x1, ks € [0, 1]:

(T — x)TAsemi()‘)_l/Qn

B+0T(z - ) ~Vr0).

min £(K1, Ko;T; A) i= KT 07 (z — 2)\y + Ko(E, |max
AEA(12 ) 1;( ) 2(?716){

To solve the above optimization problem, we use stochastic Frank-Wolfe (see Algorithm . Defining for a fixed
n € R,

(-’E - x)TAsemi()\)_l/Qn

B+0T(z—2) Vo).

L(K1,k2;T; M) = k1T Z é—r(fc — )\ + mg(rxnea%(
zeX

we see that
Eyono,n[L(k1, k23 T3 )] = L(K1, K25 T3 A).

See Lemma [p| for our convergence result on stochastic Frank-Wolfe.
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Finally, we note that each of our algorithms uses a global variable TOL, which for the theory we set to (\/5%)6'.

We note that C scales as - L B and thus a polynomial dependence on 1/TOL results in a polynomial dependence
og(5
on log(1/4).

Algorithm 5 Main

: Input: Tolerance parameter TOL € (0,1), § € (0,1)
ck— 1, T — 2F
: while 7. <7T do

(FEASIBLE, Ak ) <— binSearch(y., z277)

1
2
3
4
5: ke—k+1, 7 «—2F
6
7
8
9

: end while
: if FEASIBLE}, is False for all k£ then
: return ”Program is not feasible”
. end if
10: Ky +— argming {7 > » 07 (z — x) Ak : FEASIBLEy, is True }
11: return (27; ,\; )

5

Algorithm 6 Binary Search (binSearch)

Input: 7 >0, § € (0, 1), Tolerance parameter TOL > 0

LOW <— 0, HIGH +— 274d

(FEASIBLE, \) <— MW7, HIGH

if FEASIBLE is False then
return (FEASIBLE, )\)

end if

while HIGH — LOW > TtoL do > Initiate binary search
A DT LOW-+HIGH
OPT +— Lowmicn

(FEASIBLE, \) «— MW (7, OPT
if FEASIBLE then
LOW «— OPT
else /_\
HIGH <— OPT
end if
: end while
. (FEASIBLE, \) «— MW!(7, HIGH
: return (FEASIBLE, \)

,m) Check if program is feasible

)
’ [log,(2Td/TOL) 41 )

—_ =

e e e e e
A A e 0

5
’ [log,(27d/TOL) 1+1 )

—_
-3
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Algorithm 7 Multiplicative Weights Update Algorithm for Combinatorial Bandits with Semi-Bandit Feedback

(MW)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

TOL2

., R do

7 ) 4 ) ) )+ o)
A «— SEFW ({1, py”, 5%)

Define

) =7y 0" (z —a)\, — OPT
rzeX

ha(AM) = estSup(A"), %) —7C

RO = p{7 i (A0) + pf T ha(A0)

if 2 (A™) > 2T0L then
FEASIBLE +— FALSE
Break

end if

wY-H) - wgr)(l + 77h1(>\(r)))

wérﬂ) — wér)(l + nﬁg()\(r)))

end for -
A = T As _
return (FEASIBLE, ("))

Input: 7 > 0, OPT > 0, Failure probability ¢ € (0, 1), Tolerance parameter TOL > 0

_ d 3 o ; o
p = max(2dT, CW) for an appropriately chosen universal constant ¢ > 0 (see the proof of Lemma |§I)
0 = min(1%,1/2), R «— 19102
FEASIBLE <— TRUE
wgl) +— 1 for i € [2]
forr=1,2,..

> Assume feasible program
> Initiate weights

> Declare infeasible program

> Update weights
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Algorithm 8 Stochastic Frank-Wolfe for Semi-Bandit Feedback (SFW)
1: Input: 7 >0, K1,k € [0,1], 6 € (0,1).

1
- R _ 861/)5/2d
D HSEwW = —op

3: (qr)re(r) € [0,1]% such that ¢, = Ti—l and (py)re(r) € N such that p, = cwé% log(r2/§) for an appropriately
chosen universal constant ¢ > 0 (see the proof of Lemma [5))

[\

4: Initialize A\; € A by setting A, =1/d if i € [d] and otherwise set A1 ; = 0.
5. for r=1,2,..., Rspw do
6: Draw (M, ..., n®") ~ N(0,1)
7 Compute
~ 1 &
vr = — VE(M,@;T;)\MTI‘)
Py ; !

8: Compute

- _ 11 & 1 Mk
iy &— argmax —V,; = — (k170" ;4 Ko — AT =\ ~ 33
£ 27, E B0 @2, k(AZ) (Tt M2
where
)
im — aremax ZiEEJAI E‘Ll";];.L/ Ayt
T %eX B+0T(z—x)
is computed using Algorithm [0
9:
0 i & [d]
¥ i€ ld\{ir}, ir € [d]
(vp); = 1—-(d-1y i=1,
P 1€[d .
i i & 1d
1—dy =1,
10:
)\7'+1 < qrUr + (1 - QT')/\T
11: end for

12: return Apg.,

D.1.1 Subroutines

Algorithm EI, originally provided in [Katz-Samuels et al.| [2020], uses binary search and calls to the linear maxi-
mization oracle to compute

(z—x)TAN) 2
B+07(z—x)

Algorithm [10] estimates

(r — x)TAsemi()‘)_l/zn
zeX B+0T(z— )

-
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Algorithm 9 computeMax
1: Define the following functions

(z—x)TAN) "2y
B+0T(z— )
g\;im;r) = meag)(c xT(A(/\)_l/277 +70) —r(B+ 9Ta:) — fTA()\)_l/Qn

g\smix) =

gimsrx) =2 (AN 2 +r0) —r(B+0Tz) — 2T AN) 2

2: Define
LOW = 0, HIGH = 2

3: while g(\;n : HIGH) > 0 do

4 HIGH <— 2 - HIGH

5: end while

6: while g(\;n;Low) #£0 do

T: if g(A\;n; 2 (HIGH 4+ LOW)) < 0 then

8 LOW ¢— 1 (HIGH + LOW)

9: else
10: HICGH +— % (HIGH + LOW)
11: LOW <— g(A;m; 2’) for some 2’ € arg max, ¢y g(A; n; LOW; )
12: end if

13: end while
14: Return LOW

Algorithm 10 Estimate expected suprema (estimateSup)

Input: A € A, failure probability § > 0, Tolerance parameter TOL > 0, ,
t = clog(1/8) 2

BZypTor?
Draw ny,...,n: ~ N(0,I)
(3—2) " Agomi(\) ~1/2
B+OT (z—x)

Compute gs = maxzex O for s =1,...,t using Algorithm@

1t
return ;> ., gs

D.2 Main Optimization Proofs

For the sake of simplicity, we assume that T is a power of 2, and that the optimization problem is feasible. If the
optimization problem is infeasible, we can determine this by applying stochastic Frank-Wolfe (see Lemma .
For simplicity, we also assume that 0" (Z — ) < Apax < 2d since typically it is assumed that [|f]| . < 1 and whp

H@H = O(1) at every round ¢. Further, note that whenever the algorithm is applied C < 1, and we assume
o0
this henceforth. We introduce the following functions to bound the number of linear maximization oracle calls:

2 d
A(d, B,7,TOL,1/6,1/€) = O(W[dJr log(m)])
d dAmax
B(d, 3,4, T0OL,1/6,1/¢) = O(log(l/fs)m[dJr log( Be )
(dT)? + &
C(da Ba wa TOL7 1/6a 1/6) = T[‘A(da ﬂ7 ¢7 TOL7 1/67 1/6) + B(d> 67 ’(/}7 TOLa 1/57 1/6)]

Note these are polynomial in (d, 8,v,1/ToL,log(1/5),1/£). Our algorithms share a global parameter TOL; it
suffices to set TOL = (‘@%)C. Define

2Td
M =log,(T) 10g2(T70L)~
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We say a random variable X is sub-Gaussian with parameter 02 and write X € SG(0?) if for all A € R

E[e,\(xfra[x])] < 6,\252/2'

The following Lemma provides the convergence guarantee for stochastic Frank-Wolfe in the semi-bandit setting
(see Algorithm [g).

Lemma 5. Let§ € (0,1), £ € (0,1], K1, k2 € [0,1]. With probability at least 1—3 Algorithm[8 returns Aggey € O
such that

L(K1, K2; T3 ARgpw ) < min L(k1, K2;T; A) + TOL
AEA

Furthermore, with probability at least 1 — the number of oracle calls is bounded by

F;
A(d, 8,4, 1/Tor, log(1/6),1/£).
Proof. For simplicity, we focus on the case where k1 = kg = 1 (the other cases are similar). We write £(\) and
L(X\;n) as abbreviations for £(k1, k2; A) and L(k1, ka; A; 7).
Step 1: Bound the number of iterations of stochastic Frank-Wolfe. £()) is convex in A by Proposition
Furthermore, max, ,ca [[A — A'||; < 2. Thus, by Proposition |8 it suffices to show

1. Smoothness: ||[VL(A) — VL(N)||, < L||IA — X[ for an appropriate choice of L

2. Small deviation with high probability: p, is chosen sufficiently large to ensure that with probability
at least 1 — 6/r2

Lq,

|9, - veon)|_ <

Step 1.1: Smoothness. Let A\, \' € A and fix i € [m]. It suffices to show that

0L\ AL(N)
N N,

[ SLIA= Xy

For the sake of abbreviation, define g(\) := BL(/\) By Lemma we have that £()\) is twice differentiable and
that

L) 92L(A;in)
= 1{B
OO [ OO {51
1
_ E[§; e % = arg max EieiAai i Ao/ ]
4(B+6T(z 1) ke(zAZ)Nz; N (Zl:kEmz )‘1)5/2 TEX B+0T(z—x)
where
ZzEwA;E ﬁ
B = {7 : |arg max Liea! Dol |
{n:| B A — T 7 1) | =1}
For any \ € A,
1
0g(N) 3 1 Mk TN S w
| | = [E[- —————= —]l{B} Z = argmax __—enge Te |
04 4(B+07(z - 1) ke(miz);]xmzj (Xieken, M) z€X B+07(z —x)
1
3 1 Mk - ZiEmAz Doatiica! Aat
<E[S—ir—— ————~|1{B} : & = argmax s ]
4(B+07(z-2) ke(ZNE)Na;Na; (Zl:kémz AP z€X B+OT(z—2)

3 d
<EZ
< 45;: |7 |
1

=Gt



Experimental Design for Regret Minimization in Linear Bandits

where we used Jensen’s inequality and ¢ > 0 is a universal constant.
Now, by the mean value theorem, there exists s € [0, 1] such that

9(0) = g(\)| < [Vg(sA+ (1= s)A) T (A = X)]
<HV9(S/\+(1—S) Moo A= NI

/
where the second inequality follows by Holder’s Inequality. Thus,
. /
V(R A) = VL0 M) < 5z A= N,

For the sake of brevity, we write L = d3/? for the remainder of the proof.

FoeT

Step 1.2: Small deviation with high probability. Now, we show that p, is chosen sufficiently large to
ensure that with probability at least 1 — §/r?

Lq,
.

|9 = veoe)|_ < (21)

Recall that

Ve = VL —1))i = [V = VLO-1)]s

Pr

1251 1 M
= *[Z Ty T - = Z ~ a5
P =T IR AN W <N YL
1
1 1 Nk ZZGIAQ? > atiica Aat
_ E - - @ [ S — icx! \x
GErre—m . 2 e W2 TR T B @) }

ke(zAz)N

where
@

Yicrna S

T; = arg max
’ TEX B+0T (T —x)

Note that
L] 1 Nk
o LA, o, (S 2 LY

kez;jNx;

Since

2p W‘W Z )

we then have that by Lemma 2.6.8 in |Vershynin [2018],

¥, — VL)) € SG(P7 0y

2

d
Therefore, since |X| < 2¢ and since p, = ¢ 52232 for an appropriately chosen universal constant, by a standard

sub-Gaussian tail bound follows.

Step 2: Bound the number of linear maximization oracle calls. Next, we bound the number of linear
maximization oracle calls. At each round r, there is one linear maximization oracle call from finding the mini-
mizing direction wrt the gradient over A, but the dominant source of linear maximization oracles at each round
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is due to applying Algorithm [J]several times. Thus, it suffices to bound the number of linear maximization oracle
calls due to Algorithm [0 Define the following event

d
Er = { the kth application of Algorithm [9] requires O(d + 1og(B) + 10g(Amaxék?)) oracle calls}

E =Ny

Then, we have that

o] oo . 3
51n(7r—d) £
= || Pr(& | NiZ = 270 > — >,
r];[l ( ‘ 1;[ 2d7”2 7r—|—% 2d

where we used the independence of each draw of a multivariate Gaussian in the algorithm and Lemma[0] The
number of calls of Algorithm |§| at each iteration is upper bounded by O(prepy ) and, thus, the total number of
oracle calls is upper bounded by

O(Rsw - s [d + 1og<%> + log(Amax Rsrw /€)])

2 d d2

< O(W[dJrlog(ﬁ—é) +log(m)]
d? d

= O(W[dJrlOg(m)])

= A(d, 8,4, TOL,1/6,1/£).
O

The following Lemma shows that the Multiplicative Weight Update algorithm (Algorithm [7]) either finds an
approximately feasible solution or if there is no approximately feasible solution, determines infeasibility.

Lemma 6. Fix T,O/P\T >0 and let § € (0,1). Define
~ (7 — )T Agemi(N) /27
= : = — <
P.={ANeA:E, {gleag 510 (z 1) VTC <€,

73 67(z— )\, — OPT < ¢}

zeX

With probability at least 1 — § — ﬁ, if MW(r, O/P\T) does not declare infeasibility, then MW(r, O/P\T) returns
A\ € Puro, and if MW(r, O/P\T) declares infeasibility, then Py is infeasible. Furthermore, on the same event,
MW(r,OPT) uses at most C(d, 3,1, TOL,1/68,1/€) linear maximization oracle calls.

Proof. The algorithm uses the Plotkin-Shmoys-Tardos reduction to online learning and essentially runs the
multiplicative weights update algorithm (see |Arora et al. [2012]) where there is an expert for each constraint.
Define

=73 8"z~ 2)\, — OPT
zeX
(T — x)TAscmiO‘)il/zn

ha(X) :=E, {rxnea%c B0 (z—2) —V7C

RO () = pha(N) + py ha (V).

At each round r, the algorithm chooses a distribution, pg and p(

the stochastic Frank-Wolfe algorithm to find A(") such that

") over the constraints and the adversary uses

RM(A) < min A (X) + TOL.
PYVN



Experimental Design for Regret Minimization in Linear Bandits

The reward for expert/constraint 1 is A1 (A()) and the reward for expert/constraint 2 is ha(A(™).
Let &, denote the event that \(") = SFVV(p1 ),pg), 3= satisfies

RTM(AM)Y) < min A" () 4 TOL.
reA

uses at most A(d, 8,1, TOL,1/6,1/€) linear maximization oracle calls. Define & = N,.E, Further, define the
following events
T — Agormi( A1) —1/2
) o ) AN
2R TEX B+0T(z—x)
and estSup uses B(d, 8,1, TOL,1/§,1/£) oracle calls}
F=0.F

Fp = {|estSup(A"),, } | < TOL

By Lemmas [5| and [§| applied with & = ﬁ and the law of total probability, we have that

R
51 1
ECUF) <Y PrEfUFNMZIENF) <Y — =0
Pr( 2 x [Pomt _Z:R 27RM 2N

Now, for the remainder of the proof we assume that £ N F occurs.

Suppose that at some round r € [R] Algorithmreturns A such that ﬁ(’")()\(r)) > 2TOL. Then, since F implies
that

~ 0 (7 — 2) T Agemi( A ~1/2p
M (A _ 2O (A < " O\ _g Lsemi <
[P (AT = R < JestSup (MY, 2R) n [r;lea/%( 510G o) | < ToL
we have that on ENF
21oL < A" (AM) < ToL + A" (AT)) < min A" (A) + 2TOL.
AEA
Therefore, it follows that for every A € A,
(z - x)TAscmi()‘)il/Qn T
max(E, |:I$n€a)}é( BT o) —/7C, T; 6 2)Ay — OPT) > 0.

Thus, the algorithm correctly declares infeasibility of the convex feasibility program.

Next, suppose that the Algorithm I returns A\(") such that h(r)()\(r)) < 2TOL at every round r. Then, we show
that the algorithm returns A®) € Py.o.. To apply Theorem @ a standard result for the multiplicative weights
update algorithm, we must show that for any A(") € A returned during the execution of the Algorithm

(N R (M —
max(h (A™), A2 (A")) < p = max(2dT, CWW) (22)
where p is defined in Algorithm [7] We have that
() =73 0" (@ — 2)A) — OPT < 24T

zeX

since 7 < T, OPT > 0, and we assume that 0 (Z — ) < 2d. Furthermore,

o~

ho(AM) = estSup(A(™ —) VTC

(7 — x)TAscmi()‘(r))il/zn
§En[g1€a)>(( 5107 —2) | + TOL — /7C

1 d
< 7B Inil]
ﬁ,(/)l/Q ;
d
- 0/31/11/2
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for a suitably chosen constant ¢ > 0 where we used that fact that ToL = (\E%)c

Thus, we have shown and therefore may apply Theorem @ which implies on £ N F that

5By [magex S AN ] 20 s o)
R - R
< X ha(A™) 4+ TOL
- R
ST R (AM)
R

< 2TOL +
< 4TOL

Now, finally, applying Lemma [7} we have that

3—2) " Acemi(A) 712
Zr E, [maXIGX ( )B+§T(é_x)) T,:| - \/FC

(:E—x) serm( E A(T)) 1/277
E, |max I

< 4ToL
TEX B40T(z— ) B

]—ﬁcs

This shows that A approximately satisfies one of the constraints; showing approximate satisfaction of the
other constraint follows by a similar argument. Thus, we conclude that 2B e Pyow. O

The following Lemma shows that Algorithm |§| approximately solves the optimization problem .
Lemma 7. Fiz 7 €> 0 and let § € (0,1). Let OPT, be the value of

. T,
minT B+0'(z—x)\,
zeX

— AT (\\—1/2
st E, (33 ) i4seriu()‘> n
P B+0T(z— )

}gﬁa

If for all X € A,

(37j - x)TAsemi()\)_l/zn
E, {glea%( R e > /7C + 4TOL.

then with probability at least 1 — 6 — Algorithm@ declares the program infeasible. If

1
log, (T)2¢

(T — x)TAsemiO‘)_l/%?
B {?ea? 5+0 (7 —2) ] Ve

then with probability at least 1 — 6 — Algom‘thmE returns A € A such that

1
log, (T)2¢
T Z 0" (z < OPT, + 4TOL
TeX
E { (2 = 2)T Asori(N) "/
Ui

— < .
ex B10T(z—u) }—ﬁCHTOL

Furthermore, Algorithm E uses a number of oracle calls that is upper bounded by log,(2Td/TOL) -
C(d, 8,4, T0L,1/,1/8).

Proof Algorithm [6] applies Algorlthm!it most 10g2 (2T'd/TOL) times on a using a predetermined set of values
for OPT € [0,27d], which we denote OPT1, .. OPTl Define the event

& = {it MW (r, OPT ;) does not declare infeasibility, then MW (r, OPT ;) returns A € Pyrop
and if MW(r, OPT ;) declares infeasibility, Py is infeasible.}

N {MW (T, O/P\Tl) uses at most C(d, 8,1, TOL,1/6,1/€) oracle calls }
E=n&;.
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where P, is defined in Lemma [6| Then, by the union bound, we have that Pr(£) >1—4¢
occurs for the remainder of the proof.

1
~ T o, (7Y Suppose &

First, consider the case that for all A € A,

- TA‘ (A —-1/2
E, |:max (T — ) Asemi(A) n

_ C+4 .
zeX B+0T(z— ) }>\ﬁ +AToL

Then, on the event £, we have that the Algorithm [6] declares infeasibility of the program.

Now, suppose there exists \ € A such that

(z — x)TAscmi()‘)il/zn
E _
" blea;(( B+0(z—x)

} <V7C.

Note that for any A € A, we have that

T BT @ e =7+ 30 (@ )

reX TeX

and thus the objective does not depend on 5 and 5 can be dropped from the objective. Using the event &, if

— < (7 — )T Agerni(N)~/2n
Q(OPT) :={X e A E, [gleag B0 (z—1)

7387 (z —x)\, — OPT < 410L}
reX

] —/7C < 410L,

is empty, then Algorithm [7| declares the program infeasible; otherwise, Algorithm [7| finds A € Q(@ ). Then,
by a standard binary search argument, the result follows. O

The following Theorem establishes that Algorithm |5 approximately solves the main optimization problem .
It directly implies Theorem

Theorem 8. Let ¢ € (0,1). Suppose TOL = (\@%)C, S min(m, ﬁ), Let OPT be the value of
i 07 (z — )|\ 23
min T D le+0"(z - ) (23)
reX
(ff - x)TAsemi()‘)il/Qn
1. = < .
st By {3?? B+07(z—x) sVre

With probability at least 1 — 6 — 2%, Algorithm E returns (7,\) such that A\ € A, 7 < 2T, and

7Y [e+07(x - 2)]A; < 40PT 42
rxeX
(z — x)TAscmi(j‘)ilmn
E _
" [inea;?( 3+0 (7 —a)

] < VTG
Furthermore, Algorithm [5 uses a number of oracle calls that is polynomial in (d, 3,,log(1/6))

Proof. Step 0. Let OPT be the value of

min T Z B+07(z— )\,

TE[T],NEA X

<VrC.

(:f - m)TAsemi(A)_l/zn
t. E _
S n {Iwnea/%( ﬁ I GT(E _ x)
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and let OPT), be the value of

minT S B+0T(E - 2)

reX

(z — x)TAsemi()‘)ilmn
t. E _
e [m? B+0T(E-1)

] < V7C.

Let &, denote the event that if for all A € A,

—NT \—1/2
E, |:max (T — )" Asemi(N) n

max 510z —2) } > /7,C + 4TOL.

then binSearch (7, b&%) declares the program infeasible and if

= T . —1/2
E, [max (@ — )" Asemi(N) 1%

T B+0 @0 ] < V70

then binSearch (7, ﬁ) returns Ay that satisfies

7Y [B+07(Z — 2)Ara] < OPT7, + 4TOL

zeX
(z — x)TAsemi(S‘k)_l/Qn
— < .
E, knea)); B+0 (7 — 1) < /7C +4T1OL

Further, define & = Ng&;. By Lemma |7l and a union bound, we have that Pr(£) > 1 —0 — 2% We suppose £
holds for the rest of the proof.

Step 1. First, we show that Algorithm [5|returns (7, \) such that

7Y [B407(z - 2)]As < OPT +4TOL
zeX

(T — x)TAsemi(j‘)_lmn —
— < .
Ex {ﬁa? B+07(7—7) s Ve

By assumption the optimization problem in is feasible and, hence, OPT # oo and thus by the event &, the
algorithm finds at least one nearly feasible solution, i.e., FEASIBLE is not False for all k. Let (7., A.) attain the
optimal value in the optimization problem . Let k. such that 7, € [7s,27.]. By event £ binSearch(7y, , logz%)

finds A, such that

T D [B+07(Z — )]k, 0 < OPTy, + 4TOL

zEX
(T — x)TAsemi(j‘k* )71/277 =
_ < .
E, {glea? 5107 2) < \ﬁk*C + 4TOL

Algorithm [5| outputs (7, /\E*)’ which satisfies by Lemma |7] and by construction,

TY BT @@—a)g J=2m Y [B+0T(@—a)ig ] (24)

reX reX
<27, Y [B407(Z - 2)| Ak,
TEX
< 2[0PT}, + 4TOL]
< 20PTy, + 1 (25)

where in the last line we used TOL = (\/E%)C

< 1/8, which bounds the objective value of (7, Az ).
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Next, we show feasiblity of (7, Az ). Observe that

(T — x)TAsemi(;\k* )_1/277

E, I;lea)){( i éT(j; ~ ) < ﬁE*C + 4TOL
< 2’7‘& C
=7C (26)

where we used the fact that 7 = 271@* and TOL = (\@%)C.

Step 2: Relate (;)Ek to ()Npt. Next, we show that
OPTy, < 20PT.

Define the function

FOT) =1 Y [B+07(Z —a)|As

reX

= AT (\)—1/2
s.t. E, [max (7= 2) Asemi(V) n

reX ﬁ + g—r(i' — .’E) :| = \/,FC

Recall that we let (7., As) attain the optimal value in the optimization problem . Let k. such that 7, €
[T«, 27%]. Note that

(*’E - w)TAscmi()\*)il/277 —
E — <./
" [‘J‘ea% B+07(7—2) S VO

Thus,
61571"6* :.f(XkH?k) < f(/\*vi—k) < Zf()‘*77-*) :261\:)Tr7 (27)

where we used the fact that

max (T — x)T/}semi()‘*)_l/Qn
n rzeX B—FQT(.TT—J))

E S\/ECS\/?].C*C.

This proves the claim.

Step 3: Relate oAp/t to opt. Next, we show that

OPT < 20PT + TYdA ax-

Define

and

By the hypothesis, we have that ¢¥d < i and, thus, \ is a convex combination of A\ and A*.

Next, we show that (), 7) are a feasible solution to and show that it is approximately optimal. Note that

Asemi(>\) Z (1 - wd)Asemi()\*)a



Andrew Wagenmaker” Julian Katz-Samuels® Kevin Jamieson

which implies that

1 ~
— AeemiON) T > Ao (V) L
1_ '(/)d seml()\ ) = 5em1()\)

Then, by Sudakov-Fernique, we have that

T —1)" (X)—1/2 T AL () —1/2
EU max (JJ Jf) i4seri11()\) 77‘| < [1 _ wd]_l/ZEn [max (x .73) /}semj()\ ) 77:|

zeX B+0T(z—x) zeX B+0T(z—x)

< VE, [ma/%( (z — 1'>T1ilsemi(>‘*)_1/2"7:|

B+6T(z—x)
<V2r*C
=V7C
showing feasibility (5\, 7). Furthermore, we have that
7Y A0T(@—2)+ B] < 20PT + Fpd Y N[0T (T — x) + ]
zeEX zeX
< 20PT + TYd2A max
< 20pPT +1 (28)
where in the last line we used ¢ = min(m, =)-

Step 4: Putting it together. Putting together , 7 , and , we have that Algorithm returns
(7, ) such that A € A, 7 < 2T, and

7Y [B+07(z—x)]A, < 40PT+2
reX

(z — $)TAscmi(S‘)il/Qn =
Fn [‘?ea% 40 () ] Ve

D.3 Miscellaneous Optimization Lemmas

Lemma 8. Let A € A. With probability at least 1 — § — 2%, Algorithm@ returns [ such that

R (Z — ) T Agemi(N) 7127
_ — <
=By hex B+0T(z—x) | < Tor

and the number of linear maximization oracle calls is bounded above by

dAmax
O(log(l/é)ﬂzw 5[d + log( Be -
Proof. We first show that
(7 — 2) " Agemi(N) 7121 d
prrd B+0T(z— ) © SQ(CW)

Note that

(T — 2) T Asermi(N) /% a
ol < i
| max B+0T(z—x) |—5¢1/2;|77|
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and

WZW € 5(c )

The estimation results by applying a standard subGaussian tail bound. The bound on the number of oracle calls

follows since Algorithm [9|is applied O(log(1/ 5)%) times and by Lemma@amd a union bound. O

The following Lemma shows that the binary search procedure in Algorithm [0]is efficient with very high probability
and it follows immediately from the proof of Lemma 2 of Katz-Samuels et al. [2020].

Lemma 9. Draw n ~ N(0,I) and consider the optimization problem

T arg ma. (:E _ x>TAsemi()\)_1/2n
= X —
Sex B+07(z—x)

With probability at least 1 — Qd , Algomthm[ returns T using at most O(d + log( oo )) oracle calls.

Next, we describe a result on the multiplicative weights update algorithm that follows immediately from Corollary
4 in|Arora et al.|[2012]. Consider the experts problem. The set of events is denoted by P. Suppose there are m
experts. At each round ¢, the agent picks an expert i € [m] and the adversary picks an outcome j* € P and the
agent obtains reward M (i, j!). The multiplicative weights update algorithm mains a distribution D! over the
experts and chooses an expert randomly from D' (see |Arora et al. [2012] for details on how this distribution is
chosen). The adversary may have knowledge of the D! when choosing j¢. The following provides a lower bound
on the expected reward obtained by the multiplicative weights update algorithm.

Theorem 9. Let £ > 0 denote an error parameter. Suppose there are m experts and |M (i, 7)| < p. If the multi-
plicative weights algorithm sets the learning rate as € = min(f—p, %), after T = w, then the multiplicative
weights algorithm achieves the following bound on its average expected reward: for any expert i,

ZtM(ivjt) Zt ( ’.] )
T - T

D.4 Convergence Lemmas

The objective in semi-feedback is convex (by a similar argument to the proof in [Katz-Samuels et al. [2020]).

Proposition 7. Fiz V C R%.

) = oo, meaxv” Aseani(3) )

1S conver.

Proof. Fix A\, x € Al*l and o € [0, 1]. By matrix convexity,

1
diag( 12 < adiag(e=—)Y? + (1 — ) diag(—=———) 2.
Zwex g+ (1= a)kq Zwex Ai Zwex Ka,i
Furthermore, since the above matrices are diagonal,
1
diag ) < [ ding(e———)"/2 + (1 — a) diag(e———) /2.
ZmGX a/\ZD,i + (1 - a)liw,i EzGX )\w,i EIGX Kai
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Then, by Sudakov-Fernique inequality (Theorem 7.2.11 in [Vershynin [2018]),

y) Sup v’y

1
YLaoex oXg,it(—a)rg i /) oy,

f(O[)‘ + (1 - O‘)K:) = Enm«N(O,diag(

.
S By N (0 [ ding(s—L5-—)1/2 4 (1-0) diag(s—L—)1/2]2) SUP 2 1)

2rex Bai

, 1 i
=E,wn@.1) 528 vT[a dlag(ﬁ)lﬁ + (1 — «) diag(

zEX \T,i
< aE,n(o,1) sSup v’ diag(i)l/%7
U ( )’UGV ZJ}GX )\(E,i
+ (1 - a)Ean(OJ) sup vl diag(i)l/%7
vev ZweX Hm,i

=afA)+ (1 —-a)f(x)

veV

Za:EX Kﬂ%i

)2

O

Next, we turn to analyzing stochastic Frank-Wolfe. Although a convergence result for stochastic frank wolfe is
provided in [Hazan and Luo| [2016], our setup is slightly different, so we include a convergence analysis for our
setting for the sake of completeness. The proof is quite similar to the proof in [Hazan and Luo| [2016].

Algorithm 11 Generic Stochastic Frank-Wolfe

1: Input: f:R™ x RY — R, constraint set Q C R™, (p,), € N*, (¢,), € [0,1]*.
2: Initialize wy € Q

3: forr=1,2,...do

4: Draw n1,...,7p, ~ N(0,1)

¥ Compute

- 1 Pr
V,=— Z vf(“’r”?j)
priz
6: Compute

v, = argmin V, v
veEQ

Wr41 S qrUr + (1 - qr)wr

8: end for

Proposition 8. Let f: R™ x R? — R and Q2 C R™. Define f(x) = E,~no,n f(z;n) and define

w* = argminE, f(x;n).
weN

Suppose that sup,, ,cq llw —w'|| < D. Suppose that f is convex, ||V f(x) =V f(y)l

Algorithm E is chosen such that with probability at least 1 — & /72

~ LD,
7. - wsten ] < 22
where q, = kiﬂ Then, with probability at least 1 — ¢,
4L D?

flw) = fw.) < 55

*

< Lz =y, and p, in
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Proof. The proof follows closely the analysis of SFW in [Hazan and Luo| [2016| but uses smoothness wrt ||-||,. We
have that

Fluy) < Flp1)+ 9 F (g )T — )+ ay — ] (29)
2
= f(wrfl) + Qva(wrfl)T(UT - wrfl) + % HUT - wrlei

2.2
S f(wr—l) + QTﬁ;r(UT - wr—l) + qr(vf(wr—l) - ﬁr)—r(vr - wr—l) + %
- - LD2q2
S f(wr—l) + QTV;F(w* - wr—l) + QT(Vf(wr—l) - V’I‘)T(U’I‘ - wr—l) + TT (30)
2.2
= Fr )+ @V e 1) = 0, 1) 4 4 (V1) = V)T (0 — ) 4 2
~ LD?¢?
< flwr—1) + Qva(wr—l)T(w* —wr—1) + ¢ [|Vf(wr—1) =V, . D+ t— (31)

where line uses smoothness (Lemma7 line uses the optimality of v,., and line uses the definition
of the dual norm. Now, define the event

& =¥~ Vst )| < 2O

LE=N,E,

By hypothesis, p, is chosen such that with probability at least 1 — J/r?, H%T — Vf(wr,l)H* < %. Therefore,
we have that

sin(md)
T+4

Pr(€) = [[ Pr(& | mizt &) > ] (1 - %) = >1-04.
r=1 r=1

Now, suppose £ occurs. Then, we have that for all r € N,

flwy) = f(we) < (1= g)[f(wr—1) = f(we)] + LD?q7.

The proof is concluded by simple induction. O

The following Lemma shows that Algorithm |8 is an instantiation of stochastic Frank-Wolfe over A.
Lemma 10. Fix v € R™. Let

I := argminv;.

i€[m]
Define
0 i & [d]
¥ i€ [d\{I}, I'eld]
M= \1-(d-1y i=1I
P 1€ d
el 1¢1d
1—dy 1=1
Then, \ € arg min, o x vl
Proof. This follows by a straightforward case by case analysis. O

The following is standard smoothness Lemma from convex optimization.
Lemma 11. Let f: R™ — R satisfy |V f(x) = Vi, < L|x—vyl|. Then,

F() — F() ~ V1) () < 5 o — ol

Proof. This is standard (see [Bubeck [2014]). O
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D.5 Differentiability Lemmas

In this section, we show that L(k1,ke; ) is twice-differentiable wrt A\. We set k1,ke = 1 for simplicity and
write £()) instead of L(k1,k2;7; ) for the sake of brevity. The following Lemma shows that L£(k1,ka;7; ) is
differentiable wrt A.

Lemma 12. Fizi € [m], and X € A. Fiz n € R? such there exists a neighborhood of n such that

M4
z/ica! Ay

~ ZiEQ’zAw >
T = arg max —
%eX B+60T(z—x)

Then,

OL(Nm) o1, 1 1 il
——— =70 (T —x) - = N )\ \3/2
o, ) TG e 2, v, W

Furthermore, L(X) is differentiable at every \ € A¢ and

OL(A OL(N\;m
2N By P 1B
where
Ziei’Aa: S »7]1' A
B — . _ z!'icx! Na! — 1 )
v argma SIS )

Proof. The calculation of %ﬁlf") follows by the chain rule.
Fix A € A. Since \ € A, we have that Ascmi()\)’l/2 is full rank.

Step 1: First, we show that £(\;7) is Lipschitz with an absolutely integrable Lipschitz constant. Define

xTAsemi(A)71/2

Tma) =73 07 (& —2)Ag + ( 1_ o).

o
TeEX ﬂ+0 (I {ZZ)
and note that
6J(A7n7x) T/~ 1 1 Nk
= 1=10 @—zi) - s \
2y ST, s,
. 1 1 |7k
<07 (@ —x)| F 2
| ( z)| 2 [5 + GT(x _ x)] ke(a:%)ﬂwi ¢3/2
AT (= 11 |7 |
—I— J— . —_— P—
< |0 (l’ x1)| + QB ke(AZ V 1)[}3/2 T Cn
TZAz)Nz;

Let A, N € A. Thus, by the mean value theorem, we have that for all x € X,
[T Asms2) = T(Asms )] < Cp A= N1,
Since L(A;n) := maxgzex J(A;n; ) and the maximum of C)-Lipschitz functions is C,-Lipschitz, we have that

[L(Asm) = L) < Cy[]A = NIy

Step 2: Now, we show that the partial derivatives exist. Define the event

(7 — )" Agemi(N)~1/2

n _
B4+0T(z —x) =1k

By = {n:|argmax
zeEX
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Since Asemi()\)_l/2 is full rank and each

. r

B+0T(z—x)
is distinct, if 5 ~ N(0,I), then with probability 1 Bj holds and £(A;n) is differentiable at A.
Since L(\;n) is C,-Lipschitz (because A € A, we have

LN+ esh;n) — L(A;m)
h

| | <Gy

Since in addition EC,, < oo, by the dominated convergence theorem,

LA+ eih;n) — L(An) LA+ eih;n) — L(An)

hlinoE[ h I= th)no]E[ h 1B

=E[VL(\n) e;1{By}]

where the last equality follows since on By and A\ € A, W exists. Thus, the partial derivative agy\) exists

at every point \ € A and
OL(N)
o\

=E[VL(\; 1) "e; 1{Bx}]

Step 3: We claim that the partial derivative is continuous in A € A: which would show that that £(\) is
differentiable at every A € A Munkres) [2018]. Let A be a sequence in A such that A(™ — . Note that since
A e A we have that

) . 1 |77k |
V) e By} =)l e Y

k€(zAZ)Nx;

for an appropriate universal constant ¢ > 0, which has finite expectation. Further, since A(") € A, the calculation
showing that £(\;7) is Lipschitz in X implies that Agemi(A\)~'/? is Lipschitz in A, s0 Agemi(A™)~1/2 can be made

Toa) T Ao (A) Y/
(E=2)  Aremi(N) 2’7\ =1, this implies that:

arbitrarily close to Agemi(A)71/2. If | arg max, ¢ )

(z - xn)TAsemi()‘)il/zn > (z — x/)TAsemi()‘)ilmn
B+0T(z—x,) - B+0T(z—a')

+ €,

for some €, > 0, x, the unique value the argmax is attained at, and 2’ # x,. As we can make A{,‘enﬁ()\(’”‘))_l/2

arbitrarily close to Asemi(/\)_l/ 2. it follows that for large enough n, we can guarantee:

(7 = 2) "Asemi A) 2y (7 — ) T AsemiA) 2

B+0T(z — ) - B+0T(z—a) /2

so the maximizer will be unique. As this is true for all n € B,, it follows that lim,_~ Byx C Byx. An identical
argument implies By C lim, 00 By, 50 limy, 00 Byy = Bx. Then, by the dominated convergence theorem,

lim E[VLO™;n) T eil{ By }) = B lim VLA™;m) Te1{Byon )]

n—-ao0o

=E[VL(\;n) "e;1{B}]

where in the last line we used the continuity of VL(X;7)"e;1{Bx} in A on A for a fixed . Thus, the partial
derivatives are continuous, proving differentiability at every A € A.

O
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The following Lemma shows that L£(k1, ke; 7; A) is twice-differentiable wrt A.
Lemma 13. L()\) is twice-differentiable at every A € A and

825()\)_ 9?L(\;n)
NN, [ INON; LB

where
(T — x)TAscmi(A)il/Qn
B+0T(z— )

=11

By = {n:|argmax
TeEX

Proof. Step 0: Setup. From Lemma , L(A) is differentiable at every A € A¢. Therefore, it suffices to show
that VL(A) is differentiable at every A € Ad). It suffices to show that the 2nd order partial derivatives exist and

are continuous. For the sake of abbreviation, define g(\) := ag)(\j) and g(\;n) = %}f\;n)' Note that we have that
dg(X;m) 3 1 Tk
I{Bx} = I{Bx}; AT (32)
8)‘1 4 (ﬂ + QT(m - 33) Z (Zl:kexl )\1)5/2

kE(ZAZ)Na; N
> A %
~ 1€ETAx A
Where T = arg max — i.LEm x
zEX B+0T(z—x)

(33)

To begin, we show that the 2nd order partial derivatives exist using a truncation argument. Let ¢ > 0. Fix
A € A. Define
i

ZiEiAx >

!l A ’
. —_ _ x' e T
q(;m) 510 (@ =)
Define
/. N
B, ={n: i =argmaxgq(z;n), Va' # & ala’s ) < al&in) _ o}
veX Il 171l
Note that
wlino B, = Bj.
Step 1. First, we show that
: g(A+ hei,n) — g(An) _ [ 99(Am)

Define
r—x
Vi=—mrc——
B+0T(z—x)
for x € X. Note that since for any fixed z € X, Asemi()\)’l/sz is Lipschitz in A on A, there exists Ly depending
on v, 3, Z such that for all z € X
A2 = AsemiA+ hei) 2Va | < Lyh.

Let hpin = ﬁ. Let h € [0, hpmin]. Let n € R such that it satisfies B, and let & = argmax,cy q(x;7). Let
x € X\ {z}. Then,

@ v] A(X+ he;)"?p S vl A(N) "2
4 ll5 - 715
T —1/2
S AN~y

[l
Be ol A+ he) Y2
oK Il
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which implies that # = arg max, ¢y v, A(A+ he;)~Y/2n. Thus, on By, for all h € [0, hmin], arg max, ¢y v, A(A+
he;) /21 is the same and hence g(\+ he;, 1) = Va A(A+ he;) ™/ 2n for all h € (0, hynin) and is thus differentiable
for all h € (0, Aypin). Thus, by the mean value theorem, we have that

g\ + hei,n) — g(A,n) dg(X+ hei;n)

( h JI{B,} = 3—/\11{390}
for some A’ € (0, h]. Inspection of shows that using A € A
dg(Xin)
Ol [CASARI 2
125

Thus, we may apply the dominating convergence theorem to obtain

: g(A+ hei,n) —g(A,n) o | (A + R m) — g(Am)
lim & | L JI{B,}| =E | lim ] J1{B,}
9g(A,n)
=E 1{B
Step 2. Now, we show that
: 9g(X,m) 9g(A,m)
lim E 1{B =E 1{ B,
) [ oy, B} oy, UBM - (35)
Define
i
3 1 I’I]k| B Z’LGIAI D oatiica! Aot
Zm) == ——————— Where = argmax Sas

4 (ﬁ + GT(SC - .’L‘) ke(mAfZ)mziﬂmj (Zl:kEM )\l)d/z reX 6 + a (.’L‘ - .’L’)

Note that for every ¢ >0
9g(A,m)
1{B,} <Z
(B < Z()
and EZ(n) < co. Therefore, by the dominating convergence theorem,
. 9g(A,n) ol 89( ) 89(A 77)
Step 3. Now, we show that
. g\ + hei,n) — g(A,n) o g\ + hei,n) —g(A,n)
Jim fiy ! 1(B,)] = tm E|( L JL{B.) (36)
By step 1, for every ¢ > 0,
: g(A + hei,n) — g(An) 9g(A ) 9g(A, 77)
= <
e ! (8. =2 |2,y <5 || 220 Dagn,y
for some constant C' > 0. Therefore, by the bounded convergence theorem for limits, we have that
lm i E [(g(/\ + hei,n) — g(A,n) J1{B. }} = lim lim B [(g(A + hei,n) —g(A,n) )I{Bv}]
©—0 h—0 h —0¢—0 h

More formally, consider some sequence @, h, such that ¢,, - 0 as m — oo and h, — 0 as n — oo. Let

Gmn = E [(g()‘Jrh"e;L’n)*g()"") JI{By, }|. If limy, oo limy oo Gp = limyso0 limy, o0 Gy then the result is
proven. Let ¢n = amn — @m n—1 and c,p = 0. Note that for finite m, ¢, is uniformly bounded for all n. Then
the Bounded Convergence Theorem applied to the counting measure gives that:

) o0
lim § Cmn = E lim cpmp
m—o00 m—oo
n=0 n=0
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However, Y | Cmn = IMy_00 Y 1_o Cmn, SO the above implies:
N N
lim lim E Cmn = lim  lim E Cmn
m—00 N—o0 0 N —o00 m—»00 )
n= n=

By construction, we have ZTILO Cmn = AmnN, which proves the result.
Fix h > 0. Define

A+ hei,n) — g(\n)

0
Y (h) = | -

)| 1{Bx}-
Note that for every ¢ > 0

|(g(A + hei,n) — g(\,n)
h

JI{B,}| <Y (h)

and EY (h) < co. Thus, by the dominating convergence theorem,

, (A + hes,n) — g(An) g\ +hei,n) — g(A,n)
Jim b |(FALRD =90y )] | g (SO =IO 5y

This completes the step.
Step 4. Putting together , , and , we have shown that

lim E [(Q(A + hei,Z) —g(\n) )H{BA}} =l lim B [(g(/\ + h€i72) —g(\n) )H{Bw}}
~ i E {89(;;; n) 1{B¢}}
—E [a‘qéi; il ]l{BA}]

Thus, we have that that the second order partial derivatives exist and derived an expression for them. Showing
that the second order partial derivatives are continuous proceeds as in the proof of Lemma (apply the
dominating convergence theorem).

O

E Rounding

Theorem 10 (Caratheodory’s Theorem). For any point y in the convex hull of a set P C R%, y can be written
as a convexr combination of at most d + 1 points in P.

Proof. This is a standard result in convex geometry, see for instance [Eggleston [1958]. O

Lemma 14. Given any A\ € Ay, in the bandit setting, there exists a distribution N € Ay that is (d*> +d + 1)-
sparse and:

Aband()‘) = Aband(A,)a Z )\xﬂf = Z )\;x

zeX reX

In the semi-bandit setting, when X C {0,1}¢, there exists a distribution \' € Ay that is (d + 1)-sparse and:

Ascmi(>\) = Ascmi()\l)y Z Ap = Z )\/Z.T

reX reX
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Proof. This is a direct corollary of Caratheodory’s Theorem. Take A € A x| and let 2, € Rd+d2, which we define
as:

Z\ = [Z Ao vee <Z AmmTﬂ

reX TEX

Define the set:
V= {[m;vec(xx—r)} cxe X} C Ré+d*

For any A, we see that z) lies in the convex hull of V. Caratheodory’s Theorem then immediately implies the

result in the bandit case, since vec (er Y /\z:mT) uniquely determines Apang(A).

In the semi-bandit case, we note that the diagonal of Agemi(A) is equal to ZzEX Azx. Thus, we only need to
consider a d-dimensional space, so Caratheodory implies we can find a d + 1 sparse distribution. O

Proof of Lemma[1. Given some allocation 7, let A the corresponding distribution, and 7 =" cxTe (SOT =TA).

Since we only care about the sparsity of A\, consider 7 fixed. Then, given a solution A to or , the value of
the constraint and objective the solution achieves achieves are fully specified by A;(\) and » ., Azx. To see
the latter, note that >  y(e+Ax)As =€+ > cr 0 (2 —2)As =€+ 072, +07 >, Aoz, Lemma [14] then
implies that there exists a distribution \ that is (d? + d + 1)-sparse in the bandit case and (d + 1)-sparse in the
semi-bandit case that achieves the same value of the constraint and objective of or .

To see the second part of the result, note that if we run the procedure of Theorem |4, we will run stochastic
Frank Wolfe for a polynomial number of steps, each increasing the support of our distribution by at most 1, so
we will obtain an approximate solution that has at most n = poly(d, Amin, T, 1/0) non-zero entries. By Theorem
6 in Maalouf et al. [2019], it then follows that we can compute the (d + 1)-sparse distribution achieving the same
value of the constraint and objective in time O(nd). O

F Gaussian Width Results

Proposition 9.

inf max ||z

AEAx TEX ?“scmi(k)*1 =d (37)

Proof. This proof closely mirrors the proof of Theorem 21.1 of [Lattimore and Szepesvari| [2020].
Let:
f(A) =logdet Agemi(A)

Noting that:

d

p det(A(t)) = Trace <adj(A(t))th(t)>

and A~! = adj(A) "/ det(A) Lattimore and Szepesvari [2020], we can compute the gradient of f()\) as:

d 1

@f()\) = Tt A (V) Trace (adj(Asemi(\)) diag(za ")) = Trace (Asemi(A) " diag(zz "))

Since Agemi(A) is diagonal, we have:

d 2

Trace (Asemi()\)_l diag(xx—r)) = Z =

T _
m =z Asemi()\) 1£C = H'T”isemi(k)*l
i—1 mi
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Note also that, by the identity above, for any A:

> Aol

1243%,;()\)*1 = Z Az Trace (Asemi()\)_1 diag(m:vT))

zeX reX
= Trace <Asemi()\)_1 (Z Az diag(xxT)>>
reX
= Trace (Asemi(A)ilAsemi(A))
= Trace([])
=d

Then, since logdet X is concave and Agemi() is linear in A, it follows that f()) is concave. Applying standard
first-order optimality conditions and denoting A* the solution to , we have, for any \:

0> (FON), A= X"

=3 Nallol e — O Al

2
Asemi(A*) 71

reX reX
= Z )\z||95||,245€mi(,\*)71 —d
zeX

Choosing A to be the distribution putting all its mass on z, we have:

d > ||

2
Asemi(A*) 71
To see the equality, note that the above implies:

d=7 Alal

zeX

Aremi )1 Smaxl2|3neyr < d

Proof of Proposition[2. Let S = {z € X : A, < €} for some fixed € > 0. Therefore, z* € S. Define

S1={(z, 2}, 1.nym) ¢ €{0,1}™ s.t. there exists 2’ € S s.t. Iz’ =z}
Sy = {(#7,,,2) : @ € {0,1}" s.t. there exists 2’ € S s.t. I ppm)\jm2’ = o}

where II4 is the coordinate wise projection onto the coordinates A C N. Then, using the fact that
E[(z*)T A(\)~/2n] = 0, we have that

m n+m
min Efsupz' A\)"29)2 < min E[ su 21 [AN) Y20 + su 2o 5 AN V2] ]2
AEAIS] [weg (W)=l = AEAlS| [11621; Li[AN) T %n] wzegzi:%:ﬂ 24[AN) T n]i]
m n+m
= min [E[su 21 [AN) Y20, + su 2o [AN) Y20,
\min [gg LA g:; 24[ AN/
n+m
+ > @A)V )P
i=1
= min E[ sup :UIA(/\)*I/Qn-q- sup x;—A()\)*l/%F
AEAIST e85, T2€S2
< min_ c[E[ sup o] AN +E[ sup o] AN)1]?]
AeAIS] 1 €S T2E€S2
<

. an! 2 . 1 2 —1
min ¢ [klog(m) max [lz1[qx)-1 + €log(n) max flez|4(s-1]

7 . 2 . 2
< ¢"[klog(m) min max [y [y + log(n) min max [a[|s ()]
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We begin by bounding the first term. Notice that Sy C S since S = {x € X : A, < €} for some fixed € > 0 and
thus if z € {0,1}" s.t. there exists 2’ € S s.t. II},,,)2" = z, then (z,2},,,.,.,,) € S. Furthermore, the span of
the vectors in S7 has dimension at most m + 1 since for any x; € Sy, for all ¢ > m + 1, we have that

[‘Tl - (Glimvx;kn—i-l:n—i-m)]i = 0.

Thus, by the Kiefer-Wolfowitz Theorem |Lattimore and Szepesvari [2020]:

. 2
< 1.
Jnin, max 14— Sm+

and:

min max HxQHZ(A),l <n.
AEAISI z2€S52

Therefore,

min_ E[supz’ A\)"Y29)? < ek log(m)m + £log(n)n].
AeAIST zes

a=(1) ()= G ()

For the second conclusion we set £ = O(1), k = /m, and n = m3/? and apply our regret bound.

To lower bound |X|, note that:

For the regret bound of competing algorithms, LinUCB will scale as O(dvT) = O(m3/2y/T). Given the above
lower bound on |X|, the regret of action elimination will scale as O(m+/T). In the semi-bandit setting, Kveton
m obtain a regret bound of O(m+/T) and, ignoring logarithmic terms, |Degenne and Perchet| |I2016||
obtain the same bound. Other existing works []Combes et al., 2015, Perrault et al., 2020a] do not state minimax
bounds but, using the standard analysis to obtain a minimax bound from a gap-dependent bound, their regret
will also scale as O(m+/T). Note that in this comparison we have ignored log(T) terms and have taken the
dominate term to be the term with leading m dependence that hits the v/, O

Proof of Proposition[3. E,max,ex x" A(X\)~1/27)] is the Gaussian width of the set {A(\)"'/2z : z € X'}. By

Proposition 7.5.2 of [Vershynin| [2018]:

En[anea%(xTA(/\)_l/Qn] < eVddiam({AN) Y2z oz e &x))

and:
diam({A(/\)fl/Qx : x € X})= max ||A(/\)71/2(x1 — x| < 2m€a)>(<||x||A(>\)71

1,T2€X

Taking the infimum over A € Ay, in the bandit feedback case Kiefer-Wolfowitz gives
infaen, maxgex [|2)|an)—1 < Vd, and in the semi-bandit case, Proposition |§| gives the same result. Since X
was chosen arbitrarily, it follows that (X)) < d?.

For the second bound, Exercise 7.5.10 of |Vershynin [2018| gives that:

]En[ma;((zTA 12 < e/log | X|diam({AN) Y2z ¢z e X))
e

from which the result follows immediately. O

Proof of Proposition[f. If X C {0,1} and k = max,cx ||z|1, then X at most contains all subsets of size k and
less so:

Thus, Proposition [3] gives:
~* < edklog d
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Proof of Proposition[5. Consider the Top-k problem in the semi-bandit feedback regime, but augment the action
set by adding the vector of all 1s to it. In this case, then, we can either query a subset of size k, or we can
query every point at once. Assume that 6; > 0 for all 7. Note that by our assumption on 6;, 1 will always be
in the action set regardless of how we are filtering on the gaps. If we put all our mass on 1, we will have that
Agemi(A) = I. Thus:

W(Asemi) = sup inf En[sup xTA()\)—l/QnP
e>0 AEA X, TEX,
<E,[sup = n)?
rEX

< T 2
< Ej[max e 7))
<c (En[wgl/%i(l " nl]? + En[lTﬁH2>

< T 2
<c <]En[wrgg§1|x nl] +d>

<c <k2En[ max |z n|]% + d>

zi|z[l1 <1

< c(k*logd + d)

where the last inequality follows since the gaussian complexity is within a constant of the Gaussian width when
the set contains 0, by Exercise 7.6.9 of [Vershynin [2018|. The result then follows by choosing k = V. O

Theorem 11 (Tsirelson-Ibragimov-Sudakov Inequality Tsirelson et al. [1976]). Let S C R¢ be bounded. Let
(Vs)ses be a Gaussian process such that E[Vs] = 0 for all s € S. Define 0 = sup,cg E[V2]. Then, for all u > 0:

.2
P[|sup Vs —Esup| > u] < 2exp <u2>
s€ES z€S 20

Proof of Proposition[6. The proof in the bandit setting is identical to the proof given in [Katz-Samuels et al.
[2020] and we therefore omit it.

In the semibandit setting, we have that:

7

1 T
0, =06, + ? t_zl Tt,iTt,i

>

so E[6;] = 6; and:

. S 1
E[(0; — 0:)°] = ﬁzxtz =T

iog=1 v

Furthermore, since the noise is uncorrelated between coordinates, we have E[(6; — Hi)(éj —6;)] = 0. Since
z; € {0,1}4, it follows then that:

0 distrigution 0, + Z,l/gn

for n ~ N(0,1). Now consider the Gaussian process V, := x1(0 — 0,) = 27 A~Y/2y for € X. Noting that
E[V2] = 2T A 'z < max,ex ||$H123_17 we can then apply Theorem Hto this process, which gives the result. O

G Lower Bound for Semi-Bandit Feedback and Optimistic Strategies

A policy 7 is consistent if for all # and p > 0, Rj(T) = o(T?). Let T, denote the number of times that z € X is
pulled and T; the number of times that ¢ € [d] is pulled.
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Theorem 12. Let 7 be a consistent policy such that T; > 1 for all i € [d] with probability 1, 6 € R? such that
there is a unique optimal arm in X. Let Gp = E[Zthl diag(xsz, )] where z; is chosen at round t € [T]. Then,

. 2 _ A7
limsuplog(T) ||z]|5-1 < —*
T—00 T 2
for all x € X. Furthermore,
R§(T)
lim sup —2 >c(X,0
P og(r) = )
where
c(X,0) := AAS
( i DT
reX

1 A2
.t —_ <z ¥ X %[
S g EI%GW ) HAS \ {17 }

1ET

Proof. We use a similar argument to the proof of Theorem 1 in [Lattimore and Szepesvari [2017]. We construct
an alternative instance 6’ to obtain an asymptotic lower bound. Let P’ denote the probability measure of the
associated instance (which we will specify shortly). We note that the Divergence Lemma (Lemma 15.1 Lattimore
land Szepesvari [2020]) is easily adapted to the semi-bandit feedback setting. Thus, by a standard argument that
applies the Divergence Lemma and the Bretagnolle-Huber inequality (Theorem 14.2 in|Lattimore and Szepesvari
[2020]), we have that

1
2P(E) + 2P'(E°)

1 2
Sl 1, > o ) (39)

for any event E. Define

Grlle = 2.)(A0 + )

0 =0+ 5
e — B

Note that
(x—2.)"0 =€e>0.

Let R} denote the regret of 7 on the alternative instance 6. Choose E = {T,, < L}. We have that
Rr = ZE[Tw]Aw > AminZP(Tm <T/2).
x B 2 T

Furthermore,

Ry = Y ELIAL > TP, > T)2).

Thus, assuming that € < A, we have that

Fr+ By p

— (E) + P'(E°). (39)

Then, inequalities and imply that

(A, +¢€)? eT

—— 5 — > log(s5——57)-
2w — . ¢ 2[Ry + R}
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Dividing both sides by log(T'), we have that

(A, +¢€)? 1 log(1/2¢)  log(2Rr — R)
2|z — x*||é;1 - log(T") log(T)

Consistency of the policy 7 implies that

2
lim inf (As —; J >
T—00 2 ||z — x*||G;1 log(T")

Rearranging, we have that
A 2
Bt o) > limsup ||z — @.]|5 -1 log(T).
2 T—>00 T

This establishes the first claim in the lower bound. The second claim follows by a similar argument to the
argument in Corollary 2 of [Lattimore and Szepesvari| [2017].

O

Proof of Proposition[I. Proof of lower bound for optimism: Define the following problem instance

1 i=1

l—e ie{2,...,m}

—14e ie{m+1,...,2m—1}
-1 i€ {2m,...,2m+/m}

P =

with X = {{1},...,{m},[2m + /m]}. Let (9 = {i} for i <m and (™Y = [2m + \/m]. Note that A; = € if
i <m and A,,11 =+/m + 1. Then, the optimization problem in Theorem [12| becomes

min Z Ti€ + Tmi1(vVm + 1)

T€[0,00)I¥I

i<m
1
s.t. —— §62/2 Vie{2,...,m}
Ti + Tm+1
e Ti + Tm41 Tm4+1 2

Consider the solution is 7,41 = ;% and 7; = 0 otherwise. This attains a value of

o

")

Now, consider the performance of the generic optimistic algorithm. Let T; denote the number of times that arm
i is chosen. Define the event
€= {lz7 (8 — 0)| < CB(z, {ws}sepp—n))Va € X, Vi € [T]}.
Suppose & holds. Now, suppose that T;,+1 = 4alog(T'). Then,
[ HITE, + OB {w, }2)) < [0 D]T0 4 2CB( ), {a, } D))
< V4 2\ fa el e oa(D)
0.

IN

On the other hand, on £, we have that [x(l)]—r(@ +CB(zW, {2:}:21)) > 1 and hence (™ is pulled at 4a/log(T)
times. Since P(£¢) < £, we have that

E[Tm+1] < 4alog(T)+1 (40)
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Recall that G = E[Zle diag(z;x/])]. By Theorem |12, we have that

2
lim sup log(T) Hx(l) —z® oot < €/2
T

T—>00

for all ¢, which together with implies that
E[T;]/log(T) = Q(1/€*)
for all i € {2,...,m}. Thus,

optimistic
, 0 (1)
lim sup

imsup =T =Q(m/e).

Proof of upper bound for Algorithm [1} From the proof of Theorem [2] we know that, for all £ simultaneously,
with probability at least 1 — §:

Ry <min Z 2(eg + AI>Tw
reX

_ T X —-1/2
s.t. En [max (»W z) ASCIFI(T) 77} < !
TEX €+ Ay 128(1 4 /7 log(2¢3/6))

and a 7 satisfying:

1
max ] <
TEX €+ Ay 512(1 4 /7 log(263/9))
is also feasible for the problem above. Note that if we put all our mass on 1 we will have Agemi(7) = 71, so a
feasible solution to the above problem requires that:

(512(1 + /7 log(263/5))E, {max WDQ <7

zeX €+ A,

E { (20 = 2)" Asemi(7) ™/
n

we can upper bound:

—xz)" / i=1,..,m — i -1)7
E max (mé .'L') n —E max x@n +maX =1,..., 777(‘%@ ) n
zeX €+ A, €0+ € €+ € €+ v/m
1
El|lz, E i — K -1’
< rBlled o) + B max ]+ (- 1)

Since z; is a candidate for the best arm at round ¢, on the good event we must have that A,, < ce;. In particular,
then, we will either have that ||z¢||; = 1, or ¢, = O(y/m), so regardless of ¢, ——E[|z/ n|] < c/e;. By [Vershynin

? €pte
[2018], since each 7; has unit variance, we’ll have E[max;—1, . m |n:|] < ¢y/log(m). Finally, noting that z, — 1 has
at most ¢(m++/m) non-zero entries, (x,—1) " has variance bounded as c(m++/m), so E[|(z,—1) Tn|] < O(y/m).

We conclude that: .
T {max (w—@n] <0 <vlogm)
zeX €+ A,

€¢

It follows that:

I 3 I
> o (1L o)
€

is sufficient. Since this is a feasible solution, we’ll then have that:

N log(¢3/6)1 log(¢3/6)1

Re< Y 2er+ Ay, <O (W N M)W> <0 <m0g</2>°gm>
TEX 14 i

where the last inequality holds since \/m = Apax. Ignoring log factors that do not involve §, and noting that

there are at most log(y/m/e) rounds, the total regret is bounded as:

0 log%/e) M <0 <W4log(¢m/e)> _ 0 (x/ﬁlog(l/&)

2
—1 € m €
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Choosing 6 = 1/T completes the proof.
O

Failure of Thompson Sampling for semi-bandit feedback: We now provide a sketch as to why Thompson
sampling fails on the instance in Proposition [} Intuitively, Thompson Sampling is optimistic in a randomized
fashion, so we would expect it to fail in the same way as optimistic algorithms. Slightly more formally, consider
a typical version of Thompson sampling where at each round ¢, §; ~ N (6;, (Ei;ll diag(zsz[))™1)) where z, is
the arm chosen at time s and x; = argmax, . ngt. Note that with high probability, we will have that:

70 —z0.] < \/a”xH?Z‘;i diag(z,aT))-1 108(T)

so we will essentially only pull an arm when\/ oz||xH?Z log(T) > A.. In the case of 1, we will

T -
o1 diag(asa])) 1

NGD

Tm+l

have:

~

2
12zt dagenary -
where T,,11 are the total pulls of 1. Since A,,+1 = /m, the above inequality reduces to:

ay/mlog(T) log(T)
VIRV ) o T,
Tt svm = vm Z

so arm 1 will only be pulled a logarithmic number of times in 7', which, as with optimism, is not sufficient to
achieve optimal regret.

H Additional Experimental Results

15000 { —%— LinUCB —¥— LinUCB 1500

—¥— LinUCB
1500 —= TS 6000{ —@= TS 1250 | —e— TS
—8— RegretMED #— RegretMED —8— RegretMED
10000 1000
2 © 4000 2
Qg:o 7500 A?:P d:gn 750
5000 2000 500
2500 250
0 0 0
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(a) € = 0.0005 (b) € = 0.001 (c) € = 0.005

Figure 4: Regret against time plots for data points in Figure

We remark that, when running RegretMED, we do not use the exact constants specified in the algorithm.
These constants are likely somewhat loose due to looseness in our analysis. In addition, we do not run the
computationally efficient procedure derived formally but instead found that a much simpler heuristic—running
stochastic Frank-Wolfe on the Lagrangian relaxation—works well in practice. We also do not use the precise
value of Apax, and instead use an upper bound that can be computed using only knowledge of the arms.

The algorithms we compare against do not contain significant hyperparameters, and we choose reasonable values
for the parameters they do require. In particular, for LinUCB, we use the regularization A = 1.
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