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Abstract

In this paper we propose a novel experimen-
tal design-based algorithm to minimize regret
in online stochastic linear and combinatorial
bandits. While existing literature tends to
focus on optimism-based algorithms–which
have been shown to be suboptimal in many
cases–our approach carefully plans which ac-
tion to take by balancing the tradeo↵ be-
tween information gain and reward, overcom-
ing the failures of optimism. In addition, we
leverage tools from the theory of suprema of
empirical processes to obtain regret guaran-
tees that scale with the Gaussian width of the
action set, avoiding wasteful union bounds.
We provide state-of-the-art finite time re-
gret guarantees and show that our algorithm
can be applied in both the bandit and semi-
bandit feedback regime. In the combinatorial
semi-bandit setting, we show that our algo-
rithm is computationally e�cient and relies
only on calls to a linear maximization oracle.
In addition, we show that with slight modifi-
cation our algorithm can be used for pure ex-
ploration, obtaining state-of-the-art pure ex-
ploration guarantees in the semi-bandit set-
ting. Finally, we provide, to the best of our
knowledge, the first example where optimism
fails in the semi-bandit regime, and show that
in this setting our algorithm succeeds.

1 INTRODUCTION

Multi-armed bandits have received much attention
in recent years as they serve as an excellent model
for developing algorithms that adeptly deal with the
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exploration-exploitation tradeo↵. In this paper, we
consider the stochastic linear bandit problem in which
there is a set of arms X ⇢ Rd and an unknown pa-
rameter ✓⇤ 2 Rd. An agent plays a sequential game
where at each round t she chooses an arm xt 2 X and
receives a noisy reward whose mean is x>

t ✓⇤. The goal
is to maximize the reward over a given time horizon T .
An important special case of stochastic linear bandits
is the combinatorial setting where X ⇢ {0, 1}d, which
can be used to model problems such as finding a short-
est path in a graph or the best weighted matching in a
bipartite graph. We consider both the bandit feedback
setting, where the agent receives a noisy observation
of x>

t ✓⇤, and the semi-bandit feedback setting, where
the agent receives a noisy observation of ✓⇤,i for each
i with xt,i = 1.

Existing regret minimization algorithms for linear ban-
dits su↵er from several important shortcomings. First,
they typically rely on naive union bounds, which
yield regret guarantees scaling as either O(d

p
T ) or

O(
p
d log(|X |)T ). Such union bounds ignore the ge-

ometry present in the problem and, as such, can be
very wasteful. As the union bound often appears in
the confidence interval within the algorithm, this is not
simply an analysis issue—it can also a↵ect real perfor-
mance. Second, in the moderate, non-asymptotic time
regime, existing algorithms tend to rely on the prin-
ciple of optimism—pulling only the arms they believe
may be optimal. Algorithms relying on this principle
are very myopic, foregoing initial exploration which
could lead to better long-term reward and instead fo-
cusing on obtaining short-term reward, leading to sub-
optimal long-term performance. This is a well-known
e↵ect in the bandit setting but, as we show, is also
present in the semi-bandit setting.

In this paper, we develop an algorithm overcoming
both of these shortcomings. Rather than employing
a naive union bound, we appeal to tools from em-
pirical process theory for controlling the suprema of
a Gaussian process, allowing us to obtain confidence
bounds that are geometry-dependent and potentially
much tighter. In addition, our algorithm relies on care-
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ful planning to balance the exploration-exploitation
tradeo↵, taking into account both the potential in-
formation gain as well as the reward obtained when
pulling an arm. This planning allows us to collect
su�cient information for good long-term performance
without incurring too much initial regret and, to the
best of our knowledge, is the first planning-based algo-
rithm in the linear bandit setting that provides finite-
time guarantees.

We emphasize that we are interested in the non-
asymptotic regime and aim to optimize the whole re-
gret bound, including lower-order terms. While several
recent works achieve instance-optimal regret, they suf-
fer from loose lower-order terms which dominate the
regret for small to moderate T . Our results aim to
minimize such terms through employing tighter union
bounds. We summarize our contributions:

• We develop a single, general algorithm that
achieves a state-of-the-art finite-time regret
bound in stochastic linear bandits, in combina-
torial bandits with bandit feedback, and in com-
binatorial bandits with semi-bandit feedback. In
addition, our framework is general enough to ex-
tend to settings as diverse as partial monitoring
and graph bandits.

• We show that in the combinatorial semi-bandit
regime, our algorithm is computationally e�-
cient, relying only on calls to a linear maximiza-
tion oracle, and state-of-the-art, yielding a signif-
icant improvement on existing works in the non-
asymptotic time horizon regime.

• We give the first example for combinatorial ban-
dits with semi-bandit feedback that shows that
optimistic strategies such as UCB and Thomp-
son Sampling can do arbitrarily worse than the
asymptotic lower bound, and show that our algo-
rithm improves on optimism in this setting by an
arbitrarily large factor.

• As a corollary, we obtain the first computationally
e�cient algorithm for pure exploration in combi-
natorial bandits with semi-bandit feedback, and
achieve a state-of-the-art sample complexity.

This work can be seen as obtaining problem-dependent
minimax bounds—minimax bounds that depend on
the arm set but hold for all values of the reward
vector—and are similar in spirit to the bounds on
regret minimization in MDPs given by Zanette and
Brunskill [2019]. For some favorable arm sets X , our
bounds are tighter than prior X -independent minimax
bounds by large dimension factors. To the best of our
knowledge, we are the first to obtain such geometry-
dependent minimax bounds for linear bandits.

2 PRELIMINARIES

Let diam(X ) = maxx,y2X kx�yk2 denote the diameter
of X ✓ Rd. diag(X) will refer to the operator which
sets all elements in a matrix X not on the diagonal to
0. eO(.) hides logarithmic terms. 4X := {a 2 R|X | :
kak1 = 1, ai � 0 8i} denotes the simplex over X . We
use � 2 4X to refer to probability distributions over
X and �x to denote the probability on x 2 X . We let
⌧ 2 [0,1)|X | refer to allocations over X and, similarly,
⌧x to denote the weight on x 2 X . We will somewhat
interchangeably use ⌧ to refer to the vector in R|X | and
the sum of its elements,

P
x2X

⌧x, but it will always
be clear from context which we are referring to. If
x 2 {0, 1}d, we will often write i 2 x for xi = 1 and
i 62 x for xi = 0. Throughout, we will let d denote the
dimension of the ambient space and k = maxx2X kxk1.

We are interested primarily in regret minimization in
linear bandits. Given some set X ✓ Rd, at every
timestep we choose xt 2 X and receive reward x

>
t ✓⇤,

for some unknown ✓⇤ 2 Rd. We will define regret as:

RT = T max
x2X

x
>
✓⇤ �

TX

t=1

x
>

t ✓⇤

Throughout, we assume that ✓⇤ 2 [�1, 1]d. We con-
sider two observation models: semi-bandit feedback
and bandit feedback. In the bandit feedback setting,
at every timestep we observe:

yt = x
>

t ✓⇤ + ⌘t

where ⌘t ⇠ N (0, 1). In the semi-bandit feedback set-
ting, we assume that our bandit instance is combina-
torial, X ✓ {0, 1}d, and at every timestep we observe:

yt,i = ✓⇤,i + ⌘t,i, 8i 2 xt

where ⌘t ⇠ N (0, I). Note that, while we assume Gaus-
sian noise for simplicity, all our results will hold with
sub-Gaussian noise [Katz-Samuels et al., 2020].

In the bandit setting, after T observations, our esti-
mate of ✓⇤ will be the standard least squares estimate:

✓̂ =

✓ TX

t=1

xtx
>

t

◆�1 TX

t=1

xtyt

In the semi-bandit setting, we will estimate ✓⇤

coordinate-wise, forming the estimate:

✓̂i =
1

Ti

TX

t=1,xt,i=1

yt,i

where Ti is the number of times xt,i = 1. We denote:

Aband(�) =
X

x2X

�xxx
>
, Asemi(�) = diag

 
X

x2X

�xxx
>

!
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For convenience we assume the optimal arm is unique
and denote it by x⇤. As is standard, we denote the
gap of arm x by �x := ✓

>
⇤
(x⇤ � x). We denote the

minimum gap as �min = minx2X : �x>0 �x and the
maximum gap by �max = maxx2X �x.

In the combinatorial setting, |X | can often be exponen-
tially large in the dimension, making computational
e�ciency non-trivial since X cannot be e�ciently enu-
merated. As such, much of the literature on combi-
natorial bandits has focused on obtaining algorithms
that rely only on an argmax oracle:

ORACLE(v) = argmax
x2X

x
>
v

E�cient argmax oracles are available in many settings,
for instance finding the minimum weighted matching
in a bipartite graph and finding the shortest path in a
directed acyclic graph.

3 MOTIVATING EXAMPLES

Before presenting our algorithm and main results, we
present several examples that motivate the necessity of
planning and the wastefulness of naive union bounds,
and illustrate how our algorithm is able to make im-
provements in both these aspects.

First, we show that an optimistic strategy cannot be
optimal for combinatorial bandits with semi-bandit
feedback. Consider a generic optimistic algorithm
that maintains an estimate b✓t of ✓ at round t and
selects the maximizer of an upper confidence bound,
xt = argmaxx2X x

>b✓t+CB(x, {xs}
t�1
s=1). We make two

assumptions on the confidence bound CB(·, ·). First,

we assume that P[9t  T, 9x 2 X : |x
>(b✓t � ✓)| >

CB(x, {xs}
t�1
s=1)]  1/T . Second, we assume that the

confidence bound is at least as good as a confidence
bound formed from taking the least squares estimate

CB(x, {xs}
t�1
s=1) 

q
↵ kxk

2
(
Pt�1

s=1 xsx>
s )�1 log(T )

where ↵ > 0 is a universal constant. We call this
algorithm the generic optimistic algorithm and let
R

optimism
T denote its regret. Then we have the fol-

lowing.

Proposition 1. Fix any m 2 N and ✏ 2 (0, 1). Then
there exists a O(m)-dimensional combinatorial bandit
problem with semi-bandit feedback where:

lim sup
T�!1

E[Roptimism
T ]

log(T )
= ⌦

⇣
m

✏

⌘
.

and Algorithm 1 has expected regret bounded as, for
any T :

E[RT ]  O

✓
min

⇢p
m log(T )

✏2
,
m log(T )

✏

�◆
.

Thus, treating ✏ as a constant, the asymptotic regret
of the generic optimistic algorithm is loose by a square
root dimension factor, and Algorithm 1 in the current
paper improves over optimism by an arbitrarily large
factor. As it also relies on the principle of optimism, al-
beit in a randomized fashion, Thompson Sampling will
be suboptimal by this same factor on this instance. A
similar instance can also be found in the bandit feed-
back setting. The improvement in Algorithm 1 is due
to its ability to pull informative but suboptimal arms if
the information gain outweighs the regret incurred, re-
ducing the cumulative regret. Optimistic algorithms,
in contrast, will only pull arms they believe may be op-
timal, and so do not e↵ectively take into account the
information gain which, in some cases, causes them to
be very suboptimal.

To illustrate the improvement we gain by applying a
less naive union bound, we will consider the following
combinatorial class:

X =

(
x 2 {0, 1}m+n :

mX

i=1

xi = k,

m+nX

i=m+1

xi = `

)

where d = n + m. This class corresponds to the
Cartesian product of a Top-k problem on dimension
m and a Top-` problem on dimension n. As we will
show, the minimax regret of Algorithm 1 scales with
�̄(A), a measure of the Gaussian width of X , as de-
fined below in (1). In contrast, algorithms that apply
naive union bounds have regret that scales either with
(m+n) log |X | or (m+n)2. The following proposition
illustrates the improvement in scaling we are able to
obtain, as well as the subtle dependence of minimax
regret on the geometry of X .

Proposition 2. For f 2 {band, semi}, on the product
of Top-k instances described above, we have:

�̄(Af)  O(km+ `n), log |X | � ⌦(k + `)

This implies there exist settings of m,n, k, and ` such
that the regret of Algorithm 1 with either bandit feed-
back or semi-bandit feedback will be bounded:

E[RT ]  eO
⇣
d
1/2
p

T

⌘

while algorithms employing naive union bounds will
achieve regret bounds scaling at best as:

E[RT ]  eO
⇣
d
2/3
p

T

⌘
.

In the appendix we discuss in more detail how the re-
gret scales for specific algorithms in this setting. The
regret bound we present for our algorithm in Propo-
sition 2 is in fact state-of-the-art—all other existing
algorithms will incur the larger dimension dependence.
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4 EXPERIMENTAL DESIGN FOR
REGRET MINIMIZATION

4.1 Gaussian Width

Before introducing our algorithm, we present a final
concept critical to our results. For a fixed ✓⇤, let X✏ =
{x 2 X : �x  ✏}, then, for f 2 {band, semi}:

�̄(Af) = sup
✏>0

inf
�24X✏

E⌘


sup
x2X✏

x
>
Af(�)

�1/2
⌘

�2
(1)

Intuitively, �̄(Af) is the largest Gaussian width of any
subset of X formed by taking all x 2 X with gap
bounded by ✏. The following results are helpful in
giving some sense of the scaling of �̄(Af).

Proposition 3. For any X ✓ Rd and f 2

{band, semi}, we have:

�̄(Af)  cmin{d log |X |, d
2
}.

Proposition 4. If X ✓ {0, 1}d, k = maxx2X kxk1,
and f 2 {band, semi}, then, for d � 3:

�̄(Af)  cdk log d.

Note that these upper bounds are often loose. The
following results shows that, in some cases, we pay a
d instead of dk.

Proposition 5. There exists a combinatorial bandit
instance in Rd with k =

p
d where:

�̄(Asemi)  cd log(d).

The Gaussian width is critical in avoiding waste-
ful union bounds, allowing instead for geometry-
dependent confidence intervals. The following confi-
dence interval will form a key piece in our analysis.

Proposition 6 (Tsirelson-Ibragimov-Sudakov In-
equality [Katz-Samuels et al., 2020, Tsirelson et al.,
1976]). Consider playing arm x ⌧x times, where ⌧ is
an allocation chosen deterministically. Assume f 2
{band, semi} is set to correspond to the type of feed-
back received and let ✓̂ be the least squares estimate of
✓⇤ from these observations. Then, simultaneously for
all x 2 X , with probability at least 1� �:

|x
>(✓̂ � ✓⇤)|  E⌘⇠N (0,I)


sup
x2X

x
>
Af(⌧)

�1/2
⌘

�

+
r
2 sup
x2X

kxk2Af(⌧)�1 log(2/�).

4.2 Algorithm Overview

We next present our algorithm, RegretMED, in Al-
gorithm 1. Inspired by several recent algorithms

Algorithm 1 Regret Minimizing Experimental
Design: RegretMED

1: Input: Set of arms X , largest gap �max, con-
fidence �, total time T , feedback type f 2
{band, semi}

2: ✓̂0  0, x1  0, �̂x  0, ` 1
3: while total pulls less than T do
4: ✏`  �max2�`

5: Let ⌧` be a solution to:

argmin
⌧

X

x2X

2(✏` + �̂x)⌧x

s.t. E⌘


max
x2X

(x` � x)>Af(⌧)�1/2
⌘

✏` + �̂x

�

+

vuut2 sup
x2X

kxk2Af(⌧)�1

(✏` + �̂x)2
log(2`3/�) 

1

128

(2)

6: if
P

x2X
(✏` + �̂x)⌧`,x > T ✏` then

7: break
8: end if
9: ↵`  SPARSE(⌧`, nf)

10: Pull arm x d↵`,xe times, compute ✓̂`

11: x`+1  argmaxx2X x
>
✓̂`, �̂x  ✓̂

>

` (x`+1 � x)

12: if MINGAP(✓̂`,X ) > 2✏` then
13: break
14: end if
15: ` `+ 1
16: end while
17: Pull x̂ = argmaxx2X x

>
✓̂`�1 for all remaining time

achieving asymptotically optimal regret [Lattimore
and Szepesvari, 2017], at every epoch our algorithm
finds a new allocation by solving an experimental de-
sign problem (2). This minimizes an upper bound on
the regret incurred in the epoch while ensuring the al-
location produced will explore enough to improve the
estimates of the gaps for each arm, thereby balancing
exploration and exploitation and allowing us to obtain
a tight bound on finite-time regret. We apply the TIS
inequality to bound the estimation error of our gaps,
which motivates the constraint in (2). Critically, this
yields a regret bound scaling with the Gaussian width
of the action set.

We define SPARSE(⌧, n) : R|X |
! R|X | to be a func-

tion taking as input an allocation and returning a new
allocation that is n sparse and approximating the so-
lution to (2). So long as n � d+ 1 in the semi-bandit
setting and n � d

2 + d + 1 in the bandit setting, it is
possible to find a distribution ↵ that is n sparse and
will achieve the same value of the constraint and ob-
jective of (2), see Lemma 1. MINGAP(✓,X ) takes as
input an estimate of ✓ and returns the gap between the
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best and second best arms in X with respect to this
✓. It is possible to compute this quantity e�ciently
with only calls to a linear maximization oracle (see
Appendix C).

While Algorithm 1 takes as input �max, we require
this only to simplify the analysis. In practice, we can
use an upper bound instead without changing the final
regret of our algorithm by more than a logarithmic
factor. Since �max 

p
ddiam(X ), an upper bound

can be obtained without knowledge of ✓⇤.

Key Theoretical Tools: We briefly describe the key
theoretical tools employed by RegretMED. First, we
note that an experimental design based algorithm is
novel in the setting of regret minimization. As we
have shown, this approach allows us to perform prop-
erly on challenging instances by explicitly balancing
the information gain and reward, while also yielding
a computationally feasible solution in the semi-bandit
regime. Our second innovation is the use of the TIS in-
equality to obtain tight concentration bounds. While
we are not the first to utilize this in the linear ban-
dit setting [Katz-Samuels et al., 2020], it previously
was only utilized in the best arm identification setting,
and our work therefore shows how it can be applied
in the regret minimization setting as well. The use
of the TIS inequality yields two important improve-
ments over more naive union bounds. First, it provides
tighter confidence intervals in the non-asymptotic time
regime and therefore yields improved regret bounds.
Second, as we will see, it allows us to write the con-
straint for our experiment design problem (2) in a form
that is linear in the the decision variable. This allows
us to reduce solving the optimization to calls of a lin-
ear maximization oracle, and is a key piece in showing
our algorithm is computationally e�cient.

4.3 Main Regret Bound

We now state our main regret bound. Define

`max(T ) := log2

✓
maxx2X kxk2

minx2X kxk2

⇣
�max

p

T + 3
⌘◆

= O(log(T ))

and `max(✓⇤) := dlog(4�max/�min)e. Let nband = d
2+

d+ 1, nsemi = d+ 1.

Theorem 1. With f 2 {band, semi} set to correspond
to the type of feedback received, Algorithm 1 will have
gap-dependent regret bounded, with probability 1 � �,
as:

c1�max`max(✓⇤)
2(d+ nf)

+
c2

⇣
�̄(Af)`max(✓⇤)2 + d log(`max(✓⇤)/�)

⌘

�min

and minimax regret bounded as:

c1�max`max(T )
2(d+ nf)

+ `max(T )
q
c2(�̄(Af)`max(T )2 + d log(`max(T )/�))T

for absolute constants c1 and c2.

The proof of this result is deferred to Appendix B.
See Section 6 and Table 1 for a summary of how this
bound scales in particular settings of interest. As
a brief comparison, in the semi-bandit feedback set-
ting, considering expected regret, we obtain a leading

term of order O

⇣
d log(T )
�min

⌘
, which matches the lower

bound [Degenne and Perchet, 2016], while the previ-

ous state-of-the-art scaled as O

⇣
d log2(k) log(T )

�min

⌘
[Per-

rault et al., 2020a]. Algorithm 1 is then the first algo-
rithm to achieve the lower bound for arbitrary combi-
natorial structures. In the bandit feedback setting our
minimax regret scales as eO(

p
(�̄(Aband) + d)T ) while

LinUCB obtains regret scaling as eO(d
p
T ) [Abbasi-

Yadkori et al., 2011]. Proposition 3 shows that we are
never worse than the LinUCB regret and, as Propo-
sition 2 shows, we can sometimes be much better. In
Appendix A, we present a modified algorithm which
avoids the factors of `max(T ) on the leading term of
the minimax regret, although it su↵ers from several
other shortcomings.

4.4 Computationally E�cient Algorithm

While Algorithm 1 can be run in settings where X

is enumerable, it becomes computationally infeasible
for very large X , as (2) cannot be solved via a linear
maximization oracle. In place of (2), consider instead
solving:

argmin
⌧

X

x2X

2(✏` + �̂x)⌧x (3)

s.t. E⌘

h
maxx2X

(x`�x)>A(⌧)�1/2⌘

✏`+�̂x

i


1/128

1+
p

⇡ log(2`3/�)

As we show in Theorem 4, we can solve this prob-
lem with a computationally feasible algorithm in the
semi-bandit feedback regime. Running this modified
version of Algorithm 1, we obtain the following regret
bound.

Theorem 2. Assume f 2 {band, semi} is set to cor-
respond to the type of feedback received. Consider run-
ning Algorithm 1 but now setting ⌧` to be an approx-
imate solution to (3). Then with probability at least
1� �, the gap-dependent regret will be bounded as:

c1�max`max(✓⇤)
2(d+ nf)

+
c2�̄(Af) log(`max(✓⇤)/�)`max(✓⇤)2

�min
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and the minimax regret will be bounded as:

c1�max`max(T )
2(d+ nf)

+ `max(T )
2
q
c2�̄(Af) log(`max(T )/�)T

for absolute constants c1, c2.

In the semi-bandit setting, we can apply Theorem 4 to
compute an approximate solution to (3) in polynomial
time, as described below. See Section 6 and Table 1
for an in-depth discussion of how our result compares
to existing works.

Note that the minimax regret guarantees given in The-
orems 1 and 2 depend on ✓⇤ through �̄(Af) and �max.
This dependence can be removed by simply taking
a supremum of �̄(Af) over ✓⇤ and using the upper
bound �max 

p
ddiam(X ). While we state our regret

bounds in high probability, expected regret bounds can
also be obtained by setting � = 1/T .

4.5 Pure Exploration with Semi-Bandit
Feedback

Although our algorithm is designed to minimize re-
gret, a slight modification gives a computationally e�-
cient algorithm for best arm identification in the semi-
bandit feedback setting. In particular, instead of (2)
consider solving:

argmin
⌧

X

x2X

⌧x (4)

s.t. E⌘

h
maxx2X

(x`�x)>Af(⌧)
�1/2⌘

✏`+�̂x

i


1/128

1+
p

⇡ log(2`3/�)

Then we have the following.

Theorem 3. Define

⇢
⇤ := inf

�24

sup
x2X\{x⇤}

kx⇤ � xk
2
Asemi(�)�1

[✓>
⇤
(x⇤ � x)]2

�
⇤ := inf

�24

E⌘

"
sup

x2X\{x⇤}

(x⇤ � x)>Asemi(�)�1/2
⌘

✓>
⇤
(x⇤ � x)

#2

Let � 2 (0, 1). Run Algorithm 1 but replace (2) with
(4) and omit the break on line 7. Invoke Theorem 4 to
e�ciently find an approximate solution to (4). Then,
with probability 1��, the algorithm will terminate after
collecting at most:

c

⇣
[�⇤ + ⇢

⇤] log(`max(✓⇤)/�) + d

⌘
`max(✓⇤)

samples and we will have x̂ = x⇤.

We state and prove a lower bound for this problem
in the appendix, Theorem 6, which shows that this

sample complexity is near-optimal. To the best of our
knowledge, this is the first general, computationally
e�cient, and near optimal algorithm for pure explo-
ration with semi-bandit feedback.

4.6 Optimization

In this section, we provide a polynomial-time algo-
rithm for solving (3) in the semi-bandit feedback set-
ting. The generic optimization problem can be written
as follows for a fixed T 2 N, x̄ 2 X , ✓̄ 2 Rd, and � > 0:

min
⌧2[T ],�24X

⌧

X

x2X

✓̄
>(x̄� x)�x + ⌧� (5)

s.t. E⌘


max
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧C.

The following result shows that there exists a
polynomial-time algorithm that finds an approxi-
mately optimal solution, i.e., it is within a constant
approximation factor of the optimal solution.

Theorem 4. Let opt be the optimal value of (5).
There exists an Algorithm that returns (⌧̄ , �̄) such that
�̄ 2 4X , ⌧̄  2T , and, with probability at least 1� ��
1
2d :

⌧̄

X

x2X

✓̄
>(x̄� x)�̄x + ⌧̄�  4opt+ 2

E⌘


max
x2X

(x̄� x)>Asemi(�̄)�1/2
⌘

� + ✓̄>(x̄� x)

�

p
⌧̄C.

Furthermore, the number linear maximization oracle
calls is polynomial in (d,�, T, log(1/�)).

We briefly sketch the algorithmic approach. We re-
cast (5) as a series of feasibility problems and employ
the Plotkin-Shmoys-Tardos reduction of convex feasi-
bility programs to online learning to solve each of these
feasibility programs using the multiplicative weights
update algorithm. To employ this reduction, we fix ⌧

and develop a solver for the Lagrangian of (5), L(;�),
which we show to be convex and strongly-smooth in
� over a carefully constructed subset of the simplex
4̃X ⇢ 4X . We solve min�24̃X

L(;�) by employing
stochastic Frank-Wolfe, which maintains sparse iter-
ates to overcome the challenge posed by the exponen-
tial number of variables in L(;�). Evaluating the
gradient requires computing for ⌘ ⇠ N(0, I)

argmax
x2X

(x̄� x)>Asemi(�)�1/2
⌘

� + ✓̄>(x̄� x)
,

which can be solved using only linear maximization
oracle calls via the binary search procedure from Katz-
Samuels et al. [2020]. The proof of this result and full
algorithm is given in Section D.
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Figure 1: Resource allocation exam-
ple with d = 5.

Figure 2: Resource allocation exam-
ple with d = 25.

Figure 3: End of Optimism example
varying ✏.

Rounding: The allocation ⌧` is not integer, so must
be rounded. Naive rounding could incur problemat-
ically large regret, so we instead seek a sparse al-
location, which will allow us to round without in-
curring significant regret. Recalling that nband =
d
2 + d+ 1, nsemi = d+ 1, we have:

Lemma 1. Given ⌧` a solution to (2) or (3), there
exists an nf-sparse ↵` which achieves the same value
of the constraint and objective of (2) or (3), respec-
tively. Furthermore, in the semi-bandit setting, if we
run the procedure of Theorem 4 to find an approx-
imate solution to (3), we can compute ↵` in time
poly(d,�min, T, 1/�).

We prove this result and state how this rounded dis-
tribution can be computed in Appendix E.

5 EXPERIMENTAL RESULTS

We next present experimental results for RegretMED
in both the semi-bandit and bandit feedback settings.
Every point in each plot is the average of 50 trials.
The error bars indicate one standard error.

Semi-Bandit Feedback: We compare the computa-
tionally e�cient version of RegretMED against Com-
bUCB1 [Kveton et al., 2015] and CTS-Gaussian [Per-
rault et al., 2020a], a formulation of Thompson Sam-
pling in the semi-bandit setting. As a test instance, we
consider a resource allocation problem where an agent
is tasked with maximizing profit subject to production
cost. In particular, assume there are d buyers, each of-
fering a di↵erent price for a good. At each timestep
the agent can sell to any number of them, but incurs
an additional production cost for each item they sell.
The agent observes a noisy realization of the price the
buyer they sold to is willing to pay and of the produc-
tion cost. In particular, if at time t we sell to k buyers
xt1 , . . . , xtk , we will pay production costs y1, . . . , yk,
where yi is the production cost of producing the ith
good. We can model this problem with X ✓ R2d, ✓⇤,1:d

corresponding to the prices each buyer will pay, and
✓⇤,d+1:2d corresponding to the costs, yi.

We illustrate the result in Figures 1 and 2 for di↵er-
ent values of d. In both cases, RegretMED yields a
significant improvement over CTS-Gaussian and Com-
bUCB1. Note that |X | is growing exponentially in d

and for d = 25 we have |X | ⇡ 3·107. In all experiments
we set � = 1/T .

Bandit Feedback: In the bandit setting, we com-
pare against LinUCB [Abbasi-Yadkori et al., 2011] and
Thompson Sampling. For Thompson Sampling we use
the Bayesian version. We run on the instance de-
scribed in Lattimore and Szepesvari [2017]. In partic-
ular, in this instance ✓⇤ = e1 2 R2 and X = {e1, e2, x}

where x = [1 � ✏, 8✏]. We set � = 1/T and, for each
experiment, use T = 25/✏2, which is the natural scal-
ing for the problem since, as shown in Lattimore and
Szepesvari [2017], optimistic algorithms will require on
order 1/✏2 pulls to determine x is suboptimal. For
completeness, in Appendix H we include the plots of
regret against time for each point in this figure.

As Figure 3 illustrates, the performance of RegretMED
is almost una↵ected by the choice of ✏, while the perfor-
mance of both TS and LinUCB degrades significantly.
Optimistic algorithms are suboptimal on this instance
as they do not pull the suboptimal but informative
arm, e2. Our results indicate that RegretMED is able
to overcome this di�culty by continuing to pull e2 even
when it has been determined suboptimal, recognizing
the information gain outweighs the regret incurred.

6 DISCUSSION AND PRIOR ART

Linear Bandits with Bandit Feedback: Several of
the most well-studied algorithms for regret minimiza-
tion in stochastic linear bandits with bandit feedback
are LinUCB [Abbasi-Yadkori et al., 2011], action elim-
ination, and LinTS [Lattimore and Szepesvári, 2020].
LinUCB achieves regret of eO(d

p
T ), action elimination
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Lower Bound Prior Art Theorem 1 Theorem 2 (E�cient)

Semi-Bandit ⇥
⇣

d log(T )
�min

⌘
eO
⇣

d log2(k) log(T )
�min

+ dk2�max

�2
min

⌘
eO
⇣

d log(T )
�min

+ �̄(Asemi)
�min

+ dk

⌘
eO
⇣

log2(k)�̄(Asemi) log(T )
�min

+ dk

⌘

Bandit ⇥
⇣

d log(T )
�min

⌘
eO
⇣

d log(T )+d log(|X |)
�min

⌘
eO
⇣

d log(T )+�̄(Aband)
�min

⌘
(Not E�cient)

Table 1: Gap-dependent expected regret guarantees in bandit and semi-bandit feedback settings. Note that
lower bounds stated hold only for specific instances (e.g. standard multi-armed bandits with equal gaps).

has regret bounded as eO(
p
dT log(|X |)), and Thomp-

son Sampling has (frequentist) regret of eO(d3/2
p
T ).

Both LinUCB and action elimination rely on wasteful
union bounds—LinUCB union bounds over every di-
rection in Rd, incurring an extra factor of

p
d, while

action elimination union bounds over every arm with-
out regard to geometry, incurring an extra log(|X |).
By leveraging tools from empirical process theory, we
develop bounds that depend on the fine-grained ge-
ometry of X . Indeed, as already stated, our algorithm
achieves an expected regret of eO(

p
�̄(Aband)T ) which,

by Proposition 3, is at least as good as, and in some
cases much better than the bounds of LinUCB and ac-
tion elimination (see Proposition 2). Our bound can
be seen as similar in spirit to the problem-dependent
minimax bound for regret minimization in MDPs given
in Zanette and Brunskill [2019].

Combinatorial Bandits with Semi-Bandit Feed-
back: Significant attention has been given to the com-
binatorial semi-bandit problem. Kveton et al. [2015]
handles the case where noise is correlated between
coordinates, and provides a computationally e�cient

algorithm with a regret bound of eO
⇣

dk log(T )
�min

+ dk

⌘
.

Degenne and Perchet [2016] builds on this, showing
that if the noise is assumed to be uncorrelated between
coordinates, the k on the leading term can be improved
to a log2(k). Although their algorithm is not com-
putationally e�cient, several subsequent works pro-
posed e�cient procedures that achieved similar regret
bounds [Wang and Chen, 2018, Perrault et al., 2020a,
Cuvelier et al., 2020].

We give the first upper bound on regret (Theorem 1)
that matches the lower bound on the leading log(T )
term. Prior works are loose by a factor of log2(k) and,
moreover, have large additive terms that dominate un-

til T � eO(exp( k2�max

log2(k)�min
)), making their bounds es-

sentially vacuous for all practical time regimes. Al-
though our analysis of the computationally e�cient
algorithm does not match the lower bound, its leading

term is dk log3(k) log(T )
�min

in the worst case, and, due to
our smaller additive terms, our regret bound improves
on the state of the art until T � eO(exp( k�max

log3(k)�min
)).

Furthermore, Proposition 5 implies that there exist
instances where Theorem 2 matches the state-of-the-
art in the leading term, up to a single log(k) fac-

tor. While we have assumed the noise between co-
ordinates is uncorrelated, RegretMED extends to the
case where it is correlated by using Acor(�) = ⌃ �
Asemi(�)�1

Aband(�)Asemi(�)�1 for ⌃ an upper bound
on the noise covariance and � denoting element-wise
multiplication.

While prior algorithms have tended to be based on the
principle of optimism [Kveton et al., 2015, Combes
et al., 2015, Degenne and Perchet, 2016, Wang and
Chen, 2018, Perrault et al., 2020a], we have shown that
optimistic strategies are asymptotically suboptimal
(see Proposition 1), motivating our planning-based al-
gorithm. Additional work includes [Chen et al., 2016,
Talebi and Proutiere, 2016, Perrault et al., 2020b]. We
summarize our results in Table 1.

Asymptotically Optimal Regret in Linear Ban-
dits: Another related line of work focuses on asymp-
totic performance [Lattimore and Szepesvari, 2017,
Combes et al., 2017, Hao et al., 2020, Degenne et al.,
2020, Cuvelier et al., 2020]. In the bandit setting
asymptotic lower bounds have been shown to scale as:

min
⌧

X

x2X

�x⌧x s.t. kxk2Aband(⌧)�1/�2
x 

1

2
, 8x 6= x⇤

While we do not claim RegretMED is asymptotically
optimal, we note that the optimization we are solv-
ing (2) closely resembles the above optimization. In-
deed, at the final epoch of RegretMED, our estimates
of the gaps will be su�ciently accurate so as to en-
sure we are playing approximately the asymptotically
optimal distribution. Furthermore, as Proposition 1
and Figure 3 show, RegretMED appears to be play-
ing the asymptotically optimal strategy in situations
where optimism fails. We leave a rigorous proof of the
asymptotic qualities of RegretMED to future work.

Concurrent to this work, several works appeared which
simultaneously achieve asymptotically optimal and
sub-O(

p
T ) regret [Tirinzoni et al., 2020, Kirschner

et al., 2020b]. In particular, Tirinzoni et al. [2020]
achieves instance-optimal log T regret in finite time.
We remark that their regret bound contains large addi-
tive terms which will dominate the leading log T term
for moderate time horizons. Our primary concern is
in this non-asymptotic regime, where the union bound
applied is still significant, and we therefore see our
work as complementary, addressing issues they do not
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address.

Asymptotically optimal regret has been relatively un-
explored in the semi-bandit setting. Following the
acceptance of this work, a very recent work [Cuve-
lier et al., 2021] proposed a computationally e�cient
asymptotically optimal algorithm in the semi-bandit
setting, which was the first of its kind. As with the
bandit setting, our concern is with the non-asymptotic
time regime, so this result is complementary to ours.

Stochastic Multi-Armed Bandits with Side Ob-
servations: In the stochastic multi-armed bandits
with side observations problem, the agent is given a
graph of n nodes where each node is associated with an
independent distribution. When the agent pulls a node
i, she observes and su↵ers its stochastic reward and she
also observes the stochastic reward of any node with an
edge connected to node i. Caron et al. [2012] proposed
a UCB-like algorithm and Buccapatnam et al. [2014]
used a linear programming solution to show that the
regret scales with the minimum dominating set.

Using the design matrix Agraph(�) =Pn
i=1 �i

P
(i,j)2E eje

>

j , where E denotes the edges in
the graph, our algorithmic approach o↵ers an explicit
and natural way to model the tradeo↵ between
estimated regret and information gain in this setting.
In addition, our work suggests an algorithm for a
novel extension of this problem where each node i

is associated with a feature vector xi 2 Rd and the
expected reward of i is ✓>

⇤
xi, that is, stochastic linear

bandits with side observations.

Partial Monitoring: The partial monitoring prob-
lem [Cesa-Bianchi and Lugosi, 2006, Cesa-Bianchi
et al., 2006, Bartók et al., 2011] is a generalization
of the multi-armed bandit problem where now the
learner is no longer able to directly observe the loss
incurred, but only some function of it. The linear par-
tial monitoring problem [Lin et al., 2014, Kirschner
et al., 2020a] is a special case where the learner ob-
serves yt = z

>
xt
✓⇤+⌘t, for some known zx, but receives

reward x
>
t ✓⇤, which is not observed. RegretMED di-

rectly generalizes to this setting if we employ the de-
sign matrix Apm(�) =

P
x2X

�xzxz
>
x . We leave a full

investigation of this application to future work.

Pure Exploration in Multi-Armed Bandits:
There has not been a significant amount of previous
work on pure exploration combinatorial bandits with
semi-bandit feedback. Chen et al. [2020] provide a
general framework that subsumes combinatorial ban-
dits with semi-bandit feedback but their algorithm is
non-adaptive and suboptimal. Several special cases
of pure exploration combinatorial bandits with semi-
bandit feedback have been studied. Best arm iden-
tification (where X = {e1, . . . , ed}) has received much

attention [Even-Dar et al., 2006, Jamieson et al., 2014,
Karnin et al., 2013, Kaufmann et al., 2016, Chen and
Li, 2015]. The setting in Jun et al. [2016] subsumes the
top-K problem, but their approach does not generalize
to other combinatorial problem instances. Concurrent
to this work, Jourdan et al. [2021] derived an asymp-
totically optimal best arm identification algorithm for
the semi-bandit setting. We note that our result fo-
cuses on optimality in the finite-time regime, so our
results our complementary.

Our work is also related to transductive linear ban-
dits [Fiez et al., 2019]. In this problem, there are
measurement vectors X ⇢ Rd, item vectors Z ⇢ Rd,
and the agent at each round chooses xt 2 X and ob-
serves the realization of a noisy random variable with
mean x

>
t ✓ with the goal to identify argmaxz2Z ✓

>
z

as quickly as possible. Our work on combinatorial
bandits with semi-bandit feedback can be straightfor-
wardly extended to a generalization of transductive
linear bandits that allows for multiple measurements
at each round. More concretely, in this setting, the
agent is given a collection of subsets of X , C ⇢ 2X ,
and at each round, she chooses a set of linear mea-
surements Yt ⇢ X where Yt 2 C, and observes the
realization of a noisy random variable with mean x

>
✓

for each x 2 Yt. This generalization subsumes the
work of Wu et al. [2015], which studies a version of
this problem where X = Z = {e1, . . . , ed}.

Our algorithmic technique bridging empirical process
theory and experimental design is inspired by the work
on pure exploration combinatorial bandits in Katz-
Samuels et al. [2020]. The semi-bandit feedback set-
ting in the present paper poses a new and non-trivial
computational challenge since, unlike in Katz-Samuels
et al. [2020], the number of variables in the optimiza-
tion is potentially exponential in the dimension.
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