Proof for “A comparative study on sampling with replacement vs
Poisson sampling in optimal subsampling”

A.1 Proofs

In this section, we prove all the theorems in the paper.

A.1.1 Proof for Theorem 1

To prove Theorem 1, we first establish Lemma 1 and Lemma 2 in the following. Recall that

where

B, _/0 Szm{z 0+AZ( é)}dk

In Lemma 1, the notation op(l) means convergence to 0 in probability. Here the probability is conditional
probability. From Xiong and Li (2008); Cheng and Huang (2010), a sequence converges to 0 in conditional
probability is equivalent to the fact that it converges to 0 in unconditional probability. Thus we use op(1) to
indicate convergence to 0 either in unconditional or conditional probability.

Proof. Firstly, note that
( Z m; ‘ n) = %Zw(zi) =Ey(Z) 4+ op(1), and
¥(Z; _1¢-v*(%)
( Zz:: nm} ‘ n) B EZ n?m; = =1 (mr ) sn Zw 7).

Thus,

— 1).
Z mrj = Opip, (1)

For every k,l = 1,2, ...,d, from Lipschitz continuity, for A € (0,1), we have
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1 Z i {Z5,0 + A0 —0)} 1 Z 1k (Z],0)

s nw; s

=1 =1 ?
s s LN Y(Z))
= \|0r — 0| - —L = 1
0r ||S ;:1 - op(1),

and for any fixed 8, we have

n

2 210 — 6]
fzmklzl,e gﬁzmklzl,e) 2ll6 — 61" sz (1).
=1
In addition, according to (A.2),
L\~ ria (27, 6) Lo ;
EJ- #‘Dn = - Zi, ),
{s Z nm; n ka’l( )

*Z

L~ i (27, 6) m,”ZZ,e
V< - %‘Dn
{SZ nm;
1 - ..2 Iy _1
o Z;,8) =0 .
i:{r’lg'}'{"” (nﬂ'z> sn ;mk’l( ) p(s™)

i=1

IA

Thus, by Chebyshev’s inequality, we have

EZL_izmkl Z“a

=1

OP|D,,,(5_1/2) = op|p, (1).

Combining (A.1) and (A.3), we have
IS ; !

B, — = riui(Z:,0)| <
s n £ mk,l( i ) > A

g/;[

dA

]dA

1 i {Z5,0 + MO —0)} 1~ . A
- : — Z;,0
> - E 11 (Zi, 0)

S 4 nw’t
i=1 ?

1 Z e {Z5,0 + A0 —0)} 1 Z il (ZF,6)

s 4 nmk s 4 nmk
i=1 z i=1 z
1 mkl
+ |- E e — E mkl 0
S 4
=1
=opp, (1)

Lemma 2. Under Assumptions 4-5, given D,,,
Vs{AR(0)}V/2M;(6) - N(0,1),

in conditional distribution.

Proof. Note that
N 1 - m >
VM () = = E 7

Given D, n1, ..., Ns are i.i.d, with

E(D,) = > i(Z:,0) = 0, and
i=1

(A.3)

(A.5)

(A.6)



n P T
< mox <n;> % :1 i Zs, 0y (23, 6) = Op(1) (A7)
Meanwhile, for every ¢ > 0 and some § € (0, 2],
ii@{nmn%umw T iE{Ilmml(llmlb s'/%€)D, |
1= i=

1 ¢ 245 1 = |l (Z;, 0)]12+°
S ST/ ;E(HWH D) < $3/27 24626 ; e,

i

1 1+5 1 n
. 2] § -6
s () s Y2 )P = 0p(s,
e v =1

This shows that Lindeberg’s condition is satisfied in probability. From (A.5), (A.6) and (A.7), by the Lindeberg-
Feller central limit theorem (Proposition 2.27 of van der Vaart (1998)), conditionally on D, (A.4) follows. O

Proof of Theorem 1. Based on Lemma 1 and Lemma 2, now we are ready to prove Theorem 1. By direct
calculation, we have that for any 6,

By Chebyshev’s inequality, for any € > 0,

B{1M(0) ~ M,(0)] > <fp,} < LALONP) L Z &9)

Thus, for every 6,

M (0) — M (0) = opip, (1) (A.8)

Note that under Assumptions 1, 2, the parameter space is compact and 0 is the unique global maximum of the
continuous concave function M, (0). Thus from Theorem 5.9 and its remark of van der Vaart (1998), conditionally
on D,

|6z — 8||= opp, (1) = op(1). (A.9)

The consistency ensures that Or is close to 0 as long as s is large. By Taylor expansion,
0= M2 (6r) = M (6) + B.(6r — ), (A.10)

where

1 s . <« A 5 A
o S im1 nm;

From (A.10) and Lemma 1,
0= M;(8r) = M (8) + {M.(6) +0p(1)}(Or — 6), (A.11)
which shows that

Or — 0 = —{11,(0) + op(1)} ' M(6)
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1 . . . R .
= *ﬁ{Mn(O) +op(1)} H{AR(0)} /2 Vs{AR(0)} /M (0). (A.12)
By Lemma 2 and Slutsky’s theorem, we can obtain that, given full data D,, in probability,
Vs{Vr(0)}"/*(6r — 6) = N(0,1), (A.13)

in conditional distribution. This means that for any @, as s and n get large,
i [\/E{VR(Q)}””((@R _0) < m‘pn} = o(x)

in probability, where ®(x) is the cumulative distribution function of the standard multivariate normal distri-
bution. A conditional probability is a bounded random variable, for which convergence in probability to a
constant implies convergence in the mean. Therefore, the convergence in (A.13) also holds in unconditional
distribution. O

A.1.2 Proof for Theorem 2

To prove Theorem 2, we first establish the following Lemmas 3 and 4. Let v; = 1 if the i-th data point is selected
in the subsample and v; = 0 otherwise. The estimator in (2) is the same as the maximizer of

1< m(Z5,0) 1 ~vim(Z;,0)
M3 = — A S il Sl A
#(9) n z:zl sy n ; ST

Here, we use s to replace s* in (2) for convenience, and the resulting estimator is identical to Op.

Lemma 3. If Assumptions 4-5 hold, then, given D,,,
Vas{Ap(0)}V/2M}(6) — N(O, I),

in conditional distribution, where

N n — sa Vil 7 ~ mT 4
AP(G)Z%Z(I )i Zi, 0y (Z:,0)

)
T

Proof. Write

VAN (0) = 3 MO s,

i=1 VELY i=1

By direct calculation and according to the definition of é,

E <Z npi
i=1

and

\Y (Z np;
i—1

Dn) 1 z":V(yi\Dn)m(zi,é)mT(Zi,é)

IN

1
max
i=1,2,...,n N



Next, we check Lindeberg’s condition in conditional distribution. Note that for p € (0,2] and any ¢ > 0,

;E{HnPi”I(”T]PiH> 6)‘2?”} < ;;E{nPi|2+pI(||npi|> E)‘Dn}

L . L [ (2, 8)
1 ' 0 1 i iy
E (HnPZH ‘Dn> - EpE z; n2+psl+ﬂ/27r.2+p Dn
i= v

Epz‘ 1
1\
< max ( > sf’/?spn ZHm Z:,0)||>" "= 0p(s—"/?) = op(1).

e Z n2tesp/2p TP

[l ( ZZ,O |2+”
i=1,2,...,n \ N

According to the Lindeberg-Feller Central Limit Theorem (van der Vaart, 1998, cf.), given D,,,
Vs{Ap(0)} /2 Mp(6) — N(0, I),

in conditional distribution. O
Lemma 4. Under Assumptions 8 and 5, for any us = op(1), conditional on D,
K3 Z’L? 6 S
7Zu Zm +.6) = op(1).
ST
=1
Proof. First, note that
1 = vi¥(Z;)
— —— =0 1 Al4
- ; o pip, (1), (A.14)
by Chebyshev’s inequality and the fact that
1 &< vp(Z; 1< vi|Dy)
Byt p, | - Ly HABEB) ] Zw = B(v(Z0)} +op(1),
nio ST et
1~ vih(Z:) 1 ¥ (Zi)V(vi|Dy) VA(Z)E(V})
V|- —————=\D, | = — —
<n ; ST, ) n? ; s2m? - n2 Z 82 2
L0321, 1 .
= — < =
n2 ; sm; T sn ;w (Zz)z A nm; Op(s™)
Thus, for every k,l =1,2,...,d, from Assumption 3, we have
1 & Vi | Zv,0+ug 1 - 2 Zl,O llus|| = vith(Z;)
— = < = 1).
which shows that
Ly vmtZnbiu) Ly B8 ) (A15)
n =1 ST n =1 ST

According to (A.2), for every k,l=1,2,....,d
1 = vyt (Z;, 6) 1N A
Ef- ———|Dn | == Z;,0),
(n > o - ka,z( )

517 i 1_57szkl(Z 1< )
’7’1)“ — <7
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1) 1 ~.s . 1
< — Z;,0) =0 .
<, max (mr) = ;mk,l( )=0p(s™")
Thus, Chebyshev’s inequality tells us that
1 < VZTTL(Zl7 é) 1 .. A —1/2y _
E;T - me(Zi,B) = Opip, (s /%) = op(1). (A.16)
Therefore, combining (A.15) and (A.16), we have

1y vl 26 4 ws) LSS 7 6) = op(1).

£ ST, n “
=1

Proof of Theorem 2. Denote
() = sMp(B + u/\/5) — sMp ().

Under Assumption 2, v/s(6p — ) is the unique maximizer of vp(u) as @p is the unique maximizer of M;;(é +
u/+/s). By Taylor’s expansion,

() = V5uT Mp(0) + S N30 + i/ V5)u

where 4 lies between 0 and u/+/s. From Lemma 3 \f M35(0) is stochastlcally bounded in conditional probability
given D,. From Lemma 4, conditional on D,, M:(0 + 4/y/s) — M,(0) = op(1) and M, () converges to a
positive-definite matrix.

Thus from the Basic Corollary in page 2 of Hjort and Pollard Hjort and Pollard (2011), the maximizer of syp(u),
V/5(0p — 0), satisfies that

Vs(0p — 0) = M, (0)v/sM}p(6) + op(1), (A.17)
which implies that
Vs{Vp(0)}~/*(6p — 6) — N(0, 1), (A.18)

in conditional distribution. Thus, by argumentation similar to that used in the proof of Theorem 1, we know
that the convergence also holds in unconditional distribution, and this finishes the proof. O

A.1.3 Proof of Theorem 3

Proof of Theorem 3. For the result in (8),

1,0 l,o 1

Here, the last step is from the Cauchy-Schwarz inequality and the equality holds if and only if 7; o [|ri(Z;, 8)].
O

A.1.4 Proof of Theorem 4

Proof. Note that

tr{Ap(0)} {an (L= smi)rin(Zi, 9>mT<Zu0>}



Z Ll Z“a sZum 7.0)?|.

CFori=1,....n, let t; = ||i(Z;,0)| and let
t(;y denote the order statistics of |7 (Z;, 0)|, ie. toy = ||m(Z,é)||(z) The optimization problem of minimizing

Thus, minimizing tr{Ap(8)} is equal to minimizing Dy Hm(Zﬂile)HZ

tr{Ap (@)} subject to the constrains on m; can be presented as minimizing

nt2

T(my, 2, i) = ;T) (A.19)

=1

n
1
subject to E m=1 and 0<m < —-,i=1,2,...,n
s
i=1

Defining slack variables w?, w3, ...,w?, to use Lagrangian multiplier method, we can construct
= 1
H(Trla cees Ty Ty U1y -evy oy W1, awn) = — + T (Z T — 1) + Z,u‘z <7Tz + w - > .
i=1

By taking the derivatives, the Karush-Kuhn—Tucker (KKT) conditions (Nocedal and Wright, 1999) are

0H e
=Y =0, i=1,2,...n. (A.20)
am i
— =) m-1=0, (A.21)
=1
OH 1 .
o = +w? = o i=1,2,..,n. (A.22)
OH
O = 2/,Liwi = 0, 1= 1, 2, ey N (A23)
i >0, i=1,2,...n. (A.24)
From (A.20), we have
L
M= =12 .. n (A.25)

Combining it with (A.22), we have

ﬁ—kwi = g, 7::1,2,...,7’7,. (A26)

According to (A.23), at least one of y; and w; must be 0. From (A.25) and (A.26),
VT to 1

ift(i)<?, ,uanndmzﬁ<g; (A.27)
. \/77' t(i) 1

ftg > YT i=0and m = 2 — 2 A.28
e = 7 w and.m ST s (A.28)

Thus, letting g be the number of cases that t(;) > g, from (A.21) and the fact that ¢(;) is non-decreasing in 4,

S R S - (A.29)
i=1 i=1 VT imn—g41® VT s
which shows that
n—g

VT = >t (A.30)
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Combining(A.27), (A.28), and (A.30),

t
“(n ; ), fori=1,2,...n—g; (A.31)
o 5 i te
1
" fori=n—g+1,..,n. (A.32)

From (A.30),

"9t
o it t) _ VT (A.33)

7

s—g s
Thus, from (A.27) and (A.28), we know t;) < H fori =1,2,...n—g,and t; > H,fori =n—g+1,..,n
Therefore

n

> (ta th)+ Z H=sH (A.34)

=1 i=n—g+1
Thus, from (A.31), for i =1,2,...,n — g,

t(z) t(z) NH
S0) . (A.35)
SH Zz 1( ) N H)

from (A.32), fori=n—g+1,..,n

H - tay NH

sH Y (to AH) (450

T, =

For the result under the A-optimality, define ¢¢;) = | M (0)r(Z, é)||(i) and the proof is the same as the used
for the L-optimality. O

A.1.5 Proof of Theorem 5

We prove Theorem 5 from establishing the following lemmas.

Lemma 5. Under Assumption 3, if /0% — 0= op(1), then conditional on D,, and 0%,

BYF — N1,(8) = op(1), (A.37)

where

e (11 { 200+ M85 - 0))

Br — [ = d\

s ~optx* .
0o SiD TRai

Proof. For every k,l =1,2,...,d, from Lipschitz continuity, we have

li e {Z 0+ 08— 0)} 1~ rina(Z,0)

53 Aoy s nAdt
1~ 0(Z)|IN0% — 6 0 ol U(Z S

<fZ IO =0  yjgs — 61 S PZD _ygg — 010p(1) = 0p(1). (A.38)
$ nTrRaz s i=1 o

According to (A.2), we have

1 i (Z7,0) - 1 o= . A
E (SZnNOPt* Dn,0R | = ﬁ;mk,l(Ziﬂe)v

i=1 Ral



~optx* opt —
S "MRai = nPTRa asn i

1~ 1y (27,6 -~ 1 < id (2, 8) J - _
A% ( Z kJ(Z)‘Dn,B%> ; kol Zmi,l(Zi,H) = OP(S

Thus, by Chebyshev’s inequality, similar to (A.3), we have

Combining (A.38) and (A.39), we have
1< X !
B~ L3 in(z.0)|| < /

<f[é

1L~ {Z5,0+00%—0) 1~., 4
g Z { ~opt* } - E Zm<Z270)
=1 i—

NTRai

~0pt*
T Ravi i=1 T Rai

] d\ = OP( ),
which finishes the proof.
Lemma 6. If Assumption 4 hold, then given D,, and é%*

V{AR(05%)} P M5, (0) = N(0,1),

in conditional distribution, where

s 1 <~ m(Z;,0) . (500) 1 = i(Z;,0)m (Zl,O)
V@) = 3 wnd a0 = 5 3 MO
i=1 Rat i=1 Raz

Proof. Note that

L (Z5,0) 1 e
VT (6) = - 3 IO _ L s
$ =1 nTrROﬂ § =1
Given D,, and 8%, n; Ox . nf?; are i.i.d, with
0x 0% 1 n . “
E(n; " Dy, 05) = — Z;m(zi,e) =0, and
60 0. wm(Zz,0)m™(Z;, 6
V(n; " |Dn7010-?, )=E ( 2 )opt*(Z ) Dme
n ( Raz)

Zwa Zi7é a (n0x*
_ 223 Z0) _ jea).

~optx*
Rai

Meanwhile, for every € > 0 and some ¢ € (0, 2],

1 s 60 0% ~0s
=S E{InfF P1(Inf¥ 1> 5'/20)| D, 0 }
=1

1 s 00 5 0x <0
< —57azs DL E{ I I LI 1> 51%2) [P, 6 }
=1

1 - 6% k) n0*
< ISERIE ZE (||77¢R 1>+ ‘Dn70%>
i=1

1~ f{Z:,0 + \0% — 6 1~ i(Z7,0
521 { ( )}*§Z¥

1>.

(A.39)

(A.40)

(AA1)

(A.42)

(A.43)

(A.44)
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<1 Z lr(Z:, 0)|*+°
— g0/2p2+6c0 ( opt*)1+5
i=1 ROL’L

1 o B
< s S (Z )= Opls~72) = op(1).
=1

where the second last equality is from Assumption 4. This show that Lindeberg’s condition is satisfied in
probability. From (A.41), (A.42) and (A.44), by the Lindeberg-Feller central limit theorem (Proposition 2.27 of
van der Vaart (1998)), conditional on D,,, 8%, we obtain (A.40). O

Proof of Theorem 5. By direct calculation, we have
B { M, (6)| D, 65 } = 1,(6),

v { M3, (0)]D,. 6% } < %im < %iw — Op(s7),

i=1 TRovi i=1
By Chebyshev’s inequality, for each 8, we have

M;’a(e) - Mn(e) = Oplpnﬂ”oR*(l).

Under Assumptions 1 and 2, the parameter space is compact and 0 is the unique global maximum of the
continuous concave function M, (@). Thus from Theorem 5.9 and its remark of van der Vaart (1998), conditionally
on D,, and OOR*,

165 — 6]1= op(1).
By Taylor expansion
0 = Nj (05) = Mj (6) + BIF (6 - 0),
SO

0~ 6= — (BI) 7 Wta6) = - () (AR VEAR(BY)) T, (6).

Therefore, from Lemma 5 and Lemma 6, conditional on D,, é%*, by Slutsky’s theorem
V{AR(0%)}/?M,(6)(6% — ) — N (0,1), (A.45)

in conditional distribution.

Next, we check the distance bewtween A%(6%) and A%(é)

IAR(6%) — A%(O)]]
1 - 1m(Z;,0)m*(Z;,0) z": m(Z;, 0)mn
7’L2 opt(ao*) —|—Oé n2 opt<

1 . A
< EZHm(Zi,@)Hz
=1

1 o, . .
< JZHm(Zi,H)II2
1=1

1 1

(1— )T (0%) + a2 (1-a)r3E'(0) +at

iy (05) — 75 (6)

(23, 0% Il Z:, 6) |

1 — 5
— (2, 0)| R
7 2 S 2y, 8]

IN




+ [li(Zi, )|

Sy (25, 0% - lin( 5, 6) | }
(2, 0) 15— i jve%*>||

1 n
= pel Z |rin( Zz,a [#(A1; + A;) . (A.46)

Under Assumption 3, for any j =1,2,...,n

(125, 0) = lnin(Z;. 51| < (2, 0) = 12,657 |
d R _ d R _
< Z{mk(ZJﬁ) — 1 (Z,0%)}? < Z ‘mk(Zj,e) — 1 (Z;, 0% )
d
Z‘ 00*
k=1

where 1y (Z;, 6) is the kth element of m(Z;, 6), g (Z;, 6) is the kth column of m(Z;, 6), and all &, are between
0 and BN%*. Thus,

)| <116~ HZIImk L 60)lI= 116 — 65 Ih(Z)), (A.47)

16 — 6% 1n(Z:)

Ay < =2 ZRIDZY (A.48)
> j—1lm(Z;, 63|
and
' 6 — 6%
< IIT:n( 0l 13251 (0) (A.49)
Zj:le( e )”Zj:l”m(ZJaBR*)”
From (A.2) and Assumption 3
1 n 1 n d 1 n d d
S RAZ) < d DY i Zy, ElP= SN Y (25, 6)
j=1 j=1k=1 j=1k=11=1
1 n d d R
<d— >33 (20 4(25,0) + 20%(2) 6% —6]12) = Op(1) (A.50)
j=1k=11=1
which also implies that * Z] 1h(Z;) = Op(1). Thus,
L A Op(]0 — 6%) &, . .
S iz 0)) Ay < CPUO O S 2, 0y 2)
=1 =1
s o 1< R 3010 3
<on(lo-axD{ L Nlmz.ont} {13 wz ), (A51)
=1 =1
and
an Zi,0)||Ag; = Op(]|6 — 6% ZHm Z;,0)|? (A.52)
=1

Combining (A.46), (A.51), and (A.52), we obtain that for large sg, s and n,

IA%(65) — A%(0)]1= 110 — 6% 0p(1) = 0p(1).
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Thus, Slutsky’s theorem and (A.45) indicate that given D,, and é‘}{‘? as sg,s and n — oo
Va{VE(0)}?(6% — 0) = N(0,1),

in conditional distribution. From similar arguments used in the proof of Theorem 1, we know that the convergence
also holds in unconditional distribution, and this finishes the proof.

O

A.1.6 Proof of Theorem 6

To prove Theorem 6, we begin with Lemmas 7, 8 and 9.

Lemma 7. Under Assumptions 4, conditional on D,, and éOR*, then
Vs{AR(0%)} M}, (6) — N(O, I),

in conditional distribution, where

~Op A

Aa 90* _ Z{]‘_ Sﬂpaz)/\l}m(Zl?a) ( 1?0)'

(s A1

Proof. Here, for writing convenience, we redefined the notation v; = I(u; < smip;) and let

VaNL,(0) = 30 U0 (A.53)

i=1 TL{( Paz) A 1} i=1

From direct calculation and the definition of é, we have

n

E(\/EMPQ ’Dn,f)) \[i (Z:,6) =0,

and
V(vi| Dy, 0% )i (Zi, 0)i™ (Z;, 6)
{(stpn;) A1}2
{1 = (s728) A 1}i(Zs, 0)™ (Zs,6)
(s7on) A1

s
n2 4

V (V5 (6)

Dn,é%*) -

3

4 11

|- 3

©
Il
-

< m(Zi, 0)m™ (Z;,0) = Op(1).

s
Il
_

Next, we check Lindeberg’s condition. For any epsilon > 0 and rho € (0, 2],

n
é[)* 9"0* S 0%
E {lem” 1(lln;* 11> €)|Dn, 05 }

i=1
1 & 80 §ox -
< 5 L E (I T 1> <[, 08 }
=

1 & 6o; ~ s1He/2 Iy |2, 6)])2Hr
< E( “p 2+p’Dn’00*) —
<5 22 F) = s 2 gy e
s1e/2 I |l Z;, )12+ 1 1 Aoy
E : i _ 7§ : (7 p_ —p/2
= ePnte £~ (sa/n)tte Caltrersp/2p & lri(Z:, 8)[7 7= Op(s™"7).

Thus, from the Lindeberg-Feller Central Limit Theorem (cf. van der Vaart, 1998), Lemma 7 follows. O



Lemma 8. Under Assumption 3, for any us = op(1), conditional on D,, and é?;*,

721/1 Zogt0+u9 %Zm 1,0) = op(1).

Sﬂ-Pozz i=1

Proof. First, using an approach similar to prove (A.14), we can show that given D,, and é?;*

Y o

P (spni) A1

For every k,l =1,2,...,d, from Lipschitz continuity, we have

izj: vitige(Zi, 0 + uy) Tllzj: vitige1(Zs, 0)

~opt ~ opt

Sﬂpaz) A1 Sﬂ-PO(’L /\ 1 1’:1 (Sﬂ—Paz) A1

For each k,l =1,2,...,d, direct calculations show that

1 " l/zmkl(zi,é)
E fE _ E (Z;
{TL (~0pt)/\1 na mk:l 1,0

i=1 ST pai
1 = vitig(Zi,0) 50 1 l(Zivé) 1 & -1
{n ; (SW%P:L) ! F sn? ; (57?3)3}21) AL asn ; 2 a

According to Chebyshev’s inequality, we obtain

vi(Z,0) 1 & X L

1 i Zi, _ 2 w7 — —-1/2

E ~0pt AL g m(Z;,0) = Op(s™/7).
=1 Pon =1

Therefore, combining (A.55) and (A.56), we have

v;m ZHH—f—us) 1 o~ . N
- Z S — =Y i(Z:,0) = op(1).

Sﬂ-Paz i=1
Lemma 9. Under Assumptions 3 and 4,
1) if 0, = s/(bn) — 0 € (0,1), then H** — H, = op(1);
2) WO — W, =op(1), where

_ %Z{Hm(zi,é)llAHan}%

i=1

3) if s/(bn) = 0 =0, then VO — W, = op(1).

Proof. Note that H%* is the [s} — s5s/b/n]-th order statistics of ||[rn(Z0*,0%)|, i = 1, ..., s%.

<1 1 Z% = op(1).

(A.54)

(A.55)

(A.56)

(A.57)

For any p > 0,

let H, be the [n(1— p)]-th order statistics of ||m(Z1,0%)|), ..., [lm(Zn, 0%)||. Let vfy = 1if [[i(Z, 6%)]| ;) is
included in [|ri(Z9*,0%)], ..., ||m(Zg§,éOP*)|| For any o4 > o,

[n(1—04)]

P(H% < Hg+) IF’( Z y?i) > [s; sgs/b/ﬂ).

i=1

(A.58)
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Note that
n(1-
810 [ (gm V?i) =1-0, +op(l) and w =1—o0+o0p(1). (A.59)
Thus,
P(H < H,,) — 0. (A.60)
Similarly, we obtain that for any o_ < o,
P(H™ < H, ) — 1. (A.61)

Note that H,, is between the [n(1 — o4 )]—sg-th and the [n(1 — g )]-th order statistics of |1(Z;, 8%)|’s that are
not included in ||/ (Z*, 8%, ..., ||Th(Zgg, 6%)||. The joint distribution of these [|1i2(Z;, 8%)||’s are exchangeable,
and sj/n — 0 in probability. Therefore, both the [n(1 — o4)] — sf-th and the [n(1 — g4 )]-th order statistics
of these || (Z;, 6%)|’s converge to the oi-quantile of the distribution of ||/n(Z;, 6)| in probability (Chanda,
1971), where 6y = argmaxg E{m(Z,0)}. As a result, H, converge in probability to the o -quantile of the

distribution of ||7h(Z, 8y)||, say (o4 Similarly, H o_ converge in probability to the p_-quantile of the distribution
of ||m(Z,00)||, say ¢p—. Thus, (A.60) and (A.61) together imply that for any e > 0,

P(Cp, —e < H™ <(, +¢)— 1 (A.62)

Since the distribution of Z is continuous and so is that of ||7h(Z, 8)||, we can choose g4 and p_ close to g enough
such that ¢, — (, < e and (, — (,, <€, which implies that

P(¢, — 2e < H™ <, +2¢) — 1, (A.63)
for any e. Thus, H%* = (, +o0p(1). Since | (Z1, )|, ..., ||1n(Zn, 0)| are exchangeable, H,, =(,+op(1), where
H,, is the [n(1 — 0,)]-th order statistics of |[i(Z1, )], ..., |112(Zn, )||. Therefore, H* — H, = op(1).

Now we prove 2) of Lemma 9. If o = 0 and ||7(Z, )| is bounded, then

[s*fs*s/b/n—‘ . * 00 * * *
PO — ’ i (| (Z° 8,*09: My n sg — [s§ ;sos/b/n O _ Z [l7in( ZO 90 )] op(1),
i=1 0 0

and similarly,

1=, . .
U, = - Z||m(zi,9)u+0p(1).

=1

Thus the proof reduce to prove that

50 m ZO* 00* 1 i . 2
Z lIri(Z3, 61 == Z||m(Zi79)||+OP(1)’
i=1 =t

*
S0

which can be proved by Taylor’s expansion and Markov’s inequality. To prove other cases, let v = 1 if the i-th
observation is included in the pilot subsample and v = 0 otherwise; then W9* can be written as

1 - . )0 *
= = S Ui, 6 IAH" ).
0 =1
Define

1 ¢ o Ao .
U = o 22, 68 IAH,, ) and W = Zu°{||m 2,,0)IMH,, )

=1



If o > 0, then

* * 1
o — Yy, | = ?Z
0

HO*
M 3 OI{||m(Z1,00*)||> H AH, } <|H —H, |=op(1).

so
0 =1

(Zi, 63 |INH — | Z;, 6 ) |NH,,

If =0 and ||7n(Z,0)| is unbounded, then H%* A H, — oo in probability. Under Assumptions 3 and 4, it can
be shown that X 37 | v9|7(Z;, 0%)||>= Opp, (1). Thus,
0

117,

1 « ~ ~
WW—W%Js;}jﬁwwaﬂnwwmwmwmzHWm%J

S {01z 1)+ B S {2 01 1, )
0 ;=1

i=1

1 1
< Ol (Z;,0%)|?= A.64
— {HO* /\H.Qn + H } ZV ||m ) H OP( ) ( 6 )

Furthermore, we can show that

IN

* * 1 = . 00 . 7)
O, — Vgl ;*ZV?{IIm(Zi,@% M=l (Z:, 6)[1}

0 00*
< | H z Oh 70P( )

and
(" — W, |=op(1),

where the last two op(1) are obtained by mean and variance calculations under the conditional distribution of
v?’s. Thus, we have that

| — W, |=op(1). (A.65)

With 2) of Lemma 9 proved, in order to prove 3), we only need to show that ¥oo, — ¥, = op(1)ifs/(bn) = o =0.
This is true because if |7 (Z, 8)|| is bounded, then

LN, . . ) .
Voo = Wy, | < > |1l 22, O)]| (i, 6) |AH,,
=1

n— [n(1 — 0,)]

n

<

1722, 0) ] (ny = 0p(1);

otherwise,

L s o avl s (7 A
Voo =Wy, | < =3 [n(Zi, )|~ Z:, 6) |nH,,
i=1
1o A A
= lin(2:,0)|11{ (2. 0)]|> H,, }
i=1
1
nH,

IN

IN

lem Z;,0)|°= op(1).

On ;
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Proof of Theorem 6. For Algorithm 2, M} (6) can be written as

Denote
Yo (w) = sMp (8 -+ u/v/3) — sMp, (6).
Under Assumption 2, \/E(éj'é — é) is the unique maximizer of Vgor p(u). By Taylor’s expansion,

. ~ TM* é+ ,
Yo p ) = VTN (0) + 2 MEelO TV

where 4 lies between 0 and w/+/s. From Lemma 7, /s M 5.0 ) is Stochastlcally bounded in conditional probability

given D,, and % from Lemma 8, conditional on D,, and 6%, Mpa(O +/\/5) — M,(6) = op(1) and M, ()
converges to a positive—deﬁnite matrix. Thus, from the Basic Corollary in page 2 of Hjort and Pollard Hjort and
Pollard (2011), the minimizer of sy(u), /s(0% — 0)7 satisfies that

V(0% — 8) = M, (0)v/sMp(6) + op(1), (A.66)
which implies that
VE{AR(OF)} /2 01,(0)(0 — 6) — N(0, 1), (A.67)
in conditional distribution given D, and %

Next, we will check the distance between A% (%) and A%(6). Let Ag, (0 )) have the same expression as A% (6)

in Theorem 6 except that 7r0pt (0) in the denominator is replaced by

) - o
"% (6)— (1-a)rs(@) +at  with s — — IPZ O,
. i {25, 0) ||\ H,, }

We have that

5 (Z:,0)| riu(Z;,0)]|?
Aa 00* A 0 ||m )
AP = Ko )”‘nQZ TR (O} AT {sn,(0)} A1

S 1
= m(Z;,0)|? .
n? ;” 0 {(sAp (03I AL {sm8,(0)} Al

—

. " . . {S~0pt (00*)} Al — {571'9" (A)} Al
s . ZZ?H 5 P(”t Pazt
s L2 O | e e e

5 D llin(Ze, )55 (6%) — 3 (6) (A68)

A

If o > 0, then from

n |73 (0%) — i (6)

_ ’nm(Zz-,é%*)AHO* (%, 0)|IAHy,,

\Ilgz ‘IlQn
12 (Z3, 0% ) INH" — |[1iv(Zi, 0) | \H, on — Yo
s| i (2 B, |
‘Hm (26, 0%) |- ZisO)| o _ | w0y, |
n N n On
i el iz oyin, ) Egergreel



we have that
A% (50*) — A%, ()]

an Z:,0)?

< oo Sl Ze, ) F| (2, 6% >||—||m<zz-,é>||\

On ;=1

| o N (Wor — Wy, | &
+TO*QZ”m Z“e || T 2\1,0* - Z” Zl?e ( )

On Qn i=1

A (6F) — ng;(6)

by (A.51) and Lemma 9.

If o =0, then,
n |75 (0%) - 78:(6)
\nm (Zi O INH i Z:, O)INH,, | e g,
w0 + [|(Z;, 0)|| W

_ |z 01— 1iz:,0) H] iy 5= Ve
B qjgt ’ Wg:mgﬂ-

i (Ze, 0 50, Hy, (.

Tff{umwi,e)nz Ho, } + s 1{ (25, 8)12 o, }

On
I(Z ) gy oeie 7r0ed 2 HO L oe i o
. > ; >
g0 {12089l B} + e K I (26512 H )

= Az + Ay + Asi + Agi + Az + Ag;. (A.69)

From (A.51) and Lemma 9, we know that

1 w—, . . 1< .
Note that
- Z||m<zz-,e>u2||m<zi,e% 1l Z:, 6))1= H n}
i=1
1~y Ay (14 0* 4 1 ¢ i
A Zum 2,6%)] 5ZI{Hm 7,6)|= H,, |
i=1 i=1
:Op(l),
because
*ZI{IIm Z:,0)|> Hp,} = op(1 lem Zi,0)||'= 0p(1),
=1
| R -~
and > i Z;, 6%)||*= 0p(1).
i=1
Thus,

U lin(Z:,6)[PAs: = op(1). (AT1)

=1
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If || (Z, 8)] is bounded, then

H n n—\|n 1 — Qn . ~
oo S inze o)1 {2001 1, ) < LU0 iz gy —oprs (a2
=1
otherwise
Hgn 2 .
an 20 0)P1{ (22, 0)|> Hy, } < S (2, 0)]l*= 0p(1). (A.73)
Qn i=1
Thus we know that
1 n ) R
- > li(Z:, 0)1* Agi = op(1). (A.74)
=1
Similarly, we can obtain that
1, . X 1< . R
- Zlﬂm(Zi, 0)|?Ar; = op(1) and - 2||m(Zi, 0)|?Ag; = op(1). (A.75)

Combining (A.68), (A.69), (A.70), (A.71), (A.74), and (A.75), we know that

IAZ(6%) — A%, (B)l|= op(1).

To finish the proof for the case of ¢ = 0, we only need to show that [|[A%, () — A% (é)
LS {|l(Zi,0)]|}. We notice that

I= op(1). Let ¥y =

n|ms:(8) - 75 (6)|

(Irin(Z, ) InH,, — llin(Z:, 0)1| w, -
< n(Zi,0)|| | ———=
< — iz, )| g
Iri(Z Ol gy g N s
< o g Z;,0)||> H Z;, )| = ——=1
< g {201 Hy, o+ (2,0 g
mZ»“é 2 - ¥oo
< 2Pl 4 iz, o)1l = 2o+ v (A.76)
On =" 0n
With this result, it can be shown that
L i) ave L ) avie
- m(4si, 9i = Op ehtl - m\ 4, 10i = Op )
=3 lin(Z:, 0)|*A; = 0p(1) and = li(Z:,6)12A &)
i=1 i=1

which indicates that A%, (8) — A%(8)]= op(1).
From Slutsky’s theorem, we know that give D,,, 0~0P*7 as sg, s, and n goes to infinity,
Vs{VE(0)} V(0% - 0) = N(0,1),

in conditional distribution. From similar arguments used in the proof of Theorem 1, we know that the convergence
also holds in unconditional distribution, and this finishes the proof.

O

Proof of Remark 8. Since A%pt(é) has the minimum trace among all choices of sampling probabilities, if o # 0
then tr{A"(8)} < tr{A%()}. On the other hand,

o I (Z:, 6) ||2 ||m ZZ,B [
tI‘{A 2 Z Ropt Z Ropt

(1—-a)m




{Z|m 2,.6) ||} - treplAn(O)}

and this finishes the proof for A%(é) from subsampling with replacement. For Aj’é(é) from Poisson subsampling,
the proof is similar.

O
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