
(a) On-manifold attribution (b) On-manifold boundary

Figure 8: On manifold perturbation methods can be computed using Shapley Flow with a specific explanation
boundary.

6 Explanation boundary for on-manifold methods without a causal graph

On-manifold perturbation using conditional expectations can be unified with Shapley Flow using explanation
boundaries (Figure 8a). Here we introduce -̃8 as an auxiliary variable that represent the imputed version of
-8. Perturbing any feature -8 affects all input to the model (-̃1, -̃2, -̃3, -̃4) so that they respect the correlation
in the data after the perturbation. When -8 has not been perturbed, -̃ 9 treats it as missing for 8, 9 ∈ [1, 2, 3, 4]
and would sample -̃ 9 from the conditional distribution of - 9 given non-missing predecessors. The red edges
contain causal links from Figure 1, whereas the black edges are the causal structure used by the on-manifold
perturbation method. The credit is equally split among the features because they are all correlated. Again,
although giving -1 and -2 credit is not true to 5 , it is true to the model defined by �.

7 The Shapley Flow algorithm

A pseudo code implementation highlighting the main ideas for Shapley Flow is included in Algorithm 1. For
approximations, instead of trying all edge orderings in line 15 of Algorithm 1, one can try random orderings
and average over the number of orderings tried.

8 Shapley Flow’s uniqueness proof

Without loss of generality, we can assume G has a single source node B. We can do this because every node in
a causal graph is associated with an independent noise node (Peters et al., 2017, Chapter 6). For deterministic
relationships, the function for a node doesn’t depend on its noise. Treating those noise nodes as a single node, B,
wouldn’t have changed any boundaries that already exist in the original graph. Therefore we can assume there
is a single source node B.

8.1 At most one solution satisfies the axioms

Assuming that a solution exists, we show that it must be unique.

Proof. We adapt the argument from the Shapley value uniqueness proof 3, by defining basis payoff functions as
carrier games. Choose any boundary B, we show here that any game defined on the boundary has a unique
attribution. We also drop the subscript B in the proof as there is no ambiguity. Note that since every edge will
appear in some boundary, if all boundary edges are uniquely attributed to, all edges have unique attributions. A
carrier game associated with coalition (ordered list) $ is a game with payoff function E$ such that E$ (() = 1(0)
if coalition ( starts with $ (otherwise 0). By dummy player, we know that only the last edge 4 in $ gets credit
and all other edges in the cut set are dummy because a coalition is constructed in order (only adding 4 changes
the payoff from 0 to 1). Note that in contrast with the traditional symmetry axiom (Shapley, 1953) defined

3https://ocw.mit.edu/courses/economics/14-126-game-theory-spring-2016/lecture-notes/MIT14_126S16_
cooperative.pdf

https://ocw.mit.edu/courses/economics/14-126-game-theory-spring-2016/lecture-notes/MIT14_126S16_cooperative.pdf
https://ocw.mit.edu/courses/economics/14-126-game-theory-spring-2016/lecture-notes/MIT14_126S16_cooperative.pdf
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Algorithm 1 Shapley Flow pseudo code

Input: A computational graph G (each node 8 has a function 58), foreground sample x, background sample x′

Output: Edge attribution q : � → R
Initialization:
G: add an new source node pointing to original source nodes.

1: function ShapleyFlow(G, x′, x)
2: Initialize(G, x′, x) ⊲ Set up game a for any boundary in G
3: B ← source(G) ⊲ Obtain the source node
4: return DFS(B, {}, [])
5: end function

6: function DFS(B, �, ()
7: ⊲ B is a node, � is the data side of the current boundary, ( is coalition
8: ⊲ Using Python list slice notation
9: Initialize q to output 0 for all edges

10: if IsSinkNode(s) then
11: ⊲ Here we overload � to refer to its boundary
12: q(([−1]) ← a� (() − a� (([: −1]) ⊲ Difference in output is attributed to the edge
13: return q

14: end if

15: for ? ← AllOrderings(Children(B)) do ⊲ Try all orderings/permutations of the node’s children
16: for 2 ← ? do ⊲ Follow the permutation to get the node one by one
17: edgeCredit ← DFS(2, � ∪ {B}, ( + [(B, 2)]) ⊲ Recurse downward

18: q ← q + edgeCredit
NumChildren(B)! ⊲ Average attribution over number of runs

19: q(([−1]) ← q(([−1]) + edgeCredit(B,2)
NumChildren(B)! ⊲ Propagate upward

20: end for
21: end for
22: return q

23: end function



on a set of players, the symmetry axiom is not explicit in our case (it is made implicitly) because not all edges
in the carrier game are symmetric with each other (observe that 4 is different from all other edges, which are
dummy), thus we do not need an explicit symmetry axiom to argue for unique attribution in the carrier game.
Furthermore, 4 must be an edge in the boundary to form a valid game because boundary edges are the only
edges that are connected to the model defined by the boundary. Therefore we give 0 credit to edges in the cut
set other than 4 (because they are dummy players). By the efficiency axiom, we give

∑
ℎ∈H̃

aB (ℎ)
|H̃ | − aB ( []) credit

to 4 where H̃ is the set of all possible boundary consistent histories as defined in Section 3.3. This uniquely
attributed the boundary edges for this game.

We show that the set of carrier games associated with every coalition that ends in a boundary edge (denoted
as Ĉ) form basis functions for all payoff functions associated with the system. Recall from Section 3.2 that C̃
is the set of boundary consistent coalitions. We show here that payoff value on coalitions from C̃ is redundant
given Ĉ. Note that C̃ \Ĉ represents all the coalitions that do not end in a boundary edge. For 2 ∈ C̃ \Ĉ,
E$ (2) = E$ (2[: −1]) (using Python’s slice notation on list) because only boundary edges are connected to the
model defined by the boundary. Therefore it suffices to show that E$ is linearly independent for $ ∈ Ĉ. For
a contradiction, assume for all 2 ∈ Ĉ,

∑
$⊆Ĉ U

$E$ (2) = 0, with some non zero U$ ∈ R (definition of linear

dependence). Let ( be a coalition with minimal length such that U( ≠ 0. We have
∑
$⊆Ĉ U

$E$ (() = U(, a
contradiction.

Therefore for any a we have unique U’s such that a =
∑
$⊆Ĉ U

$E$. Using the linearity axiom, we have

qa = q∑
$⊆Ĉ U

$E$ =
∑
$⊆Ĉ

U$qE$

The uniqueness of U and qE$ makes the attribution unique if a solution exists. Axioms used in the proof are
italicized.

�

8.2 Shapley Flow satisfies the axioms

Proof. We first demonstrate how to generate all boundaries. Then we show that Shapley Flow gives boundary
consistent attributions. Following that, we look at the set of histories that can be generated by DFS in boundary
B, denoted as Πdfs

B . We show that Πdfs
B = H̃B . Using this fact, we check the axioms one by one.

• Every boundary can be “grown” one node at a time from � = {B} where B is the source node: Since the
computational graph G is a directed acyclic graph (DAG), we can obtain a topological ordering of the nodes
in G. Starting by including the first node in the ordering (the source node B), which defines a boundary
as (� = {B}, � = Nodes(G)\�), we grow the boundary by adding nodes to � (removing nodes from �) one
by one following the topological ordering. This ordering ensures the corresponding explanation boundary is
valid because the cut set only flows from � to � (if that’s not true, then one of the dependency nodes is
not in �, which violates topological ordering).

Now we show every boundary can be “grown” in this fashion. In other words, starting from an arbitrary
boundary B1 = (�1, �1), we can “shrink” one node at a time to � = {B} by reversing the growing procedure.
First note that, �1 must have a node with outgoing edges only pointing to nodes in �1 (if that’s not the
case, we have a cycle in this graph because we can always choose to go through edges internal to �1 and
loop indefinitely). Therefore we can just remove that node to arrive at a new boundary (now its incoming
edges are in the cut set). By the same argument, we can keep removing nodes until � = {B}, completing the
proof.

• Shapley Flow gives boundary consistent attributions: We show that every boundary grown has edge attri-
bution consistent with the previous boundary. Therefore all boundaries have consistent edge attribution
because the boundary formed by any two boundary’s common set of nodes can be grown into those two
boundaries using the property above. Let’s focus on the newly added node 2 from one boundary to the
next. Note that a property of depth first search is that every time 2’s value is updated, its outgoing edges
are activated in an atomic way (no other activation of edges occur between the activation of 2’s outgoing
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edges). Therefore, the change in output due to the activation of new edges occur together in the view of
edges upstream of 2, thus not changing their attributions. Also, since 2’s outgoing edges must point to the
model defined by the current boundary (otherwise it cannot be a valid topological ordering), they don’t
have down stream edges, concluding the proof.

• Πdfs
B = H̃B : Since attribution is boundary consistent, we can treat the model as a blackbox and only look

at the DFS ordering on the data side. Observe that the edge traversal ordering in DFS is a valid history
because a) every edge traversal can be understood as a message received through edge , b) when every
message is received, the node’s value is updated, and c) the new node’s value is sent out through every
outgoing edge by the recursive call in DFS. Therefore the two side of the equation are at least holding the
same type of object.

We first show that Πdfs
B ⊆ H̃B . Take ℎ ∈ Πdfs

B , we need to find a history ℎ∗ in B∗ such that a) ℎ can be
expanded into ℎ∗ and b) for any boundary, there is a history in that boundary that can be expanded into
ℎ∗. Let ℎ∗ be any history expanded using DFS that is aligned with ℎ. To show that every boundary can
expand into ℎ∗, we just need to show that the boundaries generated through the growing process introduced
in the first bullet point can be expanded into ℎ∗. The base case is � = {B}. There must have an ordering
to expand into ℎ∗ because ℎ∗ is generated by DFS, and that DFS ensures that every edge’s impact on the
boundary is propagated to the end of computation before another edge in � is traversed. Similarly, for the
inductive step, when a new node 2 is added, we just follow the expansion of its previous boundary to reach
ℎ∗.

Next we show that H̃B ⊆ Πdfs
B . First observe that for history ℎ1 in B1 = (�1, �1) and history ℎ2 in

B2 = (�2, �2) with �2 ⊆ �1, if ℎ1 cannot be expanded into ℎ2, then �� (ℎ1) ∩ �� (ℎ2) = ∅ because they
already have mismatches for histories that doesn’t involve passing through B1. Assume we do have ℎ ∈ H̃B
but ℎ ∉ Πdfs

B . To derive a contradiction, we shrink the boundary one node at a time from B, again using
the procedure described in the first bullet point. We denote the resulting boundary formed by removing =
nodes as B−=. Since ℎ is assumed to be boundary consistent, there exist ℎB−1 ∈ HB−1 such that ℎB−1 must
be able to expand into ℎ. Say the two boundaries differ in node 2. Note that any update to 2 crosses B−1,
therefore its impact must be reached by � before another event occurs in �−1. Since all of 2’s outgoing edges
crosses B, any ordering of messages sent through those edges is a DFS ordering from 2. This means that if
ℎB−1 can be reached by DFS, so can ℎB , violating the assumption. Therefore, ℎB−1 ∉ Π

dfs
B−1 and ℎB−1 ∈ H̃B−1

(the latter because ℎB−1 can expand into a history that is consistent with all boundaries by first expanding
into ℎ). We run the same argument until � = {B}. This gives a contradiction because in this boundary, all
histories can be produced by DFS.

• Efficiency: Since we are attributing credit by the change in the target node’s value following a history ℎ

given by DFS, the target for this particular DFS run is thus aB (ℎ) − aB ( []). Average over all DFS runs
and noting that H̃B = Πdfs

B gives the target
∑
ℎ∈H̃B aB (ℎ)/|H̃B | − aB ( []). Noting that each update in the

target node’s value must flow through one of the boundary edges. Therefore the sum of boundary edges’
attribution equals to the target.

• Linearity: For two games of the same boundary E and D, following any history, the sum of output differences
between the two games is the output difference of the sum of the two games, therefore qE+D would not differ
from qE + qD. It’s easy to see that extending addition to any linear combination wouldn’t matter.

• Dummy player: Since Shapley Flow is boundary consistent, we can just run DFS up to the boundary (treat
� as a blackbox). Since every step in DFS remains in the coalition C̃B because Πdfs

B ⊆ H̃B , if an edge is
dummy, every time it is traversed through by DFS, the output won’t change by definition, thus giving it 0
credit.

�

Therefore Shapley Flow uniquely satisfies the axioms. We note that efficiency requirement simplifies to 5 (x) −
5 (x′) when applying it to an actual model because all histories from DFS would lead the target node to its
target value. We can prove a stronger claim that actually all nodes would reach its target value when DFS
finishes. To see that, we do an induction on a topological ordering of the nodes. The source nodes reaches its
final value by definition. Assume this holds for the :th node. For the : + 1th node, its parents achieves target



value by induction. Therefore DFS would make the parents’ final values visible to this node, thus updating it to
the target value.

9 Causal graphs

While the nutrition dataset is introduced in the main text, we describe an additional dataset to further demon-
strate the usefulness of Shapley Flow. Moreover, we describe in detail how the causal relationship is estimated.
The resulting causal graphs for the nutrition dataset and the income dataset are visualized in Figure 9.

9.1 The Census Income dataset

The Census Income dataset consists of 32, 561 samples with 12 features. The task is to predict whether one’s
annual income exceeds 50:. We assume a causal graph, similar to that used by Frye et al. (2019) (Figure 9b).
Attributes determined at birth e.g., sex, native country, and race act as source nodes. The remaining features
(marital status, education, relationship, occupation, capital gain, work hours per week, capital loss, work class)
have fully connected edges pointing from their causal ancestors. All features have a directed edge pointing to
the model.

9.2 Causal Effect Estimation

Given the causal structure described above, we estimate the relationship among variables using XGBoost. More
specifically, using an 80/20 train test split, we use XGBoost to learn the function for each node. If the node value
is categorical, we train to minimize cross entropy loss. Otherwise, we minimize mean squared error. Models are
fitted by 100 XGBoost trees with a max depth of 3 for up to 1000 epochs. Since features are rarely perfectly
determined by their dependency node, we add independent noise nodes to account for this effect. That is, each
non-sink node is pointed to by a unique noise node that account for the residue effect of the prediction.

Depending on whether the variable is discrete or continuous, we handle the noise differently. For continuous
variables, the noise node’s value is the residue between the prediction and the actual value. For discrete variables,
we assume the actual value is sampled from the categorical distribution specified by the prediction. Therefore the
noise node’s value is any possible random number that could result in the actual value. As a concrete example
for handling discrete variable, consider a binary variable H, and assume the trained categorical function 5 gives
5 (x) = [0.3, 0.7] where x is the foreground value of the input to predict H. We view the data generation as the
following. The noise term associated with H is treated as a uniform random variable between 0 and 1. If it lands
within 0 to 0.3, H is sampled to be 0, otherwise 1 (matching the categorical function of 70% chance of sampling
H to be 1). Now if we observe the foreground value of H to be 0, it means the foreground value of noise must be
uniform between 0 to 0.3. Although we cannot infer the exact value of the noise, we can sample the noise from
0 to 0.3 multiple times and average the resulting attribution.

10 Additional Results

In this section, we first present additional sanity checks with synthetic data. Then we show additional examples
from both the nutrition and income datasets to demonstrate how a complete view of boundaries should be
preferable over single boundary approaches.

10.1 Additional Sanity Checks

We include further sanity check experiments in this section. The first sanity check consists of a chain with 4
variables. Each node along the chain is an identical copy of its predecessor and the function to explain only
depends on -4 (Figure 10). The dataset is created by sampling -1 ∼ N(0, 1), that is a standard normal
distribution, with 1000 samples. We use the first sample as background, and explain the second sample (one
can choose arbitrary samples to obtain the same insights). As shown in Figure 10, independent SHAP fails to
show the indirect impact of -1, -2, and -3, ASV fails to show the direct impact of -4, on manifold SHAP fails
to fully capture both the direct and indirect importance of any edge.

The second sanity check consists of linear models as described in Section 4.3. We include the full result with
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(a) Causal graph for the nutrition dataset

(b) Causal graph for the Census Income dataset

Figure 9: The causal graphs we used for the two real datasets. Note that each node in the causal graph for (a) is
given a noise node to account for random effects. The noise nodes are omitted for better readability for (b). The
resulting causal structures are over-simplifications of the true causal structure; the relationship between source
nodes (e.g., race and sex) and other features is far more complex. They are used as a proof of concept to show
both the direct and indirect effect of features on the prediction output.

(a) chain dataset

Independent On-manifold ASV

X4 -1.82 -0.45 0.0
X1 0.0 -0.45 -1.82
X3 0.0 -0.45 0.0
X2 0.0 -0.45 0.0

(b) Shapley Flow

Figure 10: (a) The chain dataset contains exact copies of nodes. The dashed edges denotes dummy dependencies.
(b) While Shapley Flow shows the entire path of influence, other baselines fails to capture either direct and
indirect effects.



Methods Income Nutrition Synthetic

Independent 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)
On-manifold 0.4 (± 0.3) 1.3 (± 2.5) 0.8 (± 0.7)
ASV 0.4 (± 0.6) 1.5 (± 3.3) 1.2 (± 1.4)
Shapley Flow 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)

Table 2: Shapley Flow and independent SHAP have lower mean absolute error (std) for direct effect of features
on linear models.

Methods Income Nutrition Synthetic

Independent 0.1 (± 0.2) 0.8 (± 2.7) 1.1 (± 1.4)
On-manifold 0.4 (± 0.3) 0.9 (± 1.6) 1.5 (± 1.5)
ASV 0.1 (± 0.1) 0.6 (± 1.9) 1.1 (± 1.5)
Flow 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)

Table 3: Shapley Flow and ASV have lower mean absolute error (std) for indirect effect on linear models.

the income dataset added in Table 2 and Table 3 for direct and indirect effects respectively. The trend for
the income dataset algins with the nutrition and synthetic dataset: only Shapley Flow makes no mistake for
estimating both direct and indirect impact. Independent Shap only does well for direct effect. ASV only does
well for indirect effects (it only reaches zero error when evaluated on source nodes).

10.2 Additional examples

In this section, we analyze another example from the nutrition dataset (Figure 11) and 3 additional example
from the adult censor dataset.

Independent SHAP ignores the indirect impact of features. Take an example from the nutrition dataset
(Figure 11). The race feature is given low attribution with independent SHAP, but high importance in ASV.
This happens because race, in addition to its direct impact, indirectly affects the output through blood pressure,
serum magnesium, and blood protein, as shown by Shapley Flow (Figure 11a). In particular, race partially
accounts for the impact of serum magnesium because changing race from Black to White on average increases
serum magnesium by 0.07 meg/L in the dataset (thus partially explaining the increase in serum magnesium
changing from the background sample to the foreground). Independent SHAP fails to account for the indirect
impact of race, leaving the user with a potentially misleading impression that race is irrelevant for the prediction.

On-manifold SHAP provides a misleading interpretation. With the same example (Figure 11), we
observe that on-manifold SHAP strongly disagrees with independent SHAP, ASV, and Shapley Flow on the
importance of age. Not only does it assign more credit to age, it also flips the sign, suggesting that age is
protective. However, Figure 12a shows that age and earlier mortality are positively correlated; then how could
age be protective? Figure 12b provides an explanation. Since SHAP considers all partial histories regardless
of the causal structure, when we focus on serum magnesium and age, there are two cases: serum magnesium
updates before or after age. We focus on the first case because it is where on-manifold SHAP differs from
other baselines (all baselines already consider the second case as it satisfies the causal ordering). When serum
magnesium updates before age, the expected age given serum magnesium is higher than the foreground age
(yellow line above the black marker). Therefore when age updates to its foreground value, we observe a decrease
in age, leading to a decrease in the output (so age appears to be protective). Serum magnesium is just one
variable from which age steals credit. Similar logic applies to TIBC, red blood cells, serum iron, serum protein,
serum cholesterol, and diastolic BP. From both an in/direct impact perspective, on-manifold perturbation can
be misleading since it is based not on causal but on observational relationships.

ASV ignores the direct impact of features. As shown in Figure 11, serum magnesium appears to be
more important in independent SHAP compared to ASV. From Shapley Flow (Figure 11a), this difference is
explained by race as its edge to serum magnesium has a negative impact. However, looking at ASV alone, one
fails to understand that intervening on serum magnesium could have a larger impact on the output.

Shapley Flow shows both direct and indirect impacts of features. Focusing on the attribution given
by Shapley Flow (Figure 11a). We not only observe similar direct impacts in variables compared to inde-
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pendent SHAP, but also can trace those impacts to their source nodes, similar to ASV. Furthermore, Shapley
Flow provides more detail compared to other approaches. For example, using Shapley Flow we gain a better
understanding of the ways in which race impacts survival. The same goes for all other features. This is useful
because causal links can change (or break) over time. Our method provides a way to reason through the impact
of such a change.

Figure 13 gives an example of applying Shapley Flow and baselines on the income dataset. Note that the
attribution to capital gain drops from independent SHAP to on-manifold SHAP and ASV. From Shapley Flow,
we know the decreased attribution is due to age and race. More examples are shown in Figure 14 and 15.

10.3 A global understanding with Shapley Flow

In addition to explaining a particular example, one can explain an entire dataset with Shapley Flow. Specifically,
for multi-class classification problems, we take the average of attributions for the probability predicted for the
actual class, in accordance with (Frye et al., 2019). A demonstration on the income dataset using 1000 randomly
selected examples is included in Figure 16. As before, we use a single shared background sample for explanation.
Here, we observe that although the relative importance across independent SHAP, on-manifold SHAP, and ASV
are similar, age and sex have opposite direct versus indirect impact as shown by Shapley Flow.

10.4 Example with multiple background samples

An example with 100 background samples is shown in Figure 17. Shapley Flow shows a holistic picture of
feature importance, while other baselines only show part of the picture.

Independent SHAP ignores the indirect impact of features. Take an example from the nutrition dataset
(Figure 17). Independent SHAP only considers the direct impact of systolic blood pressure, and ignores its
potential impact on pulse pressure (as shown by Shapley Flow in Figure 17a). If the causal graph is correct,
independent SHAP would underestimate the effect of intervening on Systolic BP.

On-manifold SHAP provides a misleading interpretation. With the same example (Figure 17), we
observe that on-manifold SHAP strongly disagrees with independent SHAP, ASV, and Shapley Flow on the
importance of age. In particular, it flips the sign on the importance of age. Since the background age (50) is
very close to the foreground age (51), we would not expected age to significantly affect the prediction. Figure
18b provides an explanation. Since SHAP considers all partial histories regardless of the causal structure, when
we focus on systolic blood pressure and age, there are two cases: systolic blood pressure updates before or after
age. We focus on the first case because it is where on-manifold SHAP differs from other baselines (all baselines
already consider the second case as it satisfies the causal ordering). When systolic blood pressure updates before
age, the expected age given systolic blood pressure is lower than the foreground age (yellow line below the black
marker). Therefore when age updates to its foreground value, we observe a large increase in age, leading to a
increase in the output (so age appears to be riskier). from both an in/direct impact perspective, on-manifold
perturbation can be misleading since it is based not on causal but on observational relationships.

ASV ignores the direct impact of features. As shown in Figure 17, ASV gives no credit systolic blood
pressure because it is an intermediate node. However, it is clear from Shapley Flow that intervening on systolic
blood pressure has a large impact on the outcome.

Shapley Flow shows both direct and indirect impacts of features. Focusing on the attribution given by
Shapley Flow (Figure 17a). We not only observe similar direct impacts in variables compared to independent
SHAP, but also can trace those impacts to their source nodes, similar to ASV.

11 Considering all histories could lead to boundary inconsistency

In this section, we give an example of how considering all history H in the axioms (as opposed to H̃)
could lead to inconsistent attributions across boundaries. Consider two cuts for the same causal graph
shown in Figure 19. Note that both the green and the red cut share the edge “a”. We have 8
possible message transmission histories (‘c’, ‘b’ can be transmitted only after ‘d’ has been transmitted):
{[0, 3, 2, 1], [0, 3, 1, 2], [3, 0, 2, 1], [3, 0, 1, 2], [3, 2, 0, 1], [3, 2, 1, 0], [3, 1, 0, 2], [3, 1, 2, 0]}. We use the same no-
tation for carrier games (defined in Section 8) and construct a game as the following:



Top features Age Serum Magnesium Race

Background sample 35.0 1.37 Black
Foreground sample 42.0 1.63 white

Attributions Independent On-manifold ASV

Age 0.23 -0.38 0.3
Serum Magnesium -0.21 -0.02 -0.15
Race -0.06 0.04 -0.24
Pulse pressure 0.0 -0.08 0.0
Diastolic BP 0.0 0.08 0.0
Serum Cholesterol 0.0 0.07 0.0
Serum Protein 0.01 0.06 0.0
Serum Iron 0.0 0.05 0.0
Poverty index -0.02 0.01 -0.01
Systolic BP -0.03 -0.01 0.0
Red blood cells 0.0 0.05 0.0
Blood protein 0.0 0.0 0.04
TIBC 0.0 0.04 0.0
Blood pressure 0.0 0.0 -0.03
TS 0.0 0.03 0.0
BMI -0.0 -0.03 -0.0
Sex 0.0 0.02 0.0
Serum Albumin 0.0 -0.01 0.0
White blood cells 0.01 -0.01 0.0
Sedimentation rate 0.0 0.01 0.0
Inflamation 0.0 0.0 0.01
Iron 0.0 0.0 0.0

(a) Shapley Flow

Figure 11: Comparison among baselines on a sample (top table) from the nutrition dataset, showing top 10
features/edges. As noted in the main text this graph is an oversimplification and is not necessarily representative
of the true underlying causal relationship.
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(a) Age vs. output (b) Age vs. magnesium

Figure 12: Age appears to be protective in on-manifold SHAP because it steals credit from other variables.

EA43 = E
320
A43
− E3201

A43
+ E310

A43
− E3102

A43

Because of the linearity axiom, we have qEA43 (0) > 0, qEA43 (1) < 0, qEA43 (2) < 0, qEA43 (3) = 0.

However, when we consider the green boundary, the ordering 3201 and 3102 does not exist because in the green
boundary � and . are assumed to be a black-box. Therefore, E6A44= = 0, which means 0 is now a dummy edge:
qE6A44= (0) = 0 ≠ qEA43 (0). This demonstrate that we cannot consider all histories in H and being boundary
consistent.



Background sample Foreground sample

Age 39 35
Workclass State-gov Federal-gov
Education-Num 13 5
Marital Status Never-married Married-civ-spouse
Occupation Adm-clerical Farming-fishing
Relationship Not-in-family Husband
Race White Black
Sex Male Male
Capital Gain 2174 0
Capital Loss 0 0
Hours per week 40 40
Country United-States United-States

Independent On-manifold ASV

Education-Num -0.12 -0.11 -0.09
Relationship 0.05 0.06 0.04
Capital Gain 0.09 0.01 0.03
Occupation -0.03 -0.07 -0.02
Marital Status 0.04 0.05 0.03
Workclass 0.02 0.03 0.02
Race -0.01 -0.03 0.01
Age -0.01 -0.01 0.02
Capital Loss 0.0 0.03 0.0
Country 0.0 0.03 0.0
Sex 0.0 0.03 0.0
Hours per week 0.0 0.0 0.0

(a) Shapley Flow

Figure 13: Comparison between independent SHAP, on-manifold SHAP, ASV, and Shapley Flow on a sample
from the income dataset. Shapley flow shows the top 10 links. The direct impact of capital gain is not repre-
sented by on-manifold SHAP. As noted in the text this graph is based on previous work and is not necessarily
representative of the true underlying causal relationship.
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Background sample foreground sample

Age 39 30
Workclass State-gov State-gov
Education-Num 13 13
Marital Status Never-married Married-civ-spouse
Occupation Adm-clerical Prof-specialty
Relationship Not-in-family Husband
Race White Asian-Pac-Islander
Sex Male Male
Capital Gain 2174 0
Capital Loss 0 0
Hours per week 40 40
Country United-States India

Independent On-manifold ASV

Relationship 0.17 0.04 0.13
Capital Gain 0.22 0.01 0.07
Occupation 0.1 0.06 0.07
Marital Status 0.08 0.06 0.07
Country -0.04 0.07 0.07
Age -0.0 -0.02 0.13
Education-Num 0.0 0.12 0.0
Race 0.02 0.07 0.0
Workclass 0.0 0.06 0.0
Hours per week 0.0 0.03 0.0
Sex 0.0 0.03 0.0
Capital Loss 0.0 0.01 0.0

(a) Shapley Flow

Figure 14: Comparison between independent SHAP, on-manifold SHAP, ASV, and Shapley Flow on a sample
from the income dataset. Shapley flow shows the top 10 links. The indirect impact of age is only highlighted
by Shapley Flow and ASV. As noted in the text this graph is based on previous work and is not necessarily
representative of the true underlying causal relationship.



Background sample Foreground sample

Age 39 30
Workclass State-gov Federal-gov
Education-Num 13 10
Marital Status Never-married Married-civ-spouse
Occupation Adm-clerical Adm-clerical
Relationship Not-in-family Own-child
Race White White
Sex Male Male
Capital Gain 2174 0
Capital Loss 0 0
Hours per week 40 40
Country United-States United-States

Attributions Independent On-manifold ASV

Marital Status 0.03 0.08 0.03
Capital Gain 0.06 0.02 0.02
Workclass 0.03 0.03 0.02
Relationship -0.01 -0.11 0.01
Education-Num -0.02 0.01 -0.02
Age -0.02 -0.03 0.01
Country 0.0 0.03 0.0
Capital Loss 0.0 0.03 0.0
Occupation 0.0 -0.03 0.0
Sex 0.0 0.03 0.0
Race 0.0 0.02 0.0
Hours per week 0.0 -0.0 0.0

(a) Shapley Flow

Figure 15: Comparison between independent SHAP, on-manifold SHAP, ASV, and Shapley Flow on a sample
from the income dataset. Shapley flow shows the top 10 links. Note that although age appears to be not
important for all baselines, its impact through different causal edges are opposite as shown by Shapley Flow.
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Independent On-manifold ASV

Capital Gain 0.02 0.02 0.03
Education-Num 0.02 0.03 0.02
Age 0.01 0.01 0.01
Occupation 0.0 0.01 0.0
Capital Loss 0.01 -0.0 0.01
Relationship 0.01 0.0 0.0
Hours per week 0.0 0.01 -0.0
Sex 0.0 -0.01 0.0
Country 0.0 -0.01 0.0
Marital Status -0.0 0.0 -0.0
Race 0.0 -0.01 -0.0
Workclass 0.0 -0.0 -0.0

(a) Shapley Flow

Figure 16: Comparison of global understanding between independent SHAP, on-manifold SHAP, ASV, and
Shapley Flow on the income dataset. Showing only the top 10 attributions for Shapley Flow for visual clarity.



Top features Sex Age Systolic BP

Background mean NaN 50 135
Foreground sample Female 51 118

Attributions Independent On-manifold ASV

Sex -0.11 -0.16 -0.1
Age -0.07 0.23 -0.08
Systolic BP -0.05 -0.22 0.0
Poverty index -0.03 0.09 -0.02
Blood pressure 0.0 0.0 -0.08
TIBC 0.0 -0.16 0.0
Diastolic BP -0.02 -0.08 0.0
Pulse pressure -0.01 -0.11 0.0
Serum Iron 0.01 0.07 0.0
BMI -0.0 -0.05 -0.0
White blood cells -0.01 0.03 0.0
Serum Protein -0.0 0.05 0.0
Serum Albumin -0.0 -0.04 0.0
Inflamation 0.0 0.0 -0.02
Serum Cholesterol -0.0 0.04 -0.0
Iron 0.0 0.0 0.02
Sedimentation rate -0.01 -0.01 0.0
Race -0.0 0.0 -0.01
TS 0.01 0.01 0.0
Serum Magnesium -0.0 -0.01 -0.0
Blood protein 0.0 0.0 -0.01
Red blood cells -0.0 0.01 -0.0

(a) Shapley Flow

Figure 17: Comparison among methods on 100 background samples from the nutrition dataset, showing top 10
features/edges.

(a) Age vs. output (b) Age vs. systolic blood pressure

Figure 18: Age appears to be highly risky in on-manifold SHAP because it steals credit from other variables.
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(b) Green cut

Figure 19: Two cuts that represent two boundaries for the same causal graph.


