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1 Proof of Lemma 3.1

Lemma 3.1. In the proposed nonlinear coregionalization model, the marginal distribution of the output matrix Y is

p(Y|X,B) = N
(
vec(Y)|0, (B>KBBB)⊗K + η−1I

)
.

Given two arbitrary outputs ym(xi) and yt(xj), i.e., the m-th output for input xi and t-th output for input xj , we have
cov
(
ym(xi), yt(xj)

)
= k(xi,xj)b̃

>
mKBB b̃t + η−1 · 1(xi = xj ,m = t), where b̃m and b̃t are the m-th and t-th column of

B, respectively, and 1(·) is the indicator function.

Proof. First, from the likelihood p(Y|W,B) = N
(
vec(Y)|vec(WB), η−1I

)
, we can obtain that vec(Y) = vec(WB)+ε,

where ε ∼ N (ε|0, η−1I). Using the property of vectorization (Minka, 2000), we can derive that vec(WB) = (B> ⊗
I)vec(W), and hence

cov
(
vec(WB)

)
= (B> ⊗ I)cov

(
vec(W)

)
(B⊗ I).

Since p(W|X,B) =MN (W|0,K,KBB) = N
(
vec(W)|0,KBB⊗K

)
, we have cov(vec(W)) = KBB⊗K. Therefore

cov
(
vec(WB)

)
= (B> ⊗ I)(KBB ⊗K)(B⊗ I) = (B>KBBB)⊗K

and
cov
(
vec(Y)

)
= (B>KBBB)⊗K + η−1I.

Finally, since vec(Y) is an affine transformation of vec(W) plus an independent Gaussian noise, it must follow a multivariate
Gaussian distribution. Obviously, E

(
vec(Y)

)
= 0. Finally, we have

p(Y|X,B) = N
(
vec(Y)|0, (B>KBBB)⊗K + η−1I

)
.

2 Prediction

Given a new input x∗, we aim to obtain the predictive distribution of the d dimensional output y∗ at the highest fidelity,

p(y∗|x∗, {X(i),Y(i)}Fi=1) =

∫
p(y∗|w(F )

∗ ,B(F ), {ηj}Fj=1)

·
F∏
i=1

p(w
(i)
∗ |X̂(i),w

(i−1)
∗ ,x∗,W(i),B(i))q(W(i))d{W(i),w

(i)
∗ }Fi=1,

where w
(i)
∗ are the corresponding basis weight functions of x∗ in the i-th fidelity,

p(w
(i)
∗ |X̂(i),w

(i−1)
∗ ,x∗,W(i),B(i)) =MN (w

(i)
∗ |k(i)

∗nK
(i)−1

W(i),k
(i)
∗∗ − k

(i)
∗nK

(i)−1

k
(i)
n∗,K

(i)
BB)

is a conditional matrix Gaussian distribution, k(i)
∗n is the cross covariance (or kernel) between [x∗

>
,w

(i−1)>
∗ ] and X̂(i), and

k
(i)
n∗ = k

(i)>

∗n . The exact predictive distribution is not analytical. Therefore, we can generate a collection of IID samples for
y∗, and compute the empirical distribution as an approximation. To generate one sample, we start from the first fidelity, and
recursively sample each W(i) from q(W(i)), and w

(i)
∗ from p(w

(i)
∗ |X̂(i),w

(i−1)
∗ ,x∗,W(i),B(i)) until the highest fidelity

is arrived. Finally, we sample y∗ from p(y∗|w(F )
∗ ,B(F ), {ηj}Fj=1).

3 Training with Non-Overlapping Inputs

Although MFHoGP is developed for physical simulations where the inputs of the training examples are nested across
fidelities, our learning algorithm can be trivially adjusted for non-overlapping inputs. Specifically, in each fidelity i > 1 ,
when X(i) are no longer included in X(i−1), to obtain the parameterized sample W̃(i−1)(X(i),B(i−1)) (see Sec. 4.3 in the



main paper), we cannot directly take part of the sample W̃(i−1)(X(i−1),B(i−1)). Instead, we sample W̃(i−1)(X(i),B(i−1))
conditioned on it, from a conditional matrix Gaussian distribution. This is similar to the sampling of the weights in prediction
(see Sec. 2). Specifically, let us denote W̃(i−1)(X(i),B(i−1)) by W̃

(i−1)
i and W̃(i−1)(X(i−1),B(i−1)) by W̃

(i−1)
i−1 for

simplicity. We have

p(W̃
(i−1)
i |W̃(i−1)

i−1 )

=MN (W̃
(i−1)
i |K(i)

i,i−1K
(i−1)−1W̃

(i−1)
i−1 ,K(i) −K

(i)
i,i−1K

(i−1)−1K
(i)
i−1,i,K

(i−1)
BB )

where K(i−1) is the covariance (kernel) matrix on X(i−1), K(i) on X(i), K(i)
i,i−1 is the cross covariance between Xi and

Xi−1, and K
(i)
i−1,i between Xi−1 and Xi. All the other computation in learning and prediction are the same.

4 Experimental Details

4.1 Data Preparation for Small Solution Fields

As mentioned in our main paper, the small datasets were collected from solving three fundamental partial differential
equations (PDEs), Burgers’, Poisson’s and heat equations, in small spatial/temporal domains. Each equation plays an
important role in scientific and engineering applications. The details of the PDEs and data generation are listed as follows.

Burgers’ equation is considered as a canonical nonlinear hyperbolic PDE; it is widely used to describe various physical
phenomena, such as fluid dynamics (Chung, 2010), nonlinear acoustics (Sugimoto, 1991) and traffic flows (Nagel, 1996).
Because it can develop discontinuities (shock waves) based on a normal conservation equation, it also serves as a benchmark
test case for many numerical solvers and surrogate models (Kutluay et al., 1999; Shah et al., 2017; Raissi et al., 2017b).
The viscous version of this equation is given by ∂u

∂t + u∂u
∂x = v ∂2u

∂x2 , where u represents the volume, x indicates a spatial
location, t denotes the time, and v represents the viscosity. We set x ∈ [0, 1], t ∈ [0, 3], and u(x, 0) = sin(xπ/2) with
homogeneous Dirichlet boundary conditions. We uniformly sampled viscosities v ∈ [0.001, 0.1] as the input parameter
to generate the solution field. The equation is solved using the finite element with hat functions in space and backward
Euler in time domains. The spatial-temporal domain is discretized into a 16 × 16 regular rectangular mesh for the first
(lowest) fidelity solver. The subsequent solvers of higher fidelities double the nodes in each mesh dimension, e.g., 32× 32
for the second fidelity and 64 × 64 for the third fidelity. The result fields (i.e., outputs) are computed from a 128 × 128
spatial-temporal regular mesh.

Poisson’s equation is an elliptic PDE commonly used in mechanical engineering and physics to describe potential fields,
e.g., gravitational and electrostatic fields (Chapra et al., 2010). It is a generalization of Laplace’s equation (Persides, 1973)
and written as ∆u = 0, where ∆ is the Laplace operator and u indicates the volume. Despite its simplicity, Poisson’s
equation is frequently seen in physics and often serves as a basic test case for surrogate models (Lagaris et al., 1998; Tuo
et al., 2014). In our experiment, we set a 2D spatial domain x ∈ [0, 1] × [0, 1] with Dirichlet boundary conditions. The
constant values of the four boundaries and the centre of the rectangle domain are used as the input parameters, each of which
ranges from 0.1 to 0.9. We uniformly sampled the input parameters to generate the corresponding potential fields as the
outputs. The PDE is solved using the finite difference method with the first order centre differencing scheme and regular
rectangle meshes. We used an 8× 8 mesh for the coarsest level solver. The subsequent refined solver uses a finer mesh that
doubles the node in each dimension. The result potential fields are computed with a 32× 32 spatial-temporal regular grid.

Heat equation is a basic PDE that describes how heat flows evolve over time. Although originally introduced in 1822 to
explain heat flows only, the heat equation is ubiquitous in many scientific fields, such as probability theory (Spitzer, 1964;
Burdzy et al., 2004) and financial mathematics (Black and Scholes, 1973). Hence, it is also widely used as a surrogate
model (Efe and Ozbay, 2003; Raissi et al., 2017a). The heat equation is given by ∂u

∂t + α∆u = 0, where u represents the
heat, α the thermal conductivity, and ∆ the Laplace operator. We set a 2D spatial-temporal domain x ∈ [0, 1], t ∈ [0, 5]
with the Neumann boundary condition at x = 0 and x = 1, and u(x, 0) = H(x− 0.25)−H(x− 0.75), where H(·) is the
Heaviside step function. The input parameters include the flux rate of the left boundary at x = 0 (ranging from 0 to 1), the
flux rate of the right boundary at x = 1 (ranging from -1 to 0), and the thermal conductivity (ranging from 0.01 to 0.1). The
equation is solved using finite difference in space and backward Euler in time domains. The spatial-temporal domain is
discretized into a 16× 16 regular rectangular mesh for the first (lowest) fidelity solver. A refined solver uses a 32× 32 mesh
for the second fidelity. The result fields are computed on a 100× 100 spatial-temporal grid.
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(a) Burgers-I
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Figure 1: The test-loglikelihood (in log scale) on small datasets. The results are averaged from 5 runs. After the dash in each caption (e.g.,
“Burgers-II”) is how many fidelities across the training data. -F{1,2,3} indicates the model trained with a particular fidelity’s examples
and -F-ALL with all the examples.

4.2 Data Preparation for Large-Scale Simulations of Lid-Driven Cavity Flows

We also examined MFHoGP in lid-driven cavity flows (Bozeman and Dalton, 1973), a classic computational fluid dynamics
problem. The problem describes how liquid inside a cavity is driven by the lids on the walls, making the pressures vary
locally and eventually leading to laminar and turbulent flows inside the cavity. The simulation of lid driven cavity flows
involves solving the incompressible Navier-Stokes (NS) equation (Chorin, 1968), ρ(u · ∇)u = −∇p+ µ∇2u, where ρ is
the density, p the pressure, u the velocity, and µ the dynamic viscosity. The PDE is well known to be challenging to solve
due to their complicated behaviours under large Reynolds numbers. It is thus commonly used as a benchmark test case for
numerical solvers (Bozeman and Dalton, 1973; Strang and Fix, 1973) and surrogate models (Terragni et al., 2011; Xing
et al., 2016). In our experiments, we considered a square cavity x ∈ [0, 1]× [0, 1] filled with liquid and the time t ∈ [0, 1].
The top lid is given a tangential velocity to drive the fluid to flow while the other lids on the remaining walls stay steady.
No-slip conditions are applied to all the lids. Given the Reynold number Re ∈ [10, 500] and the top boundary velocity
ranging from 0 to 1, the spatial-temporal pressure field is computed on a 100 × 100 regular mesh at 100 evenly spaced
time points. Hence, we have one million outputs for each input setting. We used the SIMPLE algorithm (Caretto et al.,
1973) with a stagger grid (Versteeg and Malalasekera, 2007), the up-wind scheme (Versteeg and Malalasekera, 2007) for the
spatial difference, and the implicit time scheme with fixed time steps to solve the PDE. For the lowest fidelity solver, we
used a 16× 16 spatial mesh and 10, 000 time step to ensure the numerical stability. A subsequent finer solver (of the second
fidelity) uses a 32× 32 spatial mesh and the same number of time steps.

4.3 Test Log Likelihood

We report the test loglikelihood of PCA-GP, HOGP, SCGP, GPRN and MFHoGP on small datasets in Fig.1. Since KPCA-GP
and IsoMap-GP are not standard probabilistic models (they do not have likelihood terms), their test loglikelihoods are
unavailable. As we can see, similar to the RMSE results (in the main paper), MFHoGP consistently outperforms all the
competing methods, except on Poisson-I and Poisson-II, SCGP obtains slightly higher likelihood. However, SCGP is
inefficient and cannot handle a large number of outputs, e.g., over ten thousands.

4.4 Local Output Recovery

We supplement the local prediction results in the settings of Heat-2, Burgers-2 and Burgers-3, which are shown in Fig. 2,
3 and 4, respectively. We also show the local prediction results of simulating lid-driven cavity flows in Fig. 5 (F1=200,
F2=20). Each column are the results of one method. The leftmost is MFHoGP. For each setting, we show the difference
between the prediction and ground-truth in 10 randomly selected test fields.

As we can see, MFHoGP always obtains better predictions for individual outputs. This is implied by the fact that most
output regions of MFHoGP are rendered by lighter colours. Hence, it confirms that our method not only yields a superior
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Figure 2: Visualization of local errors in Heat-2. Each image represents the difference between the prediction and ground-truth over
individual outputs of a test example. From the left column to the right are the results of MFHoGP, PCA-GP-{1,2}, KPCA-GP-{1,2},
IsoMap-GP-{1,2} and HOGP-{1,2}.
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Figure 3: Visualization of local errors in Burgers-2. From the left column to the right are the results of MFHoGP, PCA-GP-{1,2},
KPCA-GP-{1,2}, IsoMap-GP-{1,2} and HOGP-{1,2}.

global prediction accuracy but also better recovers individual outputs locally.
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Figure 4: Visualization of local errors in Burgers-3. From the left column to the right are the results of MFHoGP, PCA-GP-{1,2,3},
KPCA-GP-{1,2,3}, IsoMap-GP-{1,2,3} and HOGP-{1,2,3}.
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Figure 5: Visualization of local errors in the one-million pressure field prediction for lid-driven cavity flows. Each image represents the
difference between the prediction and ground-truth over individual outputs of a test spatial field (100× 100) at a randomly chosen time
point, in the setting of F1=200, F2=20. From the left column to the right are the results of MFHoGP, PCA-GP-{1,2}, KPCA-GP-{1,2},
IsoMap-GP-{1,2} and HOGP-{1,2}.
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