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Abstract

Couplings play a central role in the analysis
of Markov chain Monte Carlo algorithms and
appear increasingly often in the algorithms
themselves, e.g. in convergence diagnostics,
parallelization, and variance reduction tech-
niques. Existing couplings of the Metropolis—
Hastings algorithm handle the proposal and
acceptance steps separately and fall short of
the upper bound on one-step meeting proba-
bilities given by the coupling inequality. This
paper introduces maximal couplings which
achieve this bound while retaining the practi-
cal advantages of current methods. We con-
sider the properties of these couplings and
examine their behavior on a selection of nu-
merical examples.

1 Introduction

Markov chain Monte Carlo (MCMC) methods offer a
powerful framework for approximating integrals over a
wide range of probability distributions (Brooks et al.,
2011). The Metropolis—Hastings (MH) family of al-
gorithms has proved to be especially popular, from
its original forms (Metropolis et al., 1953; Hastings,
1970) to modern incarnations such as Hamiltonian
Monte Carlo (Duane et al., 1987; Neal, 1993, 2011),
the Metropolis-adjusted Langevin algorithm (Roberts
and Tweedie, 1996), and particle MCMC (Andrieu
et al., 2010). In many settings MH methods present
an attractive mix of effectiveness, flexibility, and trans-
parency.

Couplings of MCMC transition kernels have long
played a role in the analysis and diagnosis of their con-
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vergence (Rosenthal, 1995; Johnson, 1996, 1998; Jer-
rum, 1998; Rosenthal, 2002; Biswas et al., 2019), as
a way of obtaining perfect samples or unbiased esti-
mators (Propp and Wilson, 1996; Neal, 1999; Glynn
and Rhee, 2014; Heng and Jacob, 2019; Jacob et al.,
2020; Middleton et al., 2019, 2020), and as a variance
reduction technique (Neal and Pinto, 2001; Goodman
and Lin, 2009; Piponi et al., 2020). Such couplings
are usually required to make the chains meet in fi-
nite time, with smaller meeting times associated with
tighter bounds and greater precision or computational
efficiency. In practice it is also essential for couplings
to be implementable, in the sense that they require no
extra knowledge about the target distribution beyond
the requirements of the underlying MCMC algorithm.

We take up the question of coupling continuous state-
space MH chains, following Johnson (1996, 1998) and
Jacob et al. (2020). In Section 2 we define our set-
ting and review existing methods. In Section 3 we in-
troduce a set of implementable couplings that achieve
the largest possible meeting probability at each iter-
ation. These are the first known MH couplings with
this property. We compare these algorithms with ex-
isting methods and introduce refinements that com-
bine maximality with the benefits of the status quo.
In Section 4 we apply our couplings to two numeri-
cal examples, gaining further insight into their prop-
erties and behavior. Finally, in Section 5 we con-
sider open questions and next steps. Scripts in Python
(Van Rossum and Drake, 2009) are available at https:
//github.com/johnoleary/mh-max-couplings.

2 Metropolis—Hastings Couplings
2.1 Setting and Definitions

We write z Ay =min(z,y), * Vy = max(z,vy),
Unif for the uniform distribution on [0,1], and
Bern(«) for the Bernoulli distribution on {0,1} with
P(Bern(a) =1) = .

Let P be a Markov transition kernel with stationary
distribution 7 on (X, .%#,\), a Polish space equipped
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Figure 1: Proposal densities ¢ and MH transition densities
f,withm =N(0,1), z =1/4, y = 4, and Q(z,-) = N(z, 10).
P(z,-) and P(y,-) also contain point masses with weights
r(x) =~ 0.69 and r(y) = 0.47, respectively. The algorithms
described in this paper construct couplings of such tran-
sition kernels, sometimes by way of proposal distribution
couplings.

with the standard Borel o-algebra and some base
measure A. For z € X and A € %, P(x,A) denotes
the probability of a transition from = to A. We
focus on MH-like kernels P, characterized by the
property that we can obtain X ~ P(z,-) by drawing
a proposal ' ~ Q(z,-) and an acceptance indicator
B ~ Bern(a(x,2’)) and setting X = Bz’ 4+ (1 — B)x.
We assume that for all z € X, Q(x,-) has density
q(x,-) with respect to a base measure on (X, F).
We also assume that the proposal distribution is non-
atomic, so that Q(z, {y}) =0 for all x,y € X.

under MH will be
and we allow for alter-

The acceptance rate
_ m(z)q(z’,x)
=LA Gatea
natives such as Barker’s algorithm (Barker, 1965).

For o/ # =z we define f(z,2') :=q(z,2)a(z,z’)
and r(z):=1- [ f(z,2")\(d2’), so that P(z,-)
has density f(x,2’) except for an atom where
P(z,{z}) = r(x). See Figure 1 for an illustration of a
pair of proposal and transition distributions, and see
Table 1 for convenient reference on the main functions
and algorithms defined over the course of this paper.

a(z, )

s
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X

Figure 2: Draws from the coupling Psq((z,y), -) using Qur
and the same parameters as in Figure 1. The grey lines
indicate X =z, Y =y, and X =Y, while the histograms
show the marginal distributions of X and Y.

A probability distribution v on X x X is a coupling of
distributions p and v on (X,.%) if (A x X) = u(A)
and (X x A) = v(A) for any A € .#. Let I'(,v) be
the set of all couplings of p and v. We say that a
joint kernel P is a coupling of P with itself and write
Pe F(P7 P) 1f}5((m7y, )7 ) € F(P(mv ')7P(y7 )) for any
x,y € X. Similar definitions apply to couplings @ of
proposal distributions and couplings B of acceptance
indicators.

The coupling inequality (Levin et al., 2017, Proposi-
tion 4.7) states that the meeting probability P(X =Y)
is less than 1 — || — v||tv under any coupling v €
I'(p,v), where [[p—v|rv =supsez [n(A) —v(A)] is
the total variation distance. A coupling that achieves
this bound is said to be maximal, and we write
rmex(y, v) C I'(p, v) for the set of maximal couplings
of u and v.

2.2 Status Quo: the Heuristic Coupling PSQ

We begin by describing the state-of-the-art coupling
of MH transition kernels, first introduced in John-
son (1998). Recall that draws from a MH-like ker-

Table 1: Notation Reference

Functions Couplings
q(z,y) ) Psq  Algorithm 1
fle,y)  q(@yla(z,y)  Quu  Algorithm 2
Ej(x/) flx, x/) A f(y, 73/) Py Algorithm 3
;y(x/) f(iL:, l‘l) - ;Z(l'/) PMR Algorlthm 4
Qay (z") %ﬁ’m(w/) Pc Algorithm 5
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nel P(z,-) can be obtained via a proposal 2’ ~ Q(x, )
which is accepted as a realization for X with probabil-
ity a(z,z’). Thus a simple way to couple P with itself
is to draw coupled proposals (2/,%') ~ Q((x,y),-) and
accept or reject these according to coupled indicators
(B, B,) ~ B((x,y), (@', /), where Q € T(Q, Q) and
B((z,y), (z',y')) € T(Bern(a(z,2")),Bern(a(y,y’))).
We refer to this coupling as Psq and summarize it
in Algorithm 1.

For the chains to meet in finite time we need
P(X =Y | z,y) > 0 from at least some states (x,y),
which in turn requires P(z’ = ¢’ | z,y) > 0. To obtain
this we take the joint proposal distribution @ to be a
maximal coupling of @) with itself. We can draw from
such a coupling by sampling 2’ ~ Q(x, -), using this as
a rejection sampling proposal for Q(y, -), and drawing
y’ in a specified way if this 2’ = 3’ proposal is rejected.
This approach achieves the coupling inequality upper
bound P(z' =/ | z,y) =1 — [q(z,2) A q(y, 2)A(dz).

A simple example of this method is the maximal
coupling with independent residuals Qu, introduced
in Vaserstein (1969) and called the ~5-coupling in
Lindvall (1992, chap. 1.5). It has the property that
a2’ and gy’ are independent when =’ # 3. Algorithm 2
describes how to draw from this coupling, and Figure 2
illustrates a set of draws (X,Y) ~ Psq((z,y),) based
on proposals from Q.

The maximal coupling with reflection residuals, Qg
is often a better alternative when X = R? and Q
is spherically symmetric in the sense that ¢(z,y) =
g(||z — y||) for some function g. This coupling was in-
troduced in the context of Hamiltonian and Langevin
methods (Bou-Rabee et al., 2020; Eberle et al., 2019)
and has its origins in the analysis of continuous-time
processes (Lindvall and Rogers 1986; Eberle, 2011)
Qwir is identical to QMI for 2’ = y'. When 2/ # 3/
the coupling Quir sets y' = Ty (2), where Ty (2') =
y+ (I —2e)(a' —z)and e = (y — z)/||ly — z||. We
define Ty, (y') similarly. Note that the transformation
z +— (I — 2ee’)z reflects the e component of z while
leaving the e! component fixed.

A standard choice for the acceptance indicators
(Bz, By) ~ B((x,y),(2,y')) is the unique maximal
coupling of Bern(a(z,z’)) and Bern(a(y,y’)), which
can be realized by drawing U ~ Unif and set-
ting B, = 1(U < a(z,2’)) and By = 1(U < a(y,y’)).

Algorithm 1 Draw (X,
1. Draw (¢,4/) ~ Q((
(1

Psq((z,y),")

V)~
z,y),")
((z,9), (=',9))
-B )xandY Byy'+(1-By)y

2. Draw (BMB )
3. Set X=B, '+
4. Return (X,Y)

Algorithm 2 Draw (2/,y) ~ Qu((z,y), )

1. Draw 2’ ~ Q(z,-) and U ~ Unif

2. fUq(z,2") < q(y,a’), set y =2

3. Else
(a) Draw g ~ Q(y,-) and V' ~ Unif
(b) If Va(y,9) > q(z,9), set y' =7
(¢) Else go to 3(a)

4. Return (z/,y')

Among couplings of these distributions, this one yields
the maximal probability P(B, =B, =1|2",y') =
a(xz,z') ANa(y,y’). Other objectives, such as the mini-
mization of E[|| X — Y| | 2/, '], are also possible.

The coupling PSQ obtained when @ is a maximal cou-
pling of proposal distributions and B is the maximal
coupling of acceptance indicators can yield a relatively
high chance of X =Y given the current state pair
(z,y), but it typically falls short of the theoretical up-
per bound. Under PSQ, the probability of X =Y is
[(a(z,2) Na(y, 2)) (a(z, z) Aaly, 2))A(dz). However
Lemma 1 implies that the coupling inequality bound
is [(q(z,2)a(z, 2)) A (q(y, 2)aly, z)) A(dz), which is al-
ways an equal or larger quantity. Figure 3 illustrates
the gap between the meeting probabilities under Psq
and under any maximal coupling P. Note that these
probabilities will coincide when either ¢(z, z) or a(z, 2)
does not depend on x, e.g. for the independence sam-
pler.

Lemma 1. Let P be an MH-like transition kernel as

defined above. Then for z # vy, ||P(z,-) — P(y, )|ltv =
1— [ f(z,2) A f(y,2)A(d?).
Proof of Lemma 1. In the spirit of e.g.  Lindvall

(1992), Chapter L5, let

Coy ={z: f(z,2) > fy, 2)} U{z} \ {y}

and similarly for Cy,. We have |P(z,-) — P(y,-)|ltv =
sup, |P(z, 4) — P(y, 4)], and |P(z, A) — P(y, A)| =
| [y f (2, 2)~ [(9,2)dz + 1(z € A)r(@)—1(y € A)r(y)].
We must have either A = Cpy or A = Cy, in the
supremum above. Both yield the same value, and so

||P($,) _P(y")”TV =1 —ff(x,z)/\f(y,z) dz. O

We want to maximize the coupling probability at each
step and reduce typical meeting times, so the factors
above lead us to ask if there are couplings P which are
both implementable and maximal. Our contribution
answers this question in the affirmative.

3 Maximal Couplings

We now introduce a collection of implementable cou-
plings P € T™*( P, P) starting from an arbitrary MH-
like transition kernel P. We consider two approaches.
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Figure 3: Meeting densities based on the same parame-
ters as in Figure 1. The green line shows the density of
2’ =y = z under a maximal coupling Q. The purple line
shows the density of X =Y = 2z under Psq assuming the
use of a maximal coupling 5. Finally, the orange line shows
the density of X = Y = z under a maximal coupling P.
The inequalities suggested here hold in general.

In Sections 3.1 and 3.2 we show how to couple Markov
transition kernels without explicitly coupling their un-
derlying proposal or acceptance distributions. We re-
fer to these as full-kernel couplings. In Section 3.3, we
modify Algorithm 1 to maximize the probability of ac-
cepting proposals ' =y’ at the expense of decreasing
the acceptance probabilities when x’ # 3.

3.1 Py, a Full-kernel Coupling with
Independent Residuals

Our first full-kernel coupling, which we will refer to as
Py, is inspired by the procedure described in Algo-
rithm 2 for drawing from the coupling Q1 of proposal
distributions. A key difference between coupling pro-
posal distributions and transition kernels is that by
assumption the proposal distributions are non-atomic
and absolutely continuous with respect to an underly-
ing measure, while MH-like kernels P can have a point
mass at the current state. Therefore our rejection sam-

Algorithm 3 Draw (X,Y) ~ Pyr((x,9),-)
1. Draw X ~ P(x,-) and U ~ Unif
2. X #zand U f(z,X) < f(y,X),set Y =X
3. Else
(a) Draw g ~ P(y,-) and V ~ Unif
b)) fg=y,set Y =75
(c) Ifg#yand V f(y,5) > fz,9),set Y =7
(d) Else go to 3(a)
4. Return (X,Y)

Figure 4: Rejection sampling regions for Algorithms 3 and
4 based on the same parameters as Figure 1. For both
options, meeting occurs on samples drawn from region C.

pling procedure must be modified to yield draws X and
Y with the correct marginal distributions.

Algorithm 3 contains this modification, which we il-
lustrate in Figure 4. The blue and red curves give the
continuous parts of P(x,-) and P(y,-), respectively.
We think of the algorithm as sampling uniformly from
the region under the graph along with point masses
at x and y. If the X draw falls in C' we can use the
same point for both chains, and otherwise we use re-
jection sampling to obtain a Y draw from AUA’U{y}.
Meetings occur exactly on draws from C, and thus it
occurs with probability [ f(z,2) A f(y, 2)A(dz). See
Appendix A.1 for a detailed proof that Pyi((z,v),-)
is a maximal coupling of P(x,-) and P(y,-) and an
analysis of the computation cost of this algorithm.

3.2 Pur, a Full-kernel Coupling with
Reflection Residuals

All maximal couplings of a given P have equal meet-
ing probability, but some perform better than oth-
ers. Although P(X = Y | z,y) is maximal under
Pui((7,y),+), X and Y are independent when X # Y.
This creates a strong tendency for ||Y — X|| to grow
with the dimension of the state space, as seen in the
experiments of Jacob et al. (2020). Even under a max-
imal coupling, P(X =Y | z,y) can be small until x
and y are close. Thus the time for a pair of coupled
chains to meet depends on both the meeting probabil-
ity from each state pair and the degree of contraction
between chains when meeting does not occur.

The advantages of using Qumgr vs. Qmi in Algo-
rithm 1 appear to be due to this consideration.
See Section 4.2 below for numerical justifications.
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Algorithm 4 Draw (X,Y) ~ Pyr((7,y),-)
1. Draw X ~ P(z,-) and U ~ Unif
2. X #zand Uf(x,X) < f(y, X),set Y =X
3. Else
(a) Set § = Tyy(X) and draw V' ~ Unif
(b) If X # z and VfL,(X) < fr.(7), set Y =
(c) Else
i. Draw g ~ P(y,-) and W ~ Unif
ii. fg=y,setY =g ~
i, T # y and WF(y, o) < fL (), set ¥ =
iv. Else go to 3(c)i.
4. Return (X,Y)

It also motivates the following full-kernel maximal
coupling with reflection residuals, which we refer
to as Pyr and describe in detail in Algorithm 4.
For this algorithm define f}(2) := f(z,2) A f(y,2),
~g:y(x’) = fN(ac,x’) — @(x’), anc~1 1ikewise~for ~?’;z(y’).
Finally set féz(y/) = ;z(y/) - ;a:(yl) A fxry(TyI(yl))ﬂ
the y residual after reflection evaluated at 7.

Figure 4 provides some intuition into the behavior of
Pyr. The first step of Pyg is identical to Py in that
it attempts to draw from the region C', and a meeting
occurs if this is successful. Otherwise Pyr proposes
the reflected point T, (X) for Y, which succeeds if
this point falls in the region A’. If all else fails, we use
rejection sampling to obtain a Y draw from A U {y}.
See Appendix A.2 for a detailed proof of the validity
and maximality, and an analysis of the computation
cost of Pyg.

3.3 Maximal Coupled Transitions from
Maximally Coupled Proposals with Pc

While the coupling Pyr sometimes outperforms P,
it also has a few limitations. First, the reflection pro-
posal strategy requires a high degree of reflection sym-
metry between the distributions of X and Y condi-
tional on X # Y to be successful. For example in the
setting of Figure 4, the reflection proposal has more
than a 50% chance of being rejected. Without such a
symmetry X and Y will tend to be conditionally inde-
pendent, resulting in poor contraction between chains
when meeting does not occur.

Second, any full-kernel coupling is constrained to work
directly with the complicated and irregular geometry
of P rather than the simple and often tractable form of
the proposal distribution ). In contrast to the range
of couplings and optimal transport strategies available
when a standard distribution is used for @, it appears
to be more difficult to design high-performance cou-
plings directly in terms of the associated transition
kernels P.

x'=y' case — a2 =q(x,2)Aq(y.2)
— f(x, 2)=q(x, 2)a(x, z)

— f(y,z)=qly, z)aly, z)

2
@
C
[
[a]
2
S| X'#y' case — q- —_ fr
5 y Oy (2) w(2)
§ — a2 — fi4(2)
o
C D
-10 -5 0 5 10 15

Figure 5: Distributions used in Algorithm 5 based on the
same parameters as Figure 1. Upper pane: draws 2’ = 7/
follow ¢™ and are used as proposals for f(z,-) and f(y,-).
Lower pane: draws x’ # 3’ follow the proposal residuals
q" and are used as rejection sampling proposals for the
transition kernel residuals f".

This motivates the next coupling, which allows the use
of any coupling of @) while still possibly achieving the
maximal coupling probability identified in Lemma 1.
We refer to this new algorithm as Pc, since it resem-
bles PSQ up to the conditional use of one or another
Bernoulli coupling B depending on whether or not a
meeting is proposed. Together with the definitions be-
low, Algorithm 5 shows how to draw from Pc. We
can choose a maximal Q such as Q1 or Qg to ob-
tain a maximal P, although we also obtain a valid
P € T(P, P) for non-maximal choices of Q.

To define P, let ¢7(-) be the density of Q((z,y),-)
on A = {(z,z) : z € X}L We es-
tablish the existence and properties of ¢, in
Lemma 2, below. Define the proposal residual
qpy (') = q(z,2") — ¢} (z') and the transition kernel
residual fy, (z') :== 0V (f(z,2') — ¢y (2)), and simi-
larly for g;,(y') and f;,(y'). We illustrate these func-
tions in Figure 5.

Lemma 2. IfQeT(Q,Q) then there exists a density
qyy for Q((z,y),-) on A. If Q is a mazimal coupling,
then gy (2) = q(x,2) A q(y, z) for almost all 2.

Algorithm 5 Draw (X,Y) ~ Po((x,9),")

1. Draw (2',y") ~ Q((z,y), ")

If 2/ =y set B = By, else set B = By

Draw (B, B,) ~ B((z,y), (z',v"))

Set X =B, '+ (1-B;)z and Y =B, y'+(1-B,)y

Return (X,Y)

PR
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Proof of Lemma 2. Let A denote the base measure
on (X,#) and let Aa be its push-forward to A
by the map z+— (z,z). Since X is a Polish space,
we have Aa :={(z,2):z€ A} e F®.F for any
A€ .F. Thus Q((x,y),-) induces a sub-probability Qa
on A. Also Qa < Aa, since if Aa(Aa) = A(A) =0
then Qa(Aa) < Q((z,y), A x X) = Q(x, A) = 0. The
Radon-Nikodym theorem then guarantees the exis-
tence of an integrable function ¢ : & — [0, 00) such

that Q((z,y), Aa) = [, ai(2)dz.

Next, we claim gy, (2) < q(z, 2) A q(y, 2) for A-almost
all z. Let A:={z:q],(2)>q(z,2)ANqy,2)} € Z,
Ay i=A{z:q7(2) > q(z,2)} € F, and likewise for A,.
Since A = A, UA,, AM(A) > 0 implies A\(4;) > 0 or
MA,) > 0. If AM(Ay) > 0 then Q((z,y), Ay x X) =
Qz, A;) < Q((z,9), (A)a) < Q(z,y), Ax x X), a
contradiction. The case A(A4,) > 0 similarly implies a
contradiction, so we conclude that A(A) = 0.

Finally, if Q is maximal, a total variation computation
similar to that of Lemma 1 shows that Q((x,y),A) =
J a(z, z) A q(y,z)dz. Combining this with the above
implies g1, (2) = q(x, 2) Aq(y, z) for \-almost all z. [

Resuming our definition of P, we set acceptance prob-
abilities by, (') == 1 A (f(@,2") /g7, (")) if ¢, (2") > 0
or else byy(2'):=1, cpy(2’) = fr,(2")/q, (") if
qry(7") > 0 orelse ¢y (') := 1, and likewise for by, (y)
and cy;(y'). When 2/ = 3’ we require that the ac-
ceptance indicator pair (B, By) follows the maximal
coupling B; of Bern (b, (2')) and Bern(b,,(y')). When
x’ #y' we require that (B, By) follows any coupling
By € T'(Bern(cyy (2')), Bern(cy, (y'))).  Simulation re-
sults suggest that maximal couplings for By perform
well, but optimal transport couplings that aim to min-
imize || X — Y| are also attractive in this setting.

When @ proposes a meeting 2’ = 3/, we think of Pc
as using these values as rejection sampling propos-
als for the transition distributions f(x,z) and f(y, 2).
This results in a higher marginal acceptance rate than
we would have under MH. On the other hand, when
z' # 9’ we think of this method as falling back to re-
jection sampling of the residual distributions f from
the residual distributions of ¢, both after the removal
of gy, This produces a lower marginal acceptance
rate than MH, exactly counterbalancing the above. In
Proposition 1 we show that Po((,y),-) is a maximal
coupling of P(z,-) and P(y,-).

Proposition 1. For any Q € T(Q,Q), the out-
put (X,Y) of Algorithm 5 will follow a coupling
P eT(P,P). If Q is mazimal then P will be as well.

Proof. At any point z’ # x, X will have density

Gy (€)bay (') + gy (") oy (27)
= (g (@) A f@,2)) + (g2y (") A f2y(2"))
= (¢ (@) A f@,2)) + f1, (=) = f(a,2).

The second equality holds because f7 (z') < qzy( a’).

)<
y
This in turn holds because f(z,2') < g¢(z,2') and

qyy(z') < q(x,2") by Lemma 2, so

Integrating the density of X over all 2/ # x yields
P(X = 2) = 1— [ f(z,2')da’ = r(x), so we con-

clude X ~ P(z,-). A similar argument shows that
Y ~ P(y,-). Thus (X,Y) follows the desired coupling.

(z
(z

If Q is maximal then by Lemma 2 the probability
density at the proposal (z,2) ~ Q((z,vy), ) will be
qry(2) = q(z,2) A q(y,z). By the definition of By,
the probability of accepting a proposal ' =y’ = z for
both X and Y will be

(753 A (a3 =

f(z,2)Af(y,2)
q(z,2)Aq(y,z2) *

Combining this with the proposal density implies
that the overall coupled transition kernel density at
X =Y =zwillbe f(x,2)Af(y,2). ThusP(X =Y) =
[ f(z,2) A f(y, 2)A(dz), and by Lemma 1 we conclude
that P is maximal. U

We observe that Pc matches the flexibility and compu-
tational efficiency of Psq while offering a higher meet-
ing probability at each iteration. The ability to chose
an arbitrary Q € I'(Q, Q) is also a significant advan-
tage of Pc over the full-kernel couplings. The extra
effort required to construct, validate, and draw from
Pur relative to Py shows how challenging such refine-
ments can be. Finally, we note that Pc can be more
computationally efficient than the full-kernel couplings
Py and Pyg, in that it avoids the ‘while’ loops of Step
3 of Algorithms 3 and 4.

4 Numerical Examples

4.1 Biased Random Walk MH

For our first example we consider a toy model that em-
phasizes the differences between Psq and the maximal
couplings Py, Pur, and Po. We assume an Exponen-
tial target distribution 7 = Expo(1) and draw propos-
als from Q(z,-) = N(z + k,02) with x > 0. We then
accept or reject these proposals at the usual MH rate,
so a(z,2)=1A1(z' > 0)exp((z — 2')(2k/0? + 1)).
Our assumption on x implies a(z, z) Aa(y, z) = a(z, 2)
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Table 2: Section 4.1 Example Results

Coupling Avg. Meeting Time S.E.
Psq with Qs 74.0 0.94
Pso with Qur 75.6 0.99
Py 60.5 0.84
Pur 60.9 0.87
P with Qs 61.3 0.87
Po with Qurr 62.2 0.89

if 2 <y anda(z,z) =1if z < z. Thus Q will tend
to propose increasing values while a favors decreasing
ones. This tension between the proposal and target
distributions is characteristic of MH kernels that do
not mix rapidly.

We construct the transition kernel couplings Psq with
Qur, P, Pur, and P with Qi as described in Sec-
tions 2 and 3. We also define a simple generaliza-
tion of the maximal coupling with reflection residuals,
such that either 2’ =y’ ory/ — (y+ k) = (x + k) — 2.
We use the resulting Qg as an alternative proposal
kernel coupling for PSQ and Po. We set k = 02 =
3, draw initial values independently from the target
m, and run 10,000 replications for each coupling op-
tion. For each replication we record the meeting time
T=min(t >0: X; =Y;). As described in Section 1,
such meeting times are of theoretical and practical
importance, and they also make a good measure of
coupling performance. We summarize the average be-
havior of these meeting times in Table 2 and present
their full distribution in Figure 6.

We find that both non-maximal couplings deliver av-
erage meeting times around 75 iterations, while the
four maximal couplings deliver meeting times around
61 iterations. We recall that for a given state pair
(x,y), the maximal couplings produce one value of
P(X =Y | ,y) and two Psq couplings produce an-
other. The observed clustering of algorithms is con-
sistent with the idea that in this example meeting
times are driven by these one-step meeting probabil-
ities rather than by behavior when meeting does not
occur, which varies significantly by algorithm.

For a better understanding of these differences,
we contrast the behavior of PSQ and Po. Al
though we use the same underlying proposal coupling
(2',y") ~ Q((z,y),-) in each case, the two MH transi-
tion kernel couplings differ in that Psq accept its pro-
posals at exactly the MH rate while Pc uses a higher
acceptance probability when 2’ = 3’ and a lower one
when 2’ # 3. In this example, most proposals have
a relatively low MH acceptance probability to begin
with. Thus Pc meets more quickly by concentrating
the little acceptance probability available on the draws

Pui, Pur, and both Pc couplings Coupling -
—— Psq with Qu
p —— Psq with Q
Both Psq couplings Psa Qur
— Pwm
Pur
—— Pc with Qu
2 Pc with Qur
‘@
2
[
a
0 50 100 150 200 250 300

Meeting Time

Figure 6: Distribution of meeting times for the example de-
scribed in Section 4.1. The four maximal couplings yield al-
most identical distributions of shorter meeting times times
while the two Psq methods yield almost identical distribu-
tion of longer ones. In this example the requirement that
Psq accept meeting and non-meeting proposals at exactly
the MH rate puts it at a significant disadvantage vs. the
maximal couplings.

where they could result in a meeting X = Y, while Psq
is forced to accept its proposals at the same relatively
low rate whether or not a meeting is proposed.

The above leads us to expect that maximal couplings
might provide the greatest advantage over the status
quo when low acceptance probabilities are typical, ei-
ther due to the presence of a challenging target, an
imperfect proposal distribution, or both. This exam-
ple emphasizes simplicity over realism, but we would
expect its principles to hold more broadly, especially
in cases where mixing is relatively slow.

4.2 Dimension Scaling with a Normal Target

For our second example we consider MH on R¢?
with a target distribution = = N(0, I;) and proposals
Q(z,-) = N(z,1;02). Following e.g. Roberts et al.
(1997) and Christensen et al. (2005) we set 0% = ¢%/d
with ¢ = 2.38. This example allows us to consider the
role of the dimension and examine differences between
the couplings when meeting probabilities are just one
important aspect of their behavior.

As above, our main object of interest in this example is
the number of iterations required for a pair of coupled
chains to meet. We initialize chains on independent
draws from m, consider dimensions d = 1,...,10, and
run 1,000 replications for each algorithm. We use a
maximal coupling of acceptance indicators for PSQ and
Pg, which appears to yield the best results among the
simple acceptance indicator couplings.

We present the results of this experiment in Figure 7.
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Figure 7: Average meeting times for a range of transition
kernel couplings, as described in Section 4.2. Coupling
strategies that involve reflections of the proposals appear
to outperform the others; among the others, maximal cou-
plings seem to perform better than non-maximal ones.

There we observe that PSQ using Qum, Pc using Qwmi,
and Py seem to yield meeting times that increase ex-
ponentially in dimension, although the maximal cou-
plings outperform the non-maximal coupling. This
blow-up is expected since these options involve inde-
pendent or weakly dependent behavior when X = Y.
The coupling Pyr delivers somewhat better behavior,
with Psq and P with Qg delivering the best perfor-
mance. In higher dimensions it appears that the Qng
version of PSQ may outperform its Pc counterpart, an
interesting and perhaps counterintuitive result.

To understand these differences in meeting times,
we must consider what happens under each cou-

pling P when a meeting does not occur. For
Q(Zv ) = N(Zv Idag)v aly Q € Fmax(Q’ Q) will
vield P(a' = y'|o,y) = P2 > ly — o2/ (402)),  see
e.g. Pollard (2005, chap. 3.3). Since a meeting can-
not occur unless one is proposed, this expression is an
upper bound on P(X =Y | z,y). Thus we should
expect the probability of X =Y to fall off rapidly in
lly — ||, so that couplings that do not promote con-
traction between chains in the absence of meeting will

yield rapidly increasing meeting times.

Figure 8 is consistent with these observations. As
above, we run 1,000 replications per algorithm, ini-
tializing each chain with an independent draw from
the target distribution. We set d = 100 to isolate the
effects of contraction due to meeting from other con-
tractive behavior and then track the average distance
between chains as a function of iteration.

We find that PML PSQ with QML and Pc with QMI
produce little or no contraction within the distance

15.0
12.5 Pwm and both Qu couplings
10.0
X 15
=
g 5.0
o
g
< 25
0.0
— Psq with Qu — Psq with Qur — P
—25 Pur — Pc with Qui Pc with Qur
0 500 1000 1500 2000 2500
t

Figure 8: Distance between coupled MH chains by iter-
ation, as described in Section 4.2. Couplings in which
X # Y implies X,Y independent or almost independent
display little contraction, while those based on the maximal
reflection coupling of proposal distributions Qumr display
strong contraction.

achieved by independent draws from the target. They
then remain far enough apart that the probability of
meeting is negligible. The coupling Py displays con-
traction up to a point. Finally we observe that both
the maximal and non-maximal couplings based on
Qwmr contract rapidly to within a radius where meet-
ing can occur. PSQ appears to contract more rapidly
than Pq, which is consistent with its slightly stronger
performance in high dimensions.

5 Discussion

Couplings play a central role in the analysis of MCMC
convergence and increasingly appear in new methods
and estimators. Until now, no general-purpose algo-
rithm has been available to sample from a maximal
coupling of MH transition kernels. We fill this gap
by introducing three such algorithms, which are im-
plementable under the standard assumptions that one
can draw proposals from a distribution ¢ and com-
pute the density q and acceptance rate a at any points
of the state space. The proposed couplings are sim-
ple to apply and can be used with a variety of MH
strategies including the Metropolis-adjusted Langevin
algorithm, pseudo-marginal methods. Our method is
also straightforward to generalize to the case where the
proposal kernel is the combination of several kernels,
such as the MH-within-Gibbs algorithm.

The experiments in Section 4.1 show that the gains
from using these methods can be large, especially when
there is a tension between the proposal density ¢ and
the acceptance rate a. On the other hand, the example
of Section 4.2 shows that maximality is sometimes less
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important than other properties of a coupling, such
as the contraction behavior when a meeting does not
occur. The two examples considered here are sim-
ple ones, and experiments with a wider range of MH
algorithms and target distributions would clarify the
strengths and weaknesses of the proposed couplings.

This work raises several questions. First, it is not
known if all couplings of MH kernels might be rep-
resented in the form of Algorithm 5 for some appro-
priate choice of proposal and acceptance couplings; see
Nisken and Pavliotis (2019) for the treatment of a sim-
ilar question in the setting of continuous-time Markov
chains. It would also be interesting to consider the
use of sub-maximal proposal distribution couplings in
Algorithm 5, as suggested in the comment of Gerber
and Lee (2020) on Jacob et al. (2020).

Both meeting probabilities and contraction rates in-
fluence meeting times, and one might wonder about
deriving maximally contractive couplings in analogy
to the present work on meeting times. Reflection cou-
plings seem particularly effective and are known to be
optimal in special cases (Lindvall and Rogers, 1986).
In other cases, synchronous or ‘common random num-
ber’ couplings yield strong contraction (e.g. Diaconis
and Freedman, 1999). In most other scenarios the user
must construct a coupling tailored to the problem at
hand. The methods proposed here represent a step
forward in coupling design, but many important ques-
tions remain.

From a more theoretical point of view, while the MH
kernel P is known to be the projection of the proposal
@ onto the set of w-reversible kernels in a certain met-
ric (Billera and Diaconis, 2001), it is not known how Q
relates to the set of maximal couplings of m-reversible
kernels. In particular, it would be interesting to know
if the strategy proposed in Section 3.3 corresponds to
a projection of Q onto that set.

Finally, the coupling strategies mentioned above are all
Markovian. In some cases non-Markovian couplings
are known to deliver more satisfactory performance
than Markovian ones (e.g. Smith, 2014). The design
of practical non-Markovian couplings for MCMC is a
topic deserving further attention.
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A  Appendix

In Appendix A.1, we prove that the coupling Pyi((z,y), ) described in Algorithm 3 is a maximal coupling
of P(z,-) and P(y,-) and analyze its computational cost. Similarly, in Appendix A.2 we prove that the Pyr
described in Algorithm 4 is valid and maximal and analyze its cost.

A.1 Validity, maximality, and computation cost of Py

We prove that Algorithm 3 defines a coupling of the correct marginal distributions and that it attains the
maximum one-step meeting probability.

Proposition 2. The draws (X,Y) produced by Algorithm 3 follow a mazimal coupling of P(x,-) and P(y,-),
with the property that X and Y are conditionally independent given X # Y. Moreover, the coupling probability
is mazimized among all possible couplings, so that Pyr((z,y),{X =Y}) =1—|P(z,-) — P(y,-)||tv.

Proof. 1t suffices to show that Y has marginal distribution P(y,-) and the coupling probability equals
1 —||P(z,-) — P(y,-)|ltv. We define the residual measure of y as P, (-) o< 7(y)d,(-) + e (+), where d, is the point
mass at state y and fyrx (") = fly,y") — f(y,y') A f(z,y') is the ‘unnormalized’ y-residual density evaluated at
y'. These definitions are consistent with the ones given in Section 3.2. From this point of view, Step 3 can be
seen as a standard rejection sampler with proposal measure P(y,-) and target measure Pyz() For any vy # v,
let fyz(y') denote the transition density of the Y-chain from y to y’. Then f,,(y') can be written as

Jye (') = fya(y', Step 2) + fya(y', Step 3).

The first term works out to fy,(y’,Step 2) = f(x,y') A f(y,y’), while the second term can be computed as

fyz(y', Step 3) = P(Step 3) fy.(y' | Step 3)

1 rr /
. / F@.2) A S 22) s ).

Here c(z,y) = 1— [ f(y,2) A f(x, 2)dz is the normalizing constant of P, (-), which also equals (y) + [ ;fm(z)dz.

Putting all the terms together, we have f,,(v') = f(z,¥) A f(y,y') + ;;gﬂ (y') = f(y,y') as desired, which justifies
the validity of Algorithm 3.

We can also observe that the coupling probability equals the probability that Algorithm 3 stops at Step 2.
Therefore, the coupling probability satisfies

Pur((z,y) {X =Y}) = /f(m,y’) AN fQyy)dy =1—|P(z,-) = P(y,-)|lrv.
We conclude that Algorithm 3 maximizes the coupling probability in one step. O

We analyze the computation cost of Algorithm 3 as follows. To draw one sample from Algorithm 3, one needs
to run Step 1 once with probability 1, Step 2 once with probability 1 — r(x), Step 3 for N times where N is a
random variable which equals 0 with probability 1 — ||P(z,-) — P(y,-)|lTv, and otherwise a Geometric random
variable with success probability ||P(x,-) — P(y,)||tv. Meanwhile, Step 1 contains one draw from P, Step 2
contains two evaluations, Step 3 contains one draw from P and 0 or 2 evaluations, with probability r(y) and
1 — r(y) respectively.

Therefore, the expected number of draws from P is 2 and the expected number of evaluations is 4 —2r(x) — 2r(y).
Taking account of the fact that each draw from P contains one draw from ¢ and one evaluation of the acceptance
ratio, then Algorithm 3 contains 2 draws from ¢ and 6 — 2r(x) — 2r(y) evaluations in expectation. The variance
of the computing cost depends the total variation distance between P(x,-) and P(y,-), and goes to infinity as
|P(x,-) — P(y,-)|ltv goes to zero. This can motivate the consideration of sub-maximal coupling strategies, as
described in the comment of Gerber and Lee (2020) on Jacob et al. (2020).
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A.2 Validity, maximality, and computation cost of Pyg

We prove that Algorithm 4 defines a valid coupling and attains the maximal coupling probability.

Proposition 3. The draws (X,Y) ~ Pyr((z,v), ") produced by Algorithm / follow a mazimal coupling of P(z, -)
and P(y,-).

Proof. As in the proof of Proposition 2, it suffices to show that Y is distributed a~ccording to P(y,-) and that the

meeting probability equals 1 — || P(z,-) — P(y,-)||tv. Let the functions f;7, ;y, vz> and fl have the definitions

given in Section 3.2. For any 3’ # y, the Markov transition density f(y,y’) can be written as the sum of three
terms:

For any y' # v, let f,.(y") denote the transition density of the Y-chain from y to y’ according to Algorithm 4.
Then f,.(y") can also be written as the sum of three terms:

fuw(y/) = fyw(ylv Step 2) + fya:(y/a Step 3(b)) + fyw(yla Step 3(c)). (2)

We confirm that each term in Formula (2) matches the corresponding term in (1). For the first term, we have

fya(y',Step 2) = f(z,y" ) P(Uf(z,y") < fy,9) = fly,v') A fz,9).

For the second term, let #' = T,,(y’) be the preimage of y' through T,,. It is not difficult to verify that
T;yl = Ty, and that the Jacobian of both T}, and T}, equals 1. Thus the density of moving from y to 3’ through
Step 3(b) will be

Fyaly' Step 3(b)) = fi, () P(U f, (") < fro NIT(TD] = Foa(y) A oy (T ().
This matches the second term in (1).

Step 3(c) is again a rejection sampler with proposal P(y,-) and target 1551() ox 7(y)dy(-) + f;w() Therefore,

fy2 (/' Step 3(c)) = P(Step 3(c)) - fy=(y/'[Step 3(c)) = P(Step 3(C))®f§x(@/)a

where é(x,y) =1/(r(y) + ff;z z) dz) is the normalizing constant of P;z()

Meanwhile, we have

P(Step 3(c)) = 1 — / )y — / Py A By (T () dyf
4 / ') dy / ) dy’ — / Fro@) A By (T () dyf

+ / f;z(z) dz

Here the final equality uses (1). This yields f,.(y’, Step 3(c)) = ;’jz (y'), which concludes the proof.

We also observe that the meeting probability equals the probability that Algorithm 4 stops at Step 2. Thus the
coupling probability Pyr((z,y),{X =Y}) = [ f(z,¥)A f(y,y')dy’ =1—||P(z,-) — P(y,)||rv attains the upper
bound given by the coupling inequality. O

The computation cost of Algorithm 4 can be analyzed in a similar way as the cost of Algorithm 3. We define the
one-step coupling probability p. := [ f7(y") dy’ = 1—||P(z,-) — P(y, -)||tv and the one-step rejection probability
Dy = fyx( YA fxy( Tye(y'))dy’ . To draw one sample from Algorithm 4, one needs to run Step 1 once with
probability 1, run Step 2 once with probability 1 — r(z), Step 3(a) once with probability 1 — p., and Step 3(b)
once with probability 1 — r(z) — p.. The number of runs of Step 3(c) will be zero with probability 1 — p. — p,..
Otherwise it will follow a Geometric random variable with success probability 1 — p. — p,..

Meanwhile, Step 1 contains one draw from P, Step 2 contains two evaluations, Step 3(a) contains one evaluation,
Step 3(b) contains two evaluations, Step 3(c) contains one draw from P and 0 or 2 evaluations, with probability
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r(y) and 1 — r(y) respectively. Therefore, the expected number of draws from P is 2, and the expected number
of evaluations is 7 — 4r(z) — 2r(y) — 3p.. If one takes into account the fact that each draw from P itself contains
one draw from ¢ and one evaluation of the acceptance ratio, then Algorithm 3 contains 2 draws from ¢ and
7 —4r(x) — 2r(y) — 3p. evaluations, in expectation. This is greater than the expected cost of Algorithm 3 by
3 — 3p. — 2r(zx). This quantity is between 0 and 3 as p. + r(z) < 1. The variance of the computation cost also
depends on the total variation distance between P(z,-) and P(y,-), and goes to infinity as ||P(z, ) — P(y,)|ltv
goes to zero, as noted above.
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