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A COMPARISON ON RATES OF l

For (Jalali et al., 2010), we use r := T, p := p, s := k, n := l (their notation := our notation) in the condition in
Theorem 2. Therefore, the sample complexity in (Jalali et al., 2010) is l ∈ O(max(k log(pT ), kT (T + log p)). This
is also supported by our Figure H.3.

For (Negahban and Wainwright, 2011), we use r := T, p := p, |U | := |S| = k, n := l (their notation := our
notation) in their equation (20) and (22) to obtain l ∈ Ω(k(T + log(p))) and l ∈ Ω(T (T + log(p))) for support
recovery. Therefore, the sample complexity in (Negahban and Wainwright, 2011) is l ∈ O(max(k, T )(T + log(p))).

For (Obozinski et al., 2011), we use K := T, p := p, s := k, n := l (their notation := our notation). By their
equation (22), the rate of ψ(B∗) is between O(k/T ) (requiring a strong orthonormal assumption which we do not
need) and O(k). Here we use ψ(B∗) ∈ O(k). From their equation (19) and (20), one needs l ∈ Ω(k log(p− k)) and
l ∈ Ω(T log(k)). Therefore, the sample complexity in (Obozinski et al., 2011) is l ∈ O(max(k log(p−k), T log(k))).
Note that the latter still grows with respect to T unless T ∈ O(k log(p− k)/ log(k)). This is also supported by
our Figure H.2.

B PROOF OF STEP 1 IN THE PRIMAL-DUAL WITNESS

We know that

[∇2`((wS ,0))]S,S � 0⇔ 1

T l
[XT

[T ]X[T ]]S,S � 0. (B.1)

We first show a useful theorem on bounding the difference between the sample covariance matrix and the
population covariance matrix.

Lemma B.1 (Theorem 4.6.1 in Vershynin (2018)). Let A be an m × n matrix whose rows Ai ∈ R1×n are
independent, mean zero, sub-gaussian isotropic random vectors (i.e., E[ATi Ai] = In). Then for any t ≥ 0, we have∥∥∥∥ 1

m
ATA− In

∥∥∥∥ ≤ K2 max(δ, δ2) where δ = C

(√
n

m
+

t√
m

)
,K = max

i
‖Ai‖ψ2

with probability 1− 2e−t
2

.

To prove (B.1), we need to bound λmin ([ 1
Tl [X

T
[T ]X[T ]]S,S) away from 0. We find independent isotropic random

vectors Zi such that for each row of XT
[T ] (denoted by Xi), Xi = Σ

1/2
S,SZi (by the proof of Theorem 4.7.1 in

Vershynin (2018), Zi are also sub-Gaussian with ‖Zi‖ψ2 ≤ K where K is a constant only depending on ΣS,S .)

We let m := T l, n := k, A := [Z1, Z2, · · · , Zm]T . Then we use a similar technique as Lemma 4.1.5 in Vershynin
(2018):

K2 max(δ, δ2) ≥
∥∥∥∥ 1

m
ATA− In

∥∥∥∥ ≥ ∣∣∣∣〈( 1

m
ATA− In

)
x, x

〉∣∣∣∣ =

∣∣∣∣λmin( 1

m
ATA

)
− 1

∣∣∣∣ (B.2)

where we set x = arg mina∈Sn−1 aT (ATA)a.

If K ≤ 1, we let t =
√
m/(6C), m ≥ 16nC2. If K > 1, we let t =

√
m/(6K2C), m ≥ 16nK4C2. Under

both cases, we have K2 max(δ, δ2) = K2δ < 1/2. By (B.2), we further have λmin( 1
mA

TA) > 1/2 and also
λmin( 1

Tl [X
T
[T ]X[T ]]S,S) > λmin(ΣS,S)/2 > 0.



Therefore, if we have T l ∈ Ω(k log(p− k)) tasks, (B.1) holds with probability greater than 1− 2e−C
′Tl, where C ′

is a constant.

C BOUND OF z̃Sc,1

Recall that

z̃Sc,1 = XT
[T ],Sc

{
1

T l
X[T ],S(Σ̂S,S)−1z̃S + ΠX⊥

[T ],S

( ε[T ]

λT l

)}
.

In order to bound ‖z̃Sc,1‖∞, we consider each entry of the vector. That is, for j ∈ Sc, we need to bound

z̃j,1 = XT
[T ],j

{
1

T l
X[T ],S(Σ̂S,S)−1z̃S + ΠX⊥

[T ],S

( ε[T ]

λT l

)}
.

Since the entries in X[T ],j ∈ Rn are independent and sub-Gaussian, and the rows in X[T ],S are also independent
and sub-Gaussian, we define ETi,j by decomposition:

X[T ],j = Σj,S(ΣS,S)−1X[T ],S + ET[T ],j

where ETi,j is an independent sub-Gaussian random variable for all i ∈ [T ]. We assume the variance proxy is σ2
e

which is proportional to σ2
x.

We can rewrite z̃j,1 based on E[T ],j :

z̃j,1 = E[T ],j

{
1

T l
X[T ],S(Σ̂S,S)−1z̃S + ΠX⊥

[T ],S

( ε[T ]

λT l

)}
︸ ︷︷ ︸

Aj

+ Σj,S(ΣS,S)−1z̃S︸ ︷︷ ︸
Bj

.

By the mutual incoherence condition, we have |Bj | = |Σj,S(ΣS,S)−1z̃S | ≤ 1 − γ. Therefore we only need to
bound ‖Aj‖22 since the variance proxy for E[T ],jAj is ‖Aj‖22σ2

e (and we can bound E[T ],jAj by the concentration
inequality of sub-Gaussian random variables).

‖Aj‖22 = ATj Aj =
1

T l
z̃TS (Σ̂S,S)−1z̃S +

∥∥∥ΠX⊥
[T ],S

( ε[T ]

λT l

)∥∥∥2

2
.

For the first part 1
Tl z̃

T
S (Σ̂S,S)−1z̃S , by the techniques in appendix Section B, we have

1

T l
z̃TS (Σ̂S,S)−1z̃S ≤

1

T l
‖z̃S‖22(λmin(Σ̂S,S))−1 ≤ 1

T l

2k

λmin(ΣS,S)

with probability 1− 2e−C
′Tl, where C ′ is a constant.

For the second part, we have∥∥∥ΠX⊥
[T ],S

( ε[T ]

λT l

)∥∥∥2

2
≤ 1

λ2T l

‖ε[T ]‖22
T l

=
1

λ2T l

∑Tl
i=1 ε

2
i

T l
≤ C1σ

2
ε

λ2T l
.

The second inequality above is a direct result by the Orlicz norm of εi. By Lemma 5.7, we know that ‖ε2i ‖ψ1 ≤ σ2
ε .

We let Yi =
ε2i
σ2
ε
≥ 0. Then we have

P

(
exp

(∑Tl
i=1 Yi
T l

)
≥ exp (C1)

)
≤

E[exp(
∑Tl
i=1 Yi])]

exp(C1T l)
=

∏Tl
i=1 E[exp(|Yi|)]
exp(C1T l)

≤ σ2Tl
ε

exp(C1T l)
= e−C2Tl.

where C1, C2 are constants. (The first inequality is by Markov’s inequality, and the second inequality is by the

definition of ψ1-Orlicz norm.) Therefore we have that
∑Tl
i=1 ε

2
i

Tl ≤ C1σ
2
ε holds with probability 1− e−C2Tl.



Now we define M(T, l, k) := σ2
e

(
1
Tl

2k
λmin(ΣS,S) +

C1σ
2
ε

λ2Tl

)
and the event Tj =

{
E[T ],jAj > γ/2

}
. We have

P

 ⋃
j∈Sc
Tj

 ≤ (p− k)

(
exp

(
− γ2

8M(T, l, k)

)
+ 2e−C3Tl

)
.

Therefore, if λ ∈ Ω

(
σεσx

√
log(p−k)

Tl

)
and T ∈ Ω

(
k log(p−k)

l

)
, we have that z̃Sc,1 < 1−γ/2 holds with probability

greater than 1− 2e−C4 log(p−k).

D PROOF OF LEMMA 5.3

This is a generalization of Theorem 3.1.1 in Vershynin (2018).

Lemma D.1 (`2-norm of sub-Gaussian random vector is a sub-Gaussian random variable). Assume X ∈ SGd(σ2
x),

for any fixed constant c8, there exists a corresponding constant c9 such that
∥∥∥‖X‖2 + c8σx

√
d
∥∥∥
ψ2

≤ c9σx
√
d and∥∥∥‖X‖2 + c8max(1, σx)

√
d
∥∥∥
ψ2

≤ c9max(1, σx)
√
d.

Proof. By Lemma 5.8, we only need to show that there exists a constant c9 such that ‖‖X‖2‖ψ2
≤ c9σx

√
d. From

the definition of Orlicz norm, the latter is equivalent to

E

[
exp

(
‖X‖22
c29σ

2
xd

)]
≤ 2.

We first show two useful lemmas:

Lemma D.2 (Maximal inequality. Lemma 2.2.2 in Van Der Vaart and Wellner (1996)). Let ψ : R → R be a
convex, nondecreasing, nonzero function with ψ(0) = 0 and lim supx,y→∞ ψ(x)ψ(y)ψ(cxy) <∞ for some constant
c. Then, for any random variables X1, . . . , Xm,∥∥∥∥ max

1≤i≤m
Xi

∥∥∥∥
ψ

≤ Kψ−1(m) max
i
‖Xi‖ψ,

for a constant K depending only on ψ.

Lemma D.3 (Covering number. Lemma 5.7 and Example 5.8 in Wainwright (2019)). A δ-cover of a set A
with respect to a metric ρ is a set {θ1, . . . , θN} ⊆ A such that for each θ ∈ A, there exists some i ∈ {1, . . . , N}
such that ρ(θ, θi) ≤ δ. The δ-covering number N(δ;A, ρ) is the cardinality of the smallest δ-cover. We let
Bd := {x ∈ Rd|‖x‖2 ≤ 1}. We have

d log(1/δ) ≤ logN(δ;Bd, ‖ · ‖2) ≤ d log

(
1 +

2

δ

)
.

We let N 1
2

be the covering set that achieves the smallest 1
2 -covering number on set Bd. Therefore, for any v ∈ Bd,

we can write v = z + w where z ∈ N 1
2

and ‖w‖ ≤ 1
2 (i.e., w ∈ 1

2B
d). Then we have

max
v∈Bd

vTX ≤ max
z∈N 1

2

zTX + max
w∈ 1

2B
d
wTX = max

z∈N 1
2

zTX +
1

2
max
w∈Bd

wTX.

Therefore, maxv∈Bd v
TX ≤ 2 maxz∈N 1

2

zTX.

We have

E
[
exp

(
‖X‖22
c29σ

2
xd

)]
= E

[
exp

(
maxv∈Bd(vTX)2

c29σ
2
xd

)]
≤ E

exp

maxz∈N 1
2

(zTX)2

(c9/2)2σ2
xd

 .



From Lemma D.3, |N 1
2
| ≤ 5ed. We let ψ(x) = exp(x2)− 1 and m = |N 1

2
| in Lemma D.2. We have∥∥∥∥∥ max

1≤i≤|N 1
2
|
zTi X

∥∥∥∥∥
ψ

≤ Kψ−1(|N 1
2
|) max

i
‖zTi X‖ψ ≤ K

√
log(5ed + 1) ≤ K

√
log 6 + d σx.

Since d ≥ 1, we can find a constant c9 such that∥∥∥∥∥ max
1≤i≤|N 1

2
|
zTi X

∥∥∥∥∥
ψ

≤ (c9/2)σx
√
d.

Therefore, for this choice of c9, we have ‖‖X‖2‖ψ2
≤ c9σx

√
d.

E BOUND OF ESTIMATION ERROR IN THEOREM 4.1

The second part in Theorem 4.1 is about the estimation error. We write the estimation error in the following
form:

w̃S −w∗S = Σ̂−1
S,S

(
1

T l

T∑
i=1

XT
ti,Sεti − λz̃S +

1

T l

T∑
i=1

XT
ti,SXti,S∆∗ti,S

)

= Σ̂−1
S,S

1

T l

T∑
i=1

XT
ti,Sεti︸ ︷︷ ︸

F1

− Σ̂−1
S,Sλz̃S︸ ︷︷ ︸
F2

+ Σ̂−1
S,Sλ

1

λT l

T∑
i=1

XT
ti,SXti,S∆∗ti,S︸ ︷︷ ︸

F3

.

In this section, we first show that in a general sub-Gaussian setting without the rotation invariance assumption A6
on ∆∗ti,S and each row of Xti,S , we have ‖w̃S −w∗S‖∞ = O(λ

√
k). Since the rate of λ needed for S(ŵ) ⊆ S could

be as high as
√
k log(p− k)/(T l), if we use T ∈ Ω(k log(p− k)/l, the estimation error bound O(λ

√
k) = O(

√
k)

is not fully satisfactory. Therefore, we later show that with the rotation invariance assumption A6, we have a
tighter bound ‖w̃S −w∗S‖∞ = O(λ).

E.1 O(λ
√
k) bound without assumption A6

Since we know that ‖z̃S‖∞ ≤ 1, for bounding ‖F2‖∞, we need to bound ‖Σ̂−1
S,S‖∞.

By the technique in appendix Section B, we know that

‖Σ̂−1
S,S‖∞ ≤

√
k‖Σ̂−1

S,S‖2 ≤
2
√
k

λmin(ΣS,S)

holds with probability greater than 1− 2e−C
′Tl, where C ′ is a constant.

Therefore,

‖F2‖∞ ≤
2
√
kλ

λmin(ΣS,S)

holds with probability greater than 1− 2e−C
′Tl, where C ′ is a constant.

For j ∈ S, we have

1

T l

T∑
i=1

XT
ti,jεti =

1

T l

T∑
i=1

l∑
m=1

Xti,j,mεti,m

which can be bounded by the concentration inequality of sub-exponential random variables. Here we let
‖Xti,j,mεti,m‖ψ1

= M . By Lemma 5.7, we know that M ∈ O(σxσε).



Now we use the Bernstein’s inequality (Theorem 2.8.1 in Vershynin (2018)) to get

P

(∣∣∣∣∣ 1

T l

T∑
i=1

l∑
m=1

Xti,j,mεti,m

∣∣∣∣∣ ≤ t
)
≥ 1− 2exp

(
C min

(
t2T l

M2
,
tT l

M

))
.

If we let t = λ, and T ∈ Ω
(
k log(p−k)

l

)
, then

‖F1‖∞ ≤ λ
2

λmin(ΣS,S)

holds with probability greater than 1− 2e−c5k log(p−k), where c5 is a constant.

For F3, we use the definition of ζS in Section 5.4 and we set γ = 1 in the `∞ bound of ζS . We know that

‖F3‖∞ ≤
2λ
√
k

λmin(ΣS,S)

holds with probability greater than 1− c6e−c7 log(p−k).

Therefore, we can bound the estimation error. That is, with probability greater than 1− c8e−c9 log(p−k), we have

‖w̃S −w∗S‖∞ ≤
6λ
√
k

λmin(ΣS,S)
.

E.2 O(λ) bound with assumption A6

We say that X ∈ Rk is rotation invariant if for any orthogonal matrix Q ∈ Rk×k, the distribution of X is the
same as the distribution of QX. To obtain an O(λ) bound, we need to assume that Xti,S and ∆∗ti,S are rotation
invariant.

First, we can directly use the analysis on ‖F1‖∞ above since its bound is O(λ) which is tight enough.

Second, we provide a lemma below similar to Lemma 5 in Wainwright (2009) and use it to tighten the bound on
‖F2‖∞. While Lemma 5 in Wainwright (2009) holds only for Gaussian variables, the lemma below holds for a
more general case, i.e., rotation invariant sub-Gaussian variables.

Lemma E.1. Consider a fixed nonzero vector z ∈ Rk and a random matrix X ∈ Rn×k with i.i.d. rows Xi such
that all Xi are rotation invariant, mean zero, sub-Gaussian isotropic random vectors with ‖Xi‖ψ2

≤ K. Under
the scaling n = Ω(k log(p− k)), there are positive constants c1 and c2 such that for all t > 0,

P

(∥∥∥∥∥
[(

1

n
XTX

)−1

− Ik×k

]
z

∥∥∥∥∥
∞

≥ c1‖z‖∞

)
≤ 4e−c2 min{k,log(p−k)}.

Proof. We begin by diagonalizing the random matrix: (XTX/n)−1 − Ik×k = UTDU where D is diagonal, and
U is unitary. Since the distribution of X is rotation invariant, the matrices D and U are independent. Since
‖D‖ = ‖(XTX/n)−1 − Ik×k‖, we use Lemma A.1. Thus, with probability 1− 2e−k,

‖((XTX/n)− Ik×k)s‖2 ≤ K2C
√
k/n‖s‖2, ∀s ∈ Rk.

which is equivalent to

‖((XTX/n)−1 − Ik×k)s′‖2 ≤ K2C
√
k/n‖(XTX/n)−1s′‖2, ∀s′ ∈ Rk

where we let s′ = (XTX/n)s.

We use the result in Appendix A and have ‖(XTX/n)−1s′‖2 ≤ 2‖s′‖2 with probability 1− 2e−c3k. Then we have

P

(∥∥∥∥∥
(

1

n
XTX

)−1

− Ik×k

∥∥∥∥∥
2

≥ c4

√
k

n

)
≤ 4e−c5k.

We condition on the event ‖D‖2 ≤ c4
√
k/n and follow similar arguments as in the proof of Lemma 5 in Wainwright

(2009).



To use this lemma, we need to also transform the z̃S in F2 into a fixed value sign(w∗S). We define δS as

δS := Σ̂−1
S,S

(
1

T l

T∑
i=1

XT
ti,Sεti − λsign(w∗S) +

1

T l

T∑
i=1

XT
ti,SXti,S∆∗ti,S

)
.

Using the techniques in the proof of Lemma 3(b) in Wainwright (2009), we know that the sign consistency
property z̃S = sign(w∗S) is equivalent to sign(w∗S + δS) = sign(w∗S). Therefore we only need to bound the `∞
norm of δS . More specifically, for a fixed w∗S , we can choose our parameters to ensure sign(w∗S + δS) = sign(w∗S),
then we have z̃S = sign(w∗S) and w̃S −w∗S = δS being bounded by the same bound.

Now we redefine F2 = Σ̂−1
S,Sλsign(w∗S) by breaking it into two terms: F2 = Σ−1

S,Sλsign(w∗S)+(Σ̂−1
S,S−Σ−1

S,S)λsign(w∗S)
and bound their `∞ norm separately. We use the technique in Section V.B in Wainwright (2009) and have

P (‖F2‖∞ ≥ c6λ‖Σ−1/2
S,S ‖

2
∞) ≤ 4e−c2 min{k,log(p−k)}.

Finally, we consider F3 = Σ̂−1
S,SλζS . From our Section 5.4, we have P(‖ζS‖∞ ≥ 1) ≤ exp(−c7 log(p − k)). We

follow a similar procedure in Lemma C.1 and note that here z = ζS = 1
λTl

∑T
i=1 XT

ti,S
Xti,S∆∗ti,S is not a constant

vector. We show that with the rotation invariance condition on Xti,S and ∆∗ti,S , we have that Uz is also rotation

invariant where the unitary matrix U is defined by (XT
SXS/n)−1 − Ik×k = UTDU with D being diagonal. This

is because when we consider the distribution of a rotated Uz, i.e., V (Uz) where V is another unitary matrix,
V (Uz) can be treated as U(V ′z) where V ′ is also a unitary matrix, then we can transform Xti,S and ∆∗ti,S as

V ′
−1/2

Xti,S and V ′
1/2

∆∗ti,S for all ti to map V (Uz) to U ′z′ without changing its probability density function.

Since Uz is rotation invariant and U = (u1 u2 . . . uk) is unitary, we know that ui is orthogonal to gi :=
∑
j 6=i ujzj

and ui is uniformly distributed over a sphere of k − 1 dimensions when conditioning on gi. In the analysis of
F3, we further condition on two events: A = {‖D‖2 ≤ c4

√
k/n} and B = {‖ζS‖∞ ≤ 1}. Then we follow similar

arguments as in the proof of Lemma 5 in Wainwright (2009) to claim that F (ui) := uTi Dgi is Lipschitz and use
the concentration of measure for Lipschitz functions (Example 3.12 in Wainwright (2019)). Finally we have the
same bound as in Lemma C.1 and

P (‖F3‖∞ ≥ c6λ‖Σ−1/2
S,S ‖

2
∞) ≤ 4e−c2 min{k,log(p−k)} + e−c7 log(p−k) + 4e−c5k = c8e

−c9 min{k,log(p−k)}.

Therefore, we can bound the estimation error by letting c3 := 2c6‖Σ−1/2
S,S ‖2∞+2/λmin(ΣS,S). Thus, with probability

greater than 1− c8e−c9 min{k,log(p−k)}, we have

‖w̃S −w∗S‖∞ ≤ c3λ.

F PROOF OF THEOREM 4.4

We use the primal dual witness framework as in the proof of Theorem 4.1. Since for this novel (T + 1)-th task,
∆∗ti , i = 1, 2, · · · , T is not considered, the choice of l and λ can be more flexible. We set l ∈ Ω(k′ log(k − k′)) and

λ ∈ Ω(
√

log(k − k′)/l).

For step 1, similar to the step 1 in Theorem 4.1 (proved in the appendix Section B; here we replace T l with l),
with probability greater than 1− 2e−C

′l, we have

1

l
[XT

T+1XT+1]S,S � 0

For step 5, since ∆∗ti is no longer in z̃Sc , we have

z̃Sc = XT
T+1,Sc

{
1

l
XT+1,S

(
1

l
[XT

T+1XT+1]S,S

)−1

z̃S + ΠX⊥T+1,S

(εT+1

λl

)}
This is the same as the part z̃Sc,1 in the proof of step 5 in Theorem 4.1. We can use the technique in appendix

Section C to bound its `∞ norm. With probability greater than 1− 2e−c1 log(k−k′), we have

‖z̃Sc‖∞ ≤ 1− γ/2.



For the estimation error bound, we write it as below.

ŵT+1,S − (w∗S + ∆∗tT+1,S
) =

(
1

l
[XT

T+1XT+1]S,S

)−1(
1

l
XT
T+1,SεT+1 − λz̃S

)
=

(
1

l
[XT

T+1XT+1]S,S

)−1
1

l
XT
T+1,SεT+1︸ ︷︷ ︸

F1

−
(

1

l
[XT

T+1XT+1]S,S

)−1

λz̃S︸ ︷︷ ︸
F2

These two parts F1, F2 are similar to the F1, F2 in the appendix Section E, therefore we can use similar technique
to bound its `∞ norm. We let ΣS,S be the population covariance matrix of task T + 1. With probability greater

than 1− c2e−c3 log(k−k′), we have

‖ŵT+1 − (w∗ + ∆∗tT+1
)‖∞ ≤

4λ
√
k′

λmin(ΣS,S)
.

To obtain an O(λ) bound, we need to assume that all rows in XtT+1,S are rotation invariant. The proof is the
same as in Section E.2 (the only difference is that we do not have F3). Thus, we replace z̃S with sign(w∗+ ∆∗tT+1

)
in F2, then we use Lemma C.1 to bound F2.

P (‖F2‖∞ ≥ c4λ‖Σ−1/2
S,S ‖

2
∞) ≤ c5e−c6 min{k′,log(k−k′)}.

We let c7 := c4‖Σ−1/2
S,S ‖2∞ + 2/λmin(ΣS,S). With probability greater than 1− c8e−c9 min{k′,log(k−k′)}, we have

‖ŵT+1 − (w∗ + ∆∗tT+1
)‖∞ ≤ c7λ.

G PROOF OF THEOREM 4.5

We first introduce Fano’s inequality (Fano, 1952; Yu, 1997) (the version below can also be found directly in
Scarlett and Cevher (2019)).

Lemma G.1. (Fano’s inequality) With input dataset S, for any estimator θ̂(S) with k possible outcomes, i.e.,

θ̂ ∈ Θ, |Θ| = k, if S is generated from a model with true parameter θ∗ chosen uniformly at random from the same
k possible outcomes Θ, we have:

P[θ̂(S) 6= θ∗] ≥ 1− I(θ∗, S) + log 2

log k
.

Now we show that I(θ∗, S) ≤ T l · c1 + lT+1 · c2, where c1, c2 are constants, and θ∗ represents the parameter
(w∗,∆∗tT+1

) we want to recover. Here S is all the data in the T + 1 tasks, S[T ] is the data in the first T tasks,
and Si is the data of task ti. The mutual information is bounded by the following steps.

I(θ∗, S) =
1

k

∑
θ∗∈Θ

∫
S

pS|θ∗(S) log
pS|θ∗(S)

pS(S)
dS =

1

k

∑
θ∗∈Θ

∫
S

pS|θ∗(S) log
pS|θ∗(S)

1
k

∑
θ′∈Θ pS|θ′(S)

dS

≤ 1

k2

∑
θ∗∈Θ

∑
θ′∈Θ

∫
S

pS|θ∗(S) log
pS|θ∗(S)

pS|θ′(S)
dS =

1

k2

∑
θ∗∈Θ

∑
θ′∈Θ

KL(PS|θ∗ ||PS|θ′).

Given the common coefficient w∗, the data for each task is independent from each other. Therefore we have

KL(PS|θ∗ ||PS|θ′) = KL(PS[T ]|θ∗ ||PS[T ]|θ′) + KL(PST+1|θ∗ ||PST+1|θ′). (G.3)

First, we consider the first part in (G.3). We use S′ to denote S[T ]. Let PS′ = PS[T ]|θ∗, P
′
S′ = PS[T ]|θ′ . Note that

KL(PS′ ||P ′S′) =

∫
S′
PS′ log

PS′

P ′S′
dS′.



Furthermore

PS′ =

∫
∆∗t1

,··· ,∆∗tT

PS′|w∗,∆∗t1 ,··· ,∆
∗
tT
P∆∗t1

,··· ,∆∗tT |w
∗d∆∗t1 , · · · , d∆∗tT

=

∫
∆∗t1

PS1|w∗,∆∗t1
P∆∗t1

|w∗d∆∗t1 · · ·
∫

∆∗tT

PST |w∗,∆∗tT
P∆∗tT

|w∗d∆∗tT .

This is because conditioning on w∗,∆∗t1 , · · · ,∆
∗
tT are independent, and conditioning on both of them, the data for

each task is independent.

If we set ai =
∫

∆∗ti
PSi|w∗,∆∗ti

P∆∗ti
|w∗d∆∗ti , a

′
i =

∫
∆′ti

PSi|w′,∆′ti
P∆′ti

|w′d∆′ti , we have

PS′ = a1a2 · · · aT , P ′S′ = a′1a
′
2 · · · a′T .

Therefore

KL(PS′ ||P ′S′) =

∫
S′
a1 · · · aT

(
log

a1

a′1
+ · · ·+ log

aT
a′T

)
dS′.

We know that ai is a function of Sj only when i = j, and
∫
Sj
aj dSj = 1. Therefore, we have∫

S′
a1a2 · · · aT

(
log

ai
a′i

)
dS′ =

∫
Si

ai log
ai
a′i
dSi.

Therefore

KL(PS′ ||P ′S′) =

T∑
i=1

∫
Si

ai log
ai
a′i
dSi = T

∫
Si

ai log
ai
a′i
dSi.

For any task ti, conditioning on (w∗,∆∗ti), we know that all samples in Si are i.i.d. If we set Si,j to be the j-th
sample in the task ti, and ai,j = PSi,j |w∗,∆∗ti

, we have∫
Si

ai log
ai
a′i
dS1 ≤ l

∫
Si,1

ai,1 log
ai,1
a′i,1

dSi,1.

Therefore,

KL(PS′ ||P ′S′) = T l

∫
Si,1

∫
∆∗ti

PSi,1|w∗,∆∗ti
d∆∗ti log

(∫
∆∗ti

PSi,1|w∗,∆∗ti
d∆∗ti∫

∆′ti
PSi,1|w′,∆′ti

d∆′ti

)
dSi,1 = T l · c1.

Then we consider the second part in (G.3). For the task tT+1, conditioning on (w∗,∆∗tT+1
), since we know that

all samples in ST+1 are i.i.d., we have

KL(PST+1|θ∗ ||PST+1|θ′) = lT+1

∫
ST+1,1

PST+1,1|w∗,∆∗tT+1

PST+1,1|w∗,∆∗tT+1

PST+1,1|w′,∆′tT+1

dST+1,1 = lT+1 · c2.

Combining the results above, we have

I(θ∗, S) ≤ T l · c1 + lT+1 · c2.

Finally, from Fano’s inequality, we know that

P[θ̂ 6= θ∗] ≥ 1− log 2 + T l · c1 + lT+1 · c2
log |Θ|

.



H ADDITIONAL EXPERIMENTS

In this section, we present simulations to show that Theorem 4.1 holds in the sense that for different choices of l
and p, one only needs T = c · (k log(p− k)/l) to recover the true common support S with high probability.

H.1 Simulations with fixed k

For all the experiments in this section, we let k = |S| = 5, and perform 100 repetitions for each setting.
We compute the empirical probability of successful support recovery P (Ŝ = S) as the number of times we
obtain exact support recovery among the 100 repetitions, divided by 100. We compute the standard deviation

as

√
P (Ŝ = S)(1− P (Ŝ = S))/100, that is, by using the formula of the standard deviation of the Binomial

distribution. For the estimation error ‖ŵ −w∗‖∞, we calculate the mean and standard deviation by using the
empirical results of the 100 repetitions.

H.1.1 Gaussian distribution setting

We first consider the setting of different sample size l. We choose l ∈ {3, 5, 7, 10} and use λ =
√
k log(p− k)/(5T l)

for all the pairs of (T, l). We denote the set {1, 2, 3, · · · , a} by [a]. For all i ∈ [T ], j ∈ [l],m ∈ S, we set
εti,j ∼ N(µ = 0, σε = 0.1), ∆∗ti,m ∼ N(µ = 0, σ∆ = 0.2), Xti,j,m ∼ N(µ = 0, σx = 1), which are mutually
independent. We set p = 100, and w∗ having five entries equal to 1, and the rest of the entries being 0. The
support of ∆∗ti is same as the support of w∗. The results are shown in Figure H.1. The number of tasks T is

rescaled to C defined by Tl
k log(p−k) . For different choices of l, the curves overlap with each other perfectly (for

both P (Ŝ = S) and ‖ŵ −w∗‖∞).
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Figure H.1: Simulations with our meta sparse regression under Gaussian distributions of εti,j ,∆
∗
ti,m, Xti,j,m ∀i ∈

[T ], j ∈ [l],m ∈ S. We use λ =
√

k log(p−k)
5Tl . Left: Probability of exact support recovery for different number of

tasks under various settings of sample size l. The x-axis is set by C := Tl
k log(p−k) . Right: The corresponding

estimation error of the common parameter w in `∞ norm.

Next we show that the problem described above cannot be solved by multi-task methods. We use two multi-task
methods with regularization terms being `1,2 Obozinski et al. (2011) and `1 + `1,∞ Jalali et al. (2010) respectively.

The results are shown in Figure H.2 and H.3, where we take Ŝ =
⋃T
i=1 Ŝi. We show both P (Ŝ = S) and

P (ŜT = ST ) since the multi-task learning methods are not designed for recovering only the union of the supports
of all tasks. As we claimed in Table 1, the multi-task methods require that l grows with T in order to retain
the probability of support recovery. Therefore we see when l is fixed at 3, 5, 7, 10, the probability of support
recovery first increases then decreases to 0 as T increases. For the `1,2 method of Obozinski et al. (2011), we use

λ1,2 = 30
√

log p/(T l) as the parameter for the `1,2 norm; for the `1 + `1,∞ method of Jalali et al. (2010), we use

λ1 = 30
√

log p/(T l) as the parameter of the `1 norm and λ1,∞ = (1 + 1.5T )λ1/2.5 as the parameter of the `1,∞
norm. We also tried different choices of λ1,2, λ1, λ1,∞ and the trends of the results are similar.

The Figure 1 is from the results in Figure H.1, H.2, H.3.
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Figure H.2: Simulations with the multi-task method with `1,2 regularization under Gaussian distributions of

εti,j ,∆
∗
ti,m, Xti,j,m ∀i ∈ [T ], j ∈ [l],m ∈ S. We use λ1,2 = 30

√
log p/(T l). Left: Probability of exact support

union recovery (S = Ŝ :=
⋃T
i=1 Ŝi) for different number of tasks under various settings of sample size l. The

x-axis is set by C := Tl
k log(p−k) . Right: Probability of exact support recovery of the last task (ŜT = ST ).
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Figure H.3: Simulations with the multi-task method with `1 + `1,∞ regularization under Gaussian distributions

of εti,j ,∆
∗
ti,m, Xti,j,m ∀i ∈ [T ], j ∈ [l],m ∈ S. We use λ1 = 30

√
log p/(T l), λ1,∞ = (1 + 1.5T )λ1/2.5. Left:

Probability of exact support union recovery (S = Ŝ :=
⋃T
i=1 Ŝi) for different number of tasks under various

settings of sample size l. The x-axis is set by C := Tl
k log(p−k) . Right: Probability of exact support recovery of

the last task (ŜT = ST ).
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Figure H.4: Simulations with our meta sparse regression under Gaussian distributions of εti,j ,∆
∗
ti,m, Xti,j,m ∀i ∈

[T ], j ∈ [l],m ∈ S. We use λ =
√

k log(p−k)
5Tl . Left: Probability of exact support recovery for different number

of tasks under various settings of number of parameters p. The x-axis is set by C := Tl
k log(p−k) . Right: The

corresponding estimation error of the common parameter w in `∞ norm.



Then, for our method we consider the setting of different number of parameters p. We choose p ∈ {50, 100, 200, 400}
and use λ =

√
k log(p− k)/(5T l) for all the pairs of (T, l). For all i ∈ [T ], j ∈ [l],m ∈ S, we set εti,j ∼ N(µ =

0, σε = 0.1), ∆∗ti,m ∼ N(µ = 0, σ∆ = 0.2), Xti,j,m ∼ N(µ = 0, σx = 1), which are mutually independent. We set
l = 5, and w∗ having five entries equal to 1, and the rest of the entries being 0. The support of ∆∗ti is same as the

support of w∗. The results are shown in Figure H.4. The number of tasks T is rescaled to C defined by Tl
k log(p−k) .

For different choices of p, the curves overlap with each other perfectly (for both P (Ŝ = S) and ‖ŵ −w∗‖∞).

H.1.2 Uniform distribution setting

In this paper we only assume that the distributions are sub-Gaussian which includes the uniform distribution.
Therefore in this section, we replace the Gaussian distribution setting in the appendix Section H.1.1 with a
uniform distribution setting.

For all i ∈ [T ], j ∈ [l],m ∈ S, we set εti,j ∼ Uniform(−0.1
√

3, 0.1
√

3), ∆∗ti,m ∼ Uniform(−0.2
√

3, 0.2
√

3),

Xti,j,m ∼ Uniform(−
√

3,
√

3), which are mutually independent. We consider the setting of different sample size l.

We choose l ∈ {3, 5, 7, 10} and use λ =
√
k log(p− k)/(5T l) for all the pairs of (T, l). We set p = 100, and w∗

having five entries equal to 1, and the rest of the entries being 0. The support of ∆∗ti is same as the support

of w∗. The results are shown in Figure H.5. The number of tasks T is rescaled to C defined by Tl
k log(p−k) . For

different choices of l, the curves overlap with each other perfectly (for both P (Ŝ = S) and ‖ŵ −w∗‖∞).
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Figure H.5: Simulations with our meta sparse regression under uniform distributions of εti,j ,∆
∗
ti,m, Xti,j,m ∀i ∈

[T ], j ∈ [l],m ∈ S. We use λ =
√

k log(p−k)
5Tl . Left: Probability of exact support recovery for different number of

tasks under various settings of l. The x-axis is set by C := Tl
k log(p−k) . Right: The corresponding estimation error

of the common parameter w in `∞ norm.

Then we consider the setting of different number of parameters p. We choose p ∈ {50, 100, 200, 400} and use λ =√
k log(p− k)/(5T l) for all the pairs of (T, l). For all i ∈ [T ], j ∈ [l],m ∈ S, we set εti,j ∼ Uniform(−0.1

√
3, 0.1

√
3),

∆∗ti ∼ Uniform(−0.2
√

3, 0.2
√

3), Xti,j,m ∼ Uniform(−
√

3,
√

3), which are mutually independent. We set l = 5,
and w∗ having five entries equal to 1, and the rest of the entries being 0. The results are shown in Figure H.6.
The number of tasks T is rescaled to C defined by Tl

k log(p−k) . For different choices of p, the curves overlap with

each other perfectly (for both P (Ŝ = S) and ‖ŵ −w∗‖∞).

H.1.3 Mixture of sub-Gaussian distribution setting

In Section 3.2, we state that we can consider the setting Si ⊆ S under the sub-Gaussian distribution assumption.
Therefore in this section, we replace the Gaussian distribution setting of ∆∗ti,m in the appendix Section H.1.1 with
a mixture of sub-Gaussian distribution setting. More specifically, we consider a mixture of a Dirac distribution
and a Gaussian distribution.

For all i ∈ [T ], j ∈ [l],m ∈ S, we set εti,j ∼ N(µ = 0, σε = 0.1), Xti,j,m ∼ N(µ = 0, σx = 1), ∆∗ti,m ∼
0.5 δ−w∗m + 0.5 N(µ = 0, σ∆ = 0.2), which are mutually independent. We consider the setting of different sample

size l. We choose l ∈ {3, 5, 7, 10} and use λ = 4
√
k log(p− k)/(5T l) for all the pairs of (T, l). We set p = 100, and
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Figure H.6: Simulations with our meta sparse regression under uniform distributions of εti,j ,∆
∗
ti,m, Xti,j,m ∀i ∈

[T ], j ∈ [l],m ∈ S. We use λ =
√

k log(p−k)
5Tl . Left: Probability of exact support recovery for different number

of tasks under various settings of number of parameters p. The x-axis is set by C := Tl
k log(p−k) . Right: The

corresponding estimation error of the common parameter w in `∞ norm.

w∗ having five entries equal to 2, and the rest of the entries being 0. The support of ∆∗ti is same as the support
of w∗ denoted by S while the support of w∗ + ∆∗ti could be a subset of S, i.e., Si ⊆ S. More specifically, the
distribution of ∆∗ti,m means that for the m-th parameter in the i-th task, i.e., wi,m := [w∗+∆∗ti ]m,∀i ∈ [T ],m ∈ S,
there is a 50% probability that wi,m = 0, and a 50% probability that wi,m ∈ N(2, 0.2).

The results are shown in Figure H.7. The number of tasks T is rescaled to C defined by Tl
k log(p−k) . For different

choices of l, the curves overlap with each other perfectly (for both P (Ŝ = S) and ‖ŵ −w∗‖∞).
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Figure H.7: Simulations with our meta sparse regression under Gaussian distributions of εti,j , Xti,j,m ∀i ∈
[T ], j ∈ [l],m ∈ S and a mixture of sub-Gaussian distributions of ∆∗ti,m ∀i ∈ [T ],m ∈ S such that the support

of w∗ + ∆∗ti could be a subset of S, i.e., Si ⊆ S. We use λ = 4
√

k log(p−k)
5Tl . Left: Probability of exact support

recovery for different number of tasks under various settings of l. The x-axis is set by C := Tl
k log(p−k) . Right:

The corresponding estimation error of the common parameter w in `∞ norm.

Then we consider the setting of different number of parameters p. We choose p ∈ {50, 100, 200, 400} and use
λ = 4

√
k log(p− k)/(5T l) for all the pairs of (T, l). The distribution setting is same as in Figure H.7. We set

l = 5, and w∗ = (2, 2, 2, 2, 2, 0, 0, · · · , 0). The results are shown in Figure H.8. The number of tasks T is rescaled
to C defined by Tl

k log(p−k) . For different choices of p, the curves overlap with each other perfectly (for both

P (Ŝ = S) and ‖ŵ −w∗‖∞).

H.1.4 Gaussian distribution setting with entries in X being correlated

In this section, we consider three different correlation settings in X for our method:
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Figure H.8: Simulations with our meta sparse regression under Gaussian distributions of εti,j , Xti,j,m ∀i ∈
[T ], j ∈ [l],m ∈ S and a mixture of sub-Gaussian distributions of ∆∗ti,m ∀i ∈ [T ],m ∈ S. We use λ = 4

√
k log(p−k)

5Tl .

Left: Probability of exact support recovery for different number of tasks under various settings of number of
parameters p. The x-axis is set by C := Tl

k log(p−k) . Right: The corresponding estimation error of the common

parameter w in `∞ norm.

1. Xti,j are i.i.d. from N(0,Σx) where Σx is not a diagonal matrix;

2. Xti,j are i.i.d. from N(0,Σx,ti), and Σx,ti ∼ F (Σ), i.e., for each task, the covariance matrix of X is different
and sampled from a matrix distribution F (Σ);

3. Xti,j are i.i.d. from N(∆∗ti ,Σx,ti), and Σx,ti ∼ F∆∗ti
(Σ), i.e., for each task, the covariance matrix of X

depends on the task specific coefficient ∆∗ti .

First, we consider the setting of a nondiagonal Σx which leads to γ < 1 in the mutual incoherence condition, where
γ = 1 − |||ΣSc,S(ΣS,S)−1|||∞. For the simulations we present in the previous sections, the entries in Xti,j are
independent, therefore the covariance matrix of Xti,j is diagonal and the corresponding γ = 1. Here we consider

the case that the entries in Xti,j are not independent. We choose p = 100, l = 5 and use λ =
√
k log(p− k)/(5T l)

for all the pairs of (T, l). We set w∗ with five entries equal to 1, and the rest of the entries being 0. The
support of ∆∗ti is same as the support of w∗. For all i ∈ [T ], j ∈ [l],m ∈ S, we set εti,j ∼ N(µ = 0, σε = 0.1),
∆∗ti,m ∼ N(µ = 0, σ∆ = 0.2), Xti,j ∼ N(µ = 0,Σ = Σx), which are mutually independent. The covariance matrix

Σx = ATA where A is a sum of a randomly generated orthonormal matrix U0 and a matrix U1 with each entry
i.i.d. from Uniform(−0.05, 0.05), i.e., A = U0 + U1. After we generate Σx, we calculate the corresponding γ. We
generate 5 different Σx with 5 different γ. The results are shown in Figure H.9. The number of tasks T is rescaled
to C defined by Tl

k log(p−k) .

Then, we consider the setting of different Σx for each task, i.e., Xti,j ∼ N(0,Σx,ti),Σx,ti ∼ F (Σ). We choose

p = 100, l = 5 and use λ = 2.5
√
k log(p− k)/(5T l) for all the pairs of (T, l). We set w∗ with five entries equal to 1,

and the rest of the entries being 0. The support of ∆∗ti is same as the support of w∗. For all i ∈ [T ], j ∈ [l],m ∈ S,
we set εti,j ∼ N(µ = 0, σε = 0.1), ∆∗ti,m ∼ N(µ = 0, σ∆ = 0.2), Xti,j ∼ N(µ = 0,Σ = Σx,ti), which are

mutually independent. For each task, the covariance matrix Σx,ti = ATtiAti where Ati is a sum of a randomly
generated orthonormal matrix U0,ti and a perturbation matrix U1,ti with each entry i.i.d. from Uniform(−a, a),
i.e., Ati = U0,ti +U1,ti , [U1,ti ]j,k ∼ Uniform(−a, a). We choose the perturbation range a from {0.2, 0.1, 0.05, 0.01}.
The results are shown in Figure H.10. The number of tasks T is rescaled to C defined by Tl

k log(p−k) .

Finally, we consider the setting that for each task, the distribution of Xti,j depends on the task specific coefficient

∆∗ti . We choose p = 100, l = 5 and use λ = 1.5
√
k log(p− k)/(5T l) for all the pairs of (T, l). We set w∗ with five

entries equal to 1, and the rest of the entries being 0. The support of ∆∗ti is same as the support of w∗. For
all i ∈ [T ], j ∈ [l],m ∈ S, we set εti,j ∼ N(µ = 0, σε = 0.1), ∆∗ti,m ∼ N(µ = 0, σ∆ = 0.2), which are mutually

independent. For each task, Xti,j ∼ N(µ = ∆∗ti ,Σ = Σx,ti), and the covariance matrix Σx,ti = ATtiAti where
Ati is a sum of a randomly generated orthonormal matrix U0,ti and a perturbation matrix U1,ti = a∆∗ti(∆

∗
ti)

T ,
i.e., Ati = U0,ti + U1,ti . We choose the perturbation range a from {0.2, 0.1, 0.05, 0.01}. The results are shown in
Figure H.11. The number of tasks T is rescaled to C defined by Tl

k log(p−k) .



2 4 6 8 10
C

0.0

0.2

0.4

0.6

0.8

1.0
P(

S
=

S)

= 0.6052
= 0.6711
= 0.6934
= 0.7076
= 0.7216

2 4 6 8 10
C

0.0

0.2

0.4

0.6

0.8

1.0

||w
w

* |
|

Figure H.9: Simulations with our meta sparse regression under Gaussian distributions of εti,j ,∆
∗
ti,m and

multivariate Gaussian distribution of Xti,j,m, ∀i ∈ [T ], j ∈ [l],m ∈ S. We use λ =
√

k log(p−k)
5Tl . Left: Probability

of exact support recovery for different number of tasks under various settings of γ in the mutual incoherence
condition, i.e., γ = 1 − |||ΣSc,S(ΣS,S)−1|||∞. The x-axis is set by C := Tl

k log(p−k) . Right: The corresponding

estimation error of the common parameter w in `∞ norm.
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Figure H.10: Simulations with our meta sparse regression under Gaussian distributions of εti,j ,∆
∗
ti,m and

Xti,j,m ∼ N(0,Σx,ti), ∀i ∈ [T ], j ∈ [l],m ∈ S. We use λ = 2.5
√

k log(p−k)
5Tl . Left: Probability of exact support

recovery for different number of tasks under various settings of Σx,ti where Σx,ti = ATtiAti , Ati = U0,ti +U1,ti , U0,ti

is randomly generated orthonormal matrix, U1,ti is perturbation matrix with each entry i.i.d. from Uniform(−a, a),
i.e., [U1,ti ]j,k ∼ Uniform(−a, a). We choose the perturbation range a from {0.2, 0.1, 0.05, 0.01}. The x-axis is set
by C := Tl

k log(p−k) . Right: The corresponding estimation error of the common parameter w in `∞ norm.
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Figure H.11: Simulations with our meta sparse regression under Gaussian distributions of εti,j ,∆
∗
ti,m and

Xti,j,m ∼ N(∆∗ti ,Σx,ti), ∀i ∈ [T ], j ∈ [l],m ∈ S. We use λ = 1.5
√

k log(p−k)
5Tl . Left: Probability of exact support

recovery for different number of tasks under various settings of Σx,ti where Σx,ti = ATtiAti , A = U0,ti + U1,ti ,
U0,ti is randomly generated orthonormal matrix, U1,ti = a∆∗ti(∆

∗
ti)

T is perturbation matrix with a from

{0.2, 0.1, 0.05, 0.01}. The x-axis is set by C := Tl
k log(p−k) . Right: The corresponding estimation error of the

common parameter w in `∞ norm.

H.2 Simulations with changing k

Since our choice of λ is O(
√
k log(p− k)/(T l)) which has an extra

√
k than the common choice of λ in LASSO,

we perform experiments with changing k to support our theoretical result. We let l = 5 for the experiments in
this section, and all the other settings are the same as in the previous section. More specifically, the results in
Figure H.12, H.13, H.14, H.15 correspond to the results in Figure H.1, H.5, H.7, H.9 respectively. We can see
that the curves overlap perfectly for different settings of k.
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Figure H.12: Simulations with our meta sparse regression under Gaussian distributions of εti,j ,∆
∗
ti,m, Xti,j,m ∀i ∈

[T ], j ∈ [l],m ∈ S. We use λ =
√

k log(p−k)
5Tl . Left: Probability of exact support recovery for different number of

tasks under various settings of k. The x-axis is set by C := Tl
k log(p−k) . Right: The corresponding estimation

error of the common parameter w in `∞ norm.

H.3 Details about implementing CP-Regression

For CP-Regression, we choose its hyperparameters as µ = 100, λ0 = 0, λ = 1. More specifically, CP-Regression
first uses ridge regression with λ0 to fit each prior task to get models. Then it uses those models to predict the
response of the data in the novel task. The predictions are scaled by µ and added to the covariate set. Therefore,
if the original covariate in the novel task is XtT+1

∈ Rl×p, the new covariate set will be X ′tT+1
∈ Rl×(p+T ) where

T is the number of prior tasks. Finally, CP-Regression uses ridge regression with λ to fit the novel task with
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Figure H.13: Simulations with our meta sparse regression under uniform distributions of εti,j ,∆
∗
ti,m, Xti,j,m ∀i ∈

[T ], j ∈ [l],m ∈ S. We use λ =
√

k log(p−k)
5Tl . Left: Probability of exact support recovery for different number of

tasks under various settings of k. The x-axis is set by C := Tl
k log(p−k) . Right: The corresponding estimation

error of the common parameter w in `∞ norm.
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Figure H.14: Simulations with our meta sparse regression under Gaussian distributions of εti,j , Xti,j,m ∀i ∈
[T ], j ∈ [l],m ∈ S and a mixture of sub-Gaussian distributions of ∆∗ti,m ∀i ∈ [T ],m ∈ S such that the support

of w∗ + ∆∗ti could be a subset of S, i.e., Si ⊆ S. We use λ = 4
√

k log(p−k)
5Tl . Left: Probability of exact support

recovery for different number of tasks under various settings of k. The x-axis is set by C := Tl
k log(p−k) . Right:

The corresponding estimation error of the common parameter w in `∞ norm.
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Figure H.15: Simulations with our meta sparse regression under Gaussian distributions of εti,j ,∆
∗
ti,m and

multivariate Gaussian distribution of Xti,j,m, ∀i ∈ [T ], j ∈ [l],m ∈ S. We use λ =
√

k log(p−k)
5Tl . Left: Probability

of exact support recovery for different number of tasks under various settings of k. The x-axis is set by
C := Tl

k log(p−k) . Right: The corresponding estimation error of the common parameter w in `∞ norm.



X ′tT+1
. Maurer (2005) did not provide any strategy regarding the setting of the hyperparameters (λ0, λ, µ) for

CP-Regression, especially on how the hyperparameters depend on (T, l, p, k). Therefore, we select the best results
for CP-Regression we have obtained.

I REAL-WORLD EXPERIMENTS

The single-cell gene expression dataset from Kouno et al. (2013) contains expression levels of 45 transcription
factors measured at 8 distinct time-points. This dataset contains 120 single cells for each time-point and was used
in the experimental validation of Ollier and Viallon (2017). The original objective is to determine the associations
among the transcription factors and how they vary over time. We formulate this as a meta-learning problem by
setting the first 7 of the 8 time-points as the T tasks (for training) and the 8-th time-point as the novel task (for
testing), i.e., T = 7. Similar to the analysis in Ollier and Viallon (2017), we pick one particular transcription
factor, EGR2, as the response variable y, and the other 44 factors as the covariates in X, i.e., p = 44. The true
value of the support size k is unknown. We choose l ∈ {5, 7, 10, 15} to model this problem as few-shot learning.

We first randomly permute the 120 single cells (i.e., samples) while keeping their relative order in all of the 8
time points (i.e., tasks). Then we find a good choice of hyperparameters: λ in our method, λ1,2 for the `1,2 norm
of the method in Obozinski et al. (2011); λ1 and λ1,∞ for the `1 and `1,∞ norms, respectively of the method
in Jalali et al. (2010). We use the tree-structured Parzen estimator approach (TPE) optimizing the criterion
of expected improvement (EI) in the Python package hyperopt Bergstra et al. (2013). For CP-Regression, we
choose its hyperparameters as µ = 100, λ0 = 0, λ = 1.

The search space is [0, 100] for all these hyperparameters. For one choice of the hyperparameters, we choose l
samples in each of the 7 tasks as training samples, and choose the rest (120− l) samples as validation samples. The
TPE-EI algorithm evaluates 30 choices of hyperparameters to minimize the mean square error of the prediction
on the validation samples.

After we determine the hyperparameters from all the three methods (ours, `1,2, and `1 +`1,∞), we choose l samples

in each of the 7 tasks to train models by these methods to estimate S (for multi-task methods, Ŝ :=
⋃T
i=1 Ŝi.)

The mean and standard deviation of the size of the estimated support are shown in the right panel of Figure 2.

When the estimated common supports are obtained, we can use LASSO constrained on the common support to
solve for the new task, i.e., the 8-th time point. We determine the choice of hyperparameters using hyperopt in
the same way shown above. Then we use LASSO with λ being set to those hyperparameters to estimate the
support of the new task. Since the weight estimation of (w∗ + ∆∗tT+1

) by LASSO is not very accurate when
the sample size l is small, we use linear regression to estimate (w∗ + ∆∗tT+1

) again with the support recovered
by LASSO. The performance is measured by the mean square error (MSE) of prediction on the rest (120− l)
samples. For one estimated common support, we take 6 random choices of the training l samples in the new task
and calculate the mean of the the prediction error. The mean and standard deviation of MSE are shown in the
left panel of Figure 2.

All the mean and standard deviation results (shown as error bars) in Figure 2 are obtained from 100 repetitions
of the experiment setting above. From Figure 2 we can see that our method has lower MSE when l is small.
Since T is not large and does not grow, the multi-task methods also perform well when l is large enough. We also
show that the size of the estimated common support by our methods is not significantly larger than the ones by
the other two multi-task methods, which suggests that our method produces a more accurate estimation of the
common support set.
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