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Abstract

This paper addresses the meta-learning prob-
lem in sparse linear regression with infinite
tasks. We assume that the learner can access
several similar tasks. The goal of the learner is
to transfer knowledge from the prior tasks to a
similar but novel task. For p parameters, size
of the support set k, and l samples per task,
we show that T ∈ O((k log p)/l) tasks are suf-
ficient in order to recover the common support
of all tasks. With the recovered support, we
can greatly reduce the sample complexity for
estimating the parameter of the novel task,
i.e., l ∈ O(1) with respect to T and p. We
also prove that our rates are minimax optimal.
A key difference between meta-learning and
the classical multi-task learning, is that meta-
learning focuses only on the recovery of the
parameters of the novel task, while multi-task
learning estimates the parameter of all tasks,
which requires l to grow with T . Instead, our
efficient meta-learning estimator allows for l
to be constant with respect to T (i.e., few-shot
learning).

1 INTRODUCTION

Current machine learning algorithms have shown great
flexibility and representational power. On the down-
side, in order to obtain good generalization, a large
amount of data is required for training. Unfortunately,
in some scenarios, the cost of data collection is high.
Thus, an inevitable question is how to train a model
in the presence of few training samples. This is also
called Few-Shot Learning (Wang et al., 2020). In-
deed, there might not be much information about an
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underlying task when only few examples are available.
A way to tackle this difficulty is Meta-Learning (Van-
schoren, 2019): we gather many similar tasks instead
of several examples in one task, and use the data from
different tasks to train a model that can generalize well
in the similar tasks. This hopefully also guarantees a
good performance of the model for a novel task, even
when only few examples are available for the new task.
In this sense, the model can rapidly adapt to the novel
task with prior knowledge extracted from other similar
tasks.

Several meta-learning algorithms have been proposed
for the particular model class of neural networks
(Vinyals et al., 2016; Ravi and Larochelle, 2016; Finn
et al., 2017; Snell et al., 2017). The aforementioned
works are of experimental nature and unfortunately,
there is a lack of theoretical understanding for the suc-
cess of meta-learning given different tasks with only
few samples for each task. For example, in few shot
learning, the case of 5-way 1-shot classification requires
the model to learn to classify images from 5 classes
with only one example shown for each class. In this
case, the model should be able to identify useful fea-
tures (among a very large learned feature set) in the 5
examples instead of building the features from scratch.

There have been some efforts on building the theoretical
foundation of meta-learning. Maurer (2005) gave a gen-
eral method to prove generalization error bounds based
on algorithmic stability. Finn et al. (2019) showed
a regret bound of O(log T ), and Fallah et al. (2020)
showed a O(1/ε2) convergence rate to an ε-first order
stationary point. A natural question is how we can
have a theoretical understanding of the meta-learning
problem for any algorithm, i.e., the lower bound of
the sample complexity of the problem. The upper and
lower bounds of sample complexity is commonly an-
alyzed in simple but well-defined statistical learning
problems. Since we are learning a novel task with few
samples, meta-learning falls in the same regime than
sparse regression with large number of covariates p and
a small sample size l, which is usually solved by `1
regularized (sparse) linear regression such as LASSO,
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albeit for a single task. Even for a sample efficient
method like LASSO, we still need the sample size l
to be of order Ω(k log p) to achieve correct support
recovery, where k is the number of non-zero coefficients
among the p coefficients. The l ∈ Θ(k log p) rate has
been proved to be optimal (Wainwright, 2009). If we
consider meta-learning, we may be able to bring prior
information from similar tasks to reduce the sample
complexity of LASSO. In this respect, researchers have
considered the multi-task problem, which assumes simi-
larity among different tasks, e.g., tasks share a common
support. Then, one learns for all tasks at once. While
it seems that considering many similar tasks together
can bring information to each single task, the noise or
error is also introduced. In the results from previous
papers, e.g., (Jalali et al., 2010; Obozinski et al., 2011;
Negahban and Wainwright, 2011), in order to achieve
good performance on all T tasks, one needs the number
of samples l to scale with the number of tasks T . (See
Table 1. Details can be found in appendix Section A.)
More specifically, one requires l ∈ Ω(T ) or l ∈ Ω(log T )
for each task, which is not useful in the regime where
l ∈ O(1) with respect to T . Results from other papers,
e.g., (Lounici et al., 2009; Ollier and Viallon, 2017),
only apply to deterministic (non-random) covariates.

Table 1: Comparison on Rates of l for Our Meta Sparse
Regression Method versus Different Multi-task Learn-
ing Methods.

Model
Rate of l for
support recovery

`1 Ours
O(1) (only to recover
the common support)

`1 + `1,∞
(Jalali et al.,
2010)

O(max(k log(pT ),
kT (T + log p)))

`1,∞
(Negahban
and Wain-
wright, 2011)

O(max(k, T )(T + log p))

`1,2
(Obozinski
et al., 2011)

O(max(k log(p− k),
T log k))

Our contribution in this paper is as follows. First, we
proposed a meta-sparse regression problem and a corre-
sponding generative model that are amenable to solid
statistical analysis and also capture the essence of meta-
learning. Second, we prove the upper and lower bounds
of the sample complexity of this problem, and show that
they match in the sense that T ∈ O((k log p)/l) and
T ∈ Ω((k log p)/l). Here p is the number of coefficients
in one task, k is the number of non-zero coefficients
among the p coefficients, and l is the sample size of
each task. In short, we assume that we have access to
possibly an infinite number of tasks from a distribution

of tasks, and for each task we only have limited number
of samples. Our goal is to first recover the common
support of all tasks and then use it for learning a novel
task. The take-away message of our paper is that
simply by merging all the data from different tasks and
solving a `1 regularized (sparse) regression problem
(LASSO), we can achieve the best sample complexity
rate for identifying the common support and learning
the novel task. The merge-and-solve method seems
to be intuitive while its validity is not trivial. To the
best of our knowledge, our results are the first to give
upper and lower bounds of the sample complexity of
meta-learning problems.

2 PRELIMINARY

For any set A, |A| is the cardinality. We let [p] be
the set {1, 2, · · · , p}. For any vector X ∈ Rp and set
S ⊆ [p], we let Xi be the ith entry of X, and let
XS ∈ R|S| be a vector of the entries in X with indices
in S. Supp(X) is the set of indices of non-zero entries
in X, i.e., Supp(X) = {i|Xi 6= 0}. For any matrix
X ∈ Rp×q and set S ⊆ [p], S′ ⊆ [q], we let Xi,j be
the entry at the ith row and the jth column, and let
XS,S′ ∈ R|S|×|S′| be the submatrix of X with rows
indexed by S and columns indexed by S′.

X is a sub-Gaussian random variable with variance
proxy σ2 if and only if E[exp(λ(X − E[X]))] ≤
exp(λ2σ2/2). We denote the latter by X ∈ SG(σ2).
X ∈ Rp is a sub-Gaussian random vector with vari-
ance proxy σ2 if and only if vTX ∈ SG(σ2),∀v ∈ Sp−1.
We denote the latter by X ∈ SGp(σ

2). Note that
for any S ⊆ [p] and |S| = k, if X ∈ SGp(σ

2), then
XS ∈ SGk(σ2).

Let ψα(x) := exp(xα)− 1. For any random variable X
and α > 0, the ψα-Orlicz norm of X is defined as

‖X‖ψα = inf {t > 0 : E[ψα(|X|/t)] ≤ 1}

We define inf ∅ =∞. The above is a generalization of
sub-Gaussianity since there is a constant c such that
‖X‖ψ2

≤ cσ2 ∀X ∈ SG(σ2).

The notationsO(·), o(·),Ω(·),Θ(·) are defined as follows:
f(n) ∈ O(g(n)) if there exist constants M > 0, n0 > 0
such that |f(n)| ≤ Mg(n) for all n ≥ n0; f(n) ∈
o(g(n)) if for any ε > 0, there exist a constant n0 > 0
such that |f(n)| ≤ εg(n) for all n ≥ n0; f(n) ∈ Ω(g(n))
if there exist constants M > 0, n0 > 0 such that
f(n) ≥ M |g(n)| for all n ≥ n0; f(n) ∈ Θ(g(n)) if
f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).
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3 METHOD

Here, we present the meta sparse regression problem
as well as our `1 regularized regression method.

3.1 Problem setting

We consider the following meta sparse regression model.
The dataset containing samples from multiple tasks
{(Xti,j , yti,j , ti)|i = 1, 2, · · · , T, T + 1; j = 1, 2, · · · , l}
is generated as follows:

yti,j = XT
ti,j(w

∗ + ∆∗ti) + εti,j , (1)

where, ti indicates the i-th task, w∗ ∈ Rp is a con-
stant across all tasks, and ∆∗ti ∈ Rp is the individ-
ual parameter for each task. Note that the tasks
{ti|i = 1, 2, · · · , T} are the related tasks we collect
for helping solve the novel task tT+1. Each task con-
tains l training samples. The sample size of task tT+1

is denoted by lT+1, which is equal to l in the setting
above, but generally it could also be larger than l.

3.2 Assumptions

Our assumptions are as follows.

A1: ∆∗ti are mutually independent sub-Gaussian ran-
dom vectors with mean 0 and variance proxy σ2

∆, i.e.,
∆∗ti ∈ SGp(σ2

∆).

Note that we do not assume that the entries of ∆∗ti
are mutually independent. Sub-Gaussianity is a very
mild assumption, since the class of sub-Gaussian ran-
dom variables includes for instance Gaussian ran-
dom variables, any bounded random variable (e.g.,
Bernoulli, multinomial, uniform), any random variable
with strictly log-concave density, and any finite mixture
of sub-Gaussian variables.

We denote the support set of each task ti as Si =
Supp(w∗ + ∆∗ti), and S = Supp(w∗).

A2: Si ⊆ S and |S| = k � p, k ≤ T l, l ∈ O(k),
ST+1 ⊆ S, |ST+1| = kT+1 ≤ l.
This is possible as the sub-Gaussian distribution of
∆∗ti on the m-th entry can be a mixture of some other
sub-Gaussian distributions and a Dirac distribution
δ−w∗m that can cancel out the m-th entry in w∗.

A3: εti,j are mutually independent and follow a sub-
Gaussian distribution with mean 0 and variance proxy
σ2
ε , i.e., εti,j ∈ SG(σ2

ε ). Sample covariates Xti,j ∈ Rp
are mutually independent for any i, j. Each sample
is a sub-Gaussian vector with variance proxy σ2

x, i.e.,
Xti,j ∈ SGp(σ2

x).

Note that the samples from different tasks can have
different distributions.

A4: For every task ti and any q ∈ [p], the covariate
X := Xti,j has the second moment matrix Σti with

‖(Σti)S,q(Σti)
−1
q,q‖2 ∈ O(

√
k·max(1, σx)), and the con-

ditional random variable satisfies:
(XS − (Σti)S,q(Σti)

−1
q,qXq)|Xq ∈ SGk(σ2

x).

A5: The mixture distribution of covariates of all tasks
has the second moment matrix Σ satisfying the mutual
incoherence condition, i.e., |||ΣSc,S(ΣS,S)−1|||∞ ≤ 1−
γ, γ ∈ (0, 1]. In addition, there are constants c1, c2
such that |||Σ−1/2

S,S |||2∞ ≤ c1 and λmin(ΣS,S) ≥ c2.

In this paper, we say that X ∈ Rk is rotation invariant
if for any orthogonal matrix Q ∈ Rk×k, the distribution
of X is the same as the distribution of QX. Note that
the Gaussian distribution is rotation invariant while a
general sub-Gaussian distribution is not.

A6: (This assumption is only used for getting an ad-
ditional tighter bound.) Xti,S and ∆∗ti,S are rotation
invariant.

Remark 3.1 (Difference between meta sparse regres-
sion and multitask learning). Our setting and analysis
focuses on the case that the sample size l of each task
is fixed and small, and the number of tasks T goes to
infinity, while the number of tasks in multitask learn-
ing is usually fixed, or grows with the sample size
of each task. The mutual incoherence condition and
Si ⊆ S = Supp(w∗) are also common and mild as-
sumptions in the multitask learning literature (Jalali
et al., 2010; Negahban and Wainwright, 2011; Obozin-
ski et al., 2011). Our problem focuses on recovering
only S and ST+1 while multitask learning focuses on
recovering Si for all tasks which is much more difficult
if the sample size of each task is fixed.

3.3 Our method

In meta sparse regression, our goal is to use the prior
T tasks and their corresponding data to recover the
common support of all tasks. We then estimate the
parameters for the novel task. For the setting we ex-
plained above, this is equivalent to recover (w∗,∆∗tT+1

).

First, we determine the common support S over the
prior tasks {ti|i = 1, 2, · · · , T} by the support of ŵ
formally introduced below, i.e., Ŝ = Supp(ŵ), where

`(w) =
1

2T l

T∑
i=1

l∑
j=1

‖yti,j −XT
ti,jw‖22,

ŵ = arg min
w

{`(w) + λ‖w‖1}
(2)

Note that we have T tasks in total, and l samples for
each task.

Second, we use the support Ŝ as a constraint for re-
covering the parameters of the novel task tT+1. That
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is

`T+1(w) =
1

2l

l∑
j=1

‖ytT+1,j −XT
tT+1,jw‖22,

ŵT+1 = arg min
w,Supp(w)⊆Ŝ

{`T+1(w) + λT+1‖w‖1}
(3)

We point out that our method makes a proper applica-
tion of `1 regularized (sparse) regression, and in that
sense is somewhat intuitive. In what follows, we show
that this method correctly recovers the common sup-
port and the parameter of the novel task. At the same
time, our method is minimax optimal, i.e., it achieves
the optimal sample complexity rate.

4 MAIN RESULTS

First, we state our result for the recovery of the common
support among the prior T tasks.

Theorem 4.1. Let ŵ be the solution of the optimiza-
tion problem (2). Under assumptions A1-A5, if

λ ∈ Ω

(
max

(
σεσx,max(σx, σ

2
x)σ∆

√
k
)√ log(p− k)

T l

)

and T ∈ Ω
(
k log(p−k)

l

)
, with probability greater than

1− c1exp(−c2 log(p− k)), we have that

1. the support of ŵ is contained within S (i.e.,
S(ŵ) ⊆ S);

2. ‖ŵ−w∗‖∞ ≤
{
c3
√
kλ without assumption A6

c3λ with assumption A6

where c1, c2, c3 are constants.

Remark 4.2 (Comparison to the result of traditional
single-task LASSO). The scale terms k log(p − k) in
T and

√
log(p− k)/T l in λ are typically encountered

in the analysis of the single-task sparse regression
or LASSO (Wainwright, 2009). The additional term
max(σx, σ

2
x)σ∆

√
k in λ is due to the difference in the

coefficients among tasks. When we have larger k, the
difference (noise) among the coefficients also becomes
larger, therefore we need a larger λ to suppress the
noise and extract the common coefficient (signal). In
our technical analysis, the additional term comes from
the concentration inequality of a random variable with
finite ψ 2

3
-Orlicz norm, which is the main novelty in our

proof: bounding the product of three random variables.

Remark 4.3 (Exact support recovery S(ŵ) = S).
We let w∗min = mini∈S |w∗i | which represents the sig-
nal strength of the common parameter w∗. The first
result of Theorem 4.1 is S(ŵ) ⊆ S. Now we show
that when w∗min is fixed, we can choose λ and T such

that ‖ŵ −w∗‖∞ < w∗min , i.e., S ⊆ S(ŵ). We choose

λ = c4

√
k log(p−k)

Tl , T = c5
k log(p−k)

l where c4, c5 are

constants only depending on (σε, σx, σ∆). We also let
this choice satisfy the condition on λ and T in Theorem

4.1. Then we choose T = max
(
c5,

2c23c
2
4

(w∗min )2

)
k log(p−k)

l .

Now we have c3λ < w∗min . Therefore, under assump-
tion A6, we can have the exact support recovery with
T ∈ O(k log(p− k)/l).

Next, we state our result for the recovery of the param-
eters of the novel task. Note that in Theorem 4.4, the
rate of l is not related to T or p, and if k − k′ ≤ e, we
replace log(k − k′) with 1. The proof can be found in
appendix Section F.

Theorem 4.4. Let ŵT+1 be the solution of the opti-
mization problem (3). Under assumptions A1-A5,
with the support Ŝ recovered from Theorem 4.1, if
k′ := kT+1, w∗T+1 := w∗ + ∆∗tT+1

, λ′ := λT+1 ∈
Θ
(
σεσx

√
log(k − k′)/l

)
and l ∈ Ω (k′ log(k − k′)),

with probability greater than 1− c′1exp(−c′2 log(k− k′)),
we have that

1. the support of ŵT+1 is contained within ST+1 (i.e.,
S(ŵT+1) ⊆ ST+1 ⊆ S);

2. ‖ŵT+1 −w∗T+1‖∞ ≤
{
c′3
√
k′λ′ without A6

c′3λ
′ with A6

where c′1, c
′
2, c
′
3 are constants.

The theorems above provide an upper bound of the
sample complexity, which can be achieved by our
method. The lower bound of the sample complexity
is an information-theoretic result, and it relies on the
construction of a restricted class of parameter vectors.
We consider a special case of the setting we previously
presented (∆∗ti cancels out some non-zero entries in w∗):
all non-zero entries in w∗ are 1, and the distribution
of (∆∗ti)m is 1

2δ−w∗m + 1
2δw∗m . Therefore all non-zero

entries in w∗+∆∗ti must be 2. We use Θ to denote the
set of all possible parameters θ∗ = (w∗,∆∗tT+1

). There-
fore the number of possible outcomes of the parameters
|Θ| =

(
p
k

)(
k

kT+1

)
∈ O(pkkkT+1).

If the parameter θ∗ is chosen uniformly at random from
Θ, for any algorithm estimating this parameter by θ̂,
the answer is wrong (i.e., θ̂ 6= θ∗) with probability
greater than 1/2 if (T l+ lT+1) ∈ o(log(|Θ|)). Here we
use lT+1 to denote the sample size of task tT+1. This
fact is proved by the following theorem.

Theorem 4.5. Let Θ := {θ = (w,∆tT+1
)|w ∈

{0, 1}p, ‖w‖0 = k, ∆ti ∈ {1,−1}p, Supp(∆ti) ⊆
Supp(w), ‖w + ∆ti‖0 = ki}. Furthermore, assume
that θ∗ = (w∗,∆∗tT+1

) is chosen uniformly at random
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from Θ. We have:

P[θ̂ 6= θ∗] ≥ 1− log 2 + c′′1 · T l + c′′2 · lT+1

log |Θ|
where c′′1 , c

′′
2 are constants.

In the appendix Section G, we first prove that the
mutual information I(θ∗, S) between the true parameter
θ∗ and the data S is bounded by c′′1 · T l + c′′2 · lT+1.
Then we use Fano’s inequality (Fano, 1952) and the
construction of a restricted class of parameter vectors
to prove Theorem 4.5. The use of Fano’s inequality
and restricted ensembles is customary for information-
theoretic lower bounds (Wang et al., 2010; Santhanam
and Wainwright, 2012; Tandon et al., 2014).

Note that from Theorem 4.5, we know if T∈ o(k log p
l )

and lT+1∈ o(kT+1 log k), then any algorithm will fail
to recover the true parameter very likely. On the
other hand, if we have T ∈ Ω(k log p

l ) and lT+1 ∈
Ω(kT+1 log k), by Theorem 4.1 and 4.4, we can recover
the support of w∗ and ∆∗T+1 (by w∗T+1 −w∗). There-
fore we claim that our rates of sample complexity is
minimax optimal.

5 SKETCH OF THE PROOF OF
THEOREM 4.1

We use the primal-dual witness framework (Wainwright,
2009) to prove our results. First we construct the
primal-dual candidate; then we show that the construc-
tion succeeds with high probability. Here we outline the
steps in the proof. (See the supplementary materials
for detailed proofs.)

We first introduce some useful notations:

Xti ∈ Rl×p is the matrix of collocated Xti,j (covariates
of all samples in the i-th task). Similarly, yti ∈ Rl
and εti ∈ Rl. X[T ] ∈ RTl×p is the matrix of collocated
Xti (covariates of all samples in all tasks). Similarly,
ε[T ] ∈ RTl. Xti,S ∈ Rl×k is the sub-matrix of Xti

containing only the rows corresponding to the support
of w∗, i.e., S with |S| = k. Similarly, X[T ],S ∈ RTl×k,

∆∗ti,S ∈ Rk, and wS ∈ Rk. AS,S ∈ Rk×k is the sub-

matrix of A ∈ Rp×p containing only the rows and
columns corresponding to the support of w∗.

5.1 Primal-dual witness

Step 1: Prove that the objective function has positive
definite Hessian when restricted to the support, i.e.,
∀wSc = 0,∀wS ∈ R|S|, [∇2`((wS ,0))]S,S � 0

Step 2: Set up a restricted problem:

w̃S = arg min
wS∈R|S|

`((wS ,0)) + λ‖wS‖1 (4)

Step 3: Choose the corresponding dual variable z̃S to
fulfill the complementary slackness condition:

∀i ∈ S, z̃i = sign(w̃i) if w̃i 6= 0, otherwise z̃i ∈
[−1,+1]

Step 4: Solve z̃Sc to let (w̃, z̃) fulfill the stationarity
condition:

[∇`((w̃S ,0))]S + λz̃S = 0 (5)

[∇`((w̃S ,0))]Sc + λz̃Sc = 0 (6)

Step 5: Verify that the strict dual feasibility condition
is fulfilled for z̃Sc :

‖z̃Sc‖∞ < 1

In order to prove support recovery, we only need to
show that step 1 and step 5 hold. The proof of
step 1 being satisfied with high probability under the
condition T ∈ O(k/l) is in appendix Section B. Next
we show that step 5 also holds with high probability.

5.2 Strict dual feasibility condition

We first rewrite (5) as follows:

1

T l

T∑
i=1

XT
ti,SXti,S(w̃S −w∗S)

= −λz̃S +
1

T l

T∑
i=1

XT
ti,Sεti +

1

T l

T∑
i=1

XT
ti,SXti,S∆∗ti,S

Then we solve for (w̃S −w∗S). and plug it in (6). We
have

z̃Sc = XT
[T ],Sc

{
1

T l
X[T ],S(Σ̂S,S)−1z̃S + ΠX⊥

[T ],S

( ε[T ]

λT l

)}
︸ ︷︷ ︸

z̃Sc,1

+
1

λT l

T∑
i=1

XT
ti,ScXti,S∆∗ti,S︸ ︷︷ ︸
z̃Sc,2

− 1

λ(T l)2
XT

[T ],ScX[T ],S(Σ̂S,S)−1

(
T∑
i=1

XT
ti,SXti,S∆∗ti,S

)
︸ ︷︷ ︸

z̃Sc,3

where ΠX⊥
[T ],S

:= In×n −X[T ],S(XT
[T ],SX[T ],S)−1XT

[T ],S

is an orthogonal projection matrix, Σ̂S,S =
1
Tl

∑T
i=1 X

T
ti,S

Xti,S is the sample covariance matrix,
and z̃S is the dual variable chosen at step 3.
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One can bound the `∞ norm of z̃Sc,1 by the techniques

from Wainwright (2009): if λ ∈ Ω

(
σεσx

√
log(p−k)

Tl

)
and T ∈ Ω

(
k log(p−k)

l

)
, we have

P[‖z̃Sc,1‖∞ ≥ 1− γ/2] ≤ 2exp(−c6 log(p− k)).

where c6 is a constant. The proof of this result is shown
in the appendix Section C.

Note that the remaining two terms z̃Sc,2, z̃Sc,3 contain-
ing ∆ti are new to the meta-learning problem and need
to be handled with novel proof techniques.

5.3 Bound on ‖z̃Sc,2‖∞

We denote each of the T parts in the sum by z̃Sc,2,i
and each of the k entries in z̃Sc,2,i by z̃q,2,i, q ∈ Sc.

‖z̃Sc,2‖∞ =

∥∥∥∥∥ 1

λT l

T∑
i=1

z̃Sc,2,i

∥∥∥∥∥
∞

= max
q∈Sc

∣∣∣∣∣ 1

λT l

T∑
i=1

z̃q,2,i

∣∣∣∣∣ ,
z̃q,2,i = XT

ti,qXti,S∆∗ti,S .

Here we let q be the index of the covariate, i.e.,
Xti,q ∈ Rl. Since we know that ∆∗ti,S are mean
0 and independent of Xti,S and Xti,q, we have
E(z̃q,2,i) = 0. In this section, we prove ‖z̃q,2,i‖ψ 2

3

∈
O(σ∆max(σ2

x, σx)
√
kl) and use a concentration inequal-

ity to bound
∣∣∣ 1
λTl

∑T
i=1 z̃q,2,i

∣∣∣.
For clarity of exposition, we hide ti in the notations
below since the analysis holds for all ti.

Lemma 5.1. For any q ∈ Sc, with our assumptions
on random vectors Xq ∈ Rl×1,∆S ∈ Rk×1 and ran-
dom matrix XS ∈ Rl×k, we have ‖XT

q XS∆∗S‖ψ 2
3

∈
O(σ∆max(σ2

x, σx)
√
kl).

Proof. From the definition of Orlizc norm, we need to
show that there exists t = c7σ∆max(σ2

x, σx)
√
kl > 0

such that

∀i ∈ [T ], E

exp

(XT
q XS∆∗S
t

) 2
3

 ≤ 2

where c7 is a constant. We further let c7 = c71c72c73

and t1 = c71σ∆, t2 = c72max(1, σx)
√
k, t3 = c73σx

√
l.

For any constant vector a = (a1, a2, · · · , al) with
`2-norm being 1, i.e., a ∈ Sl−1, we let YS =∑l
m=1 am(XS)m where (XS)m ∈ Rk is the mth row of

XS . From the Lemma 5.2 below, we know YS is also a
sub-Gaussian vector with variance proxy σ2

x.

Lemma 5.2 (Linear combination of independent sub–
Gaussian vectors is a sub-Gaussian vector. Lemma 5.9

in (Vershynin, 2012)). Let a = (a1, a2, · · · , ad) ∈ Rd.
If {X1, X2, · · · , Xd} are independent random vectors

and Xi ∈ SGp(σ2
x), then

∑d
i=1 aiXi ∈ SGp(‖a‖2 · σ2

x).

Therefore, we define Y TS :=
XTq
‖Xq‖2XS which is almost a

sub-Gaussian vector when conditioning on Xq: By our
assumption, the rows of XS −Xq(ΣS,q(Σq,q)

−1)T |Xq

are sub-Gaussian vectors with variance proxy σ2
x, and

these l rows are also mutually independent since each
of them is determined by only one of the l samples in
task ti. We let ZS = YS − δq, δq := (ΣS,q(Σq,q)

−1)T ,
then ZS |Xq ∈ SGk(σ2

x) by the Lemma 5.2.

E

exp

(XT
q XS∆∗S
t

) 2
3


(i)
= E

[
E

[
exp

((
Y TS ∆∗S · ‖Xq‖2

t

) 2
3

)∣∣∣∣Xq

]]
(ii)

≤ E
[

2

3
E
[
exp

(
Y TS ∆∗S
t1t2

) ∣∣∣∣Xq

]]
+

1

3
E
[
exp

(‖Xq‖22
t23

)]
In (i) we use the definition of YS . In (ii) we use Young’s
inequality. Therefore we only need to show that ‖Xq‖2
has finite ψ2-Orlicz norm, and Y TS ∆∗S |Xq has finite ψ1-
Orlicz norm. We use the Lemma 5.3 below to choose a
constant c73 such that ‖‖Xq‖2‖ψ2

≤ t3. The proof of
this lemma is in the appendix Section D.

Lemma 5.3 (`2-norm of sub-Gaussian random vec-
tor is a sub-Gaussian random variable). Assume X ∈
SGd(σ

2
x), for any constant c8, there exists a con-

stant c9 such that
∥∥∥‖X‖2 + c8σx

√
d
∥∥∥
ψ2

≤ c9σx
√
d and∥∥∥‖X‖2 + c8max(1, σx)

√
d
∥∥∥
ψ2

≤ c9max(1, σx)
√
d.

Therefore, there exists c73 such that ‖‖X‖2‖ψ2
≤

c73σx
√
l. Now we consider Y TS ∆∗S |Xq.

E
[
E
[
exp

(
Y TS ∆∗S
t1t2

) ∣∣∣∣Xq

]]
= E

[
E
[
exp

(
Y TS
‖YS‖2

∆∗S
t1
· ‖YS‖2

t2

) ∣∣∣∣Xq

]]
(iii)

≤ 1

2
E

[
E

[
E

[
exp

((
Y TS
‖YS‖2

∆∗S
t1

)2
)∣∣∣∣YS

] ∣∣∣∣Xq

]]

+
1

2
E
[
E
[
exp

(‖YS‖22
t22

) ∣∣∣∣Xq

]]
In (iii) we use Young’s inequality again. Since ∆∗S ∈
SGk(σ2

∆) and ∆∗S is independent of YS , we have∥∥∥∥ Y TS
‖YS‖2 ∆∗S

∣∣∣∣YS∥∥∥∥
ψ2

≤ cσ∆ by the definition of sub-

Gaussian vector. We can choose c71 > c, then the
first term is then bounded by 1. For the second term,
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by our assumption, there exists a constant c10 that
‖δq‖2 ≤ c10max(1, σx)

√
k. We use Lemma 5.3 again to

choose a constant c72 such that ‖YS‖ψ2
≤ t2.

Remark 5.4 (Product of a random vector, a random
matrix and another random vector). In Lemma 5.1, we
show that the product XT

q XS∆∗S has finite ψ 2
3
-Orlicz

norm with rate O(
√
kl). This is a stronger result than

simply combining the Lemma 5.7 and 5.8 below since we
used two levels of independence among (Xq, XS ,∆

∗
S).

Since we have ‖z̃q,2,i‖ψ 2
3

≤ c7σ∆max(σ2
x, σx)

√
kl,

we can use the Lemma 5.5 below to bound∣∣∣ 1
λTl

∑T
i=1 z̃q,2,i

∣∣∣.
Lemma 5.5 (Concentration inequality of random vari-
ables with finite ψα-Orlicz norm. Lemma 7 in (Hao
et al., 2020)). Suppose 0 < α < 1, X1, X2, · · · , Xn are
independent random variables satisfying ‖Xi‖ψα ≤ b.
Then there exists absolute constant C(α) only depend-
ing on α such that for any a = (a1, a2, · · · , an) ∈ Rn
and 0 < δ < 1/e2,

∣∣∣∣∣
n∑
i=1

aiXi − E

[
n∑
i=1

aiXi

]∣∣∣∣∣
≤ C(α)b‖a‖2(log δ−1)1/2 + C(α)b‖a‖∞(log δ−1)1/α

with probability at least 1− δ.

Here we let α = 2
3 , n = T , ai = 1

λTl , b =

c7σ∆max(σ2
x, σx)

√
kl, then

∣∣∣∣∣ 1

λT l

T∑
i=1

z̃q,2,i

∣∣∣∣∣ ≤ c11b(− log δ)1/2

λT l

(√
T − log δ

)

with probability at least 1− δ where c11 is a constant.

We let T ∈ Ω (k log(p− k)/l), log δ−1 ∈ O (log(p− k)),

λ ∈ Ω

(
σ∆max(σ2

x, σx)
√

k log(p−k)
Tl

)
.

By the condition l ∈ O(k), we have

log

(
P

[∣∣∣∣∣ 1

λT l

T∑
i=1

z̃q,2,i

∣∣∣∣∣ ≥ γ

4

])
∈ O(− log(p− k)).

Therefore,

P[‖z̃Sc,2‖∞ ≥ γ/4] ≤ exp(−c12 log(p− k))

where c12 is a constant.

5.4 Bound on ‖z̃Sc,3‖∞

We first transform z̃Sc,3 to the following form:

z̃Sc,3

=
1

λ(T l)2
X[T ],ScX[T ],S(Σ̂S,S)−1

(
T∑
i=1

XT
ti,SXti,S∆∗ti,S

)

:=
1

T l
X[T ],ScX[T ],S(Σ̂S,S)−1ζS

where we define

ζS :=
1

λT l

(
T∑
i=1

XT
ti,SXti,S∆∗ti,S

)
.

In this section we use a similar technique for bound-
ing z̃Sc,2 to bound ‖ζS‖∞. With the condition that
‖ζS‖∞ ≤ γ

2−γ , we can transform z̃Sc,3 into the first
part in z̃Sc,1 by replacing ζS with z̃S , and use the same
technique in appendix Section C to obtain the result:
If T ∈ Ω (k log(p− k)/l), we have

P[‖z̃Sc,3‖∞ ≥ γ/2] ≤ c13exp(−c14 log(p− k))

where c13, c14 are constants.

To obtain a bound of ‖ζS‖∞, we first need to bound
‖XT

ti,qXti,S∆∗ti,S‖ψ 2
3

for q ∈ S. For clarity of exposi-

tion, we hide ti in the notations below since the analysis
holds for all ti. We use S\q to denote the set S\{q}.
Lemma 5.6. For any q ∈ S, with our assumptions
on random vectors Xq ∈ Rl×1,∆S ∈ Rk×1 and ran-
dom matrix XS ∈ Rl×k, we have ‖XT

q XS∆∗S‖ψ 2
3

∈
O(σ∆max(σ2

x, σx)
√
kl).

Proof. We first break XT
q XS∆∗S into two parts:

XT
q XS∆∗S = ‖Xq‖22∆∗q +XT

q XS\q∆
∗
S\q .

The second part is similar to XT
q′XS∆∗S with q′ ∈ Sc

since q /∈ S\q, therefore we have ‖XT
q XS\q∆

∗
S\q
‖ψ 2

3

∈
O(σ∆max(σ2

x, σx)
√

(k − 1)l) by the Lemma 5.1.

For the first part, we know ‖‖Xq‖2‖ψ2
∈ O(σx

√
l) and

‖∆∗q‖ψ2 ∈ O(σ∆). Therefore we have ‖‖Xq‖22∆∗q‖ψ 2
3

∈
O(σ∆σ

2
xl) by the Lemma 5.7 below.

Since l ∈ O(k), by the Lemma 5.8 below, we have
‖XT

q XS∆∗S‖ψ 2
3

∈ O(σ∆max(σ2
x, σx)

√
kl).

Therefore, we can use the Lemma 5.5 again and let
T ∈ Ω (k log(p− k)/l), log δ−1 ∈ O (log(p− k)),

λ ∈ Ω

(
σ∆max(σ2

x, σx)
√

k log(p−k)
Tl

)
. Then we have

P
[
‖ζS‖∞ ≥

γ

2− γ

]
≤ exp(−c15 log(p− k))
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where c15 is a constant.

Lemma 5.7 (Orlicz norm for Product of Random
Variables; Lemma 8 in (Hao et al., 2020)). Suppose
X1, X2, · · · , Xm are m random variables (not nec-
essarily independent) with ψα-Orlicz norm bounded
by ‖Xj‖ψα ≤ Kj. Then the ψα/m-Orlicz norm of∏m
j=1Xj is bounded by∥∥∥∥∥∥

m∏
j=1

Xj

∥∥∥∥∥∥
ψ α
m

≤
m∏
j=1

Kj .

Lemma 5.8 (Orlicz norm for Sum of Random Vari-
ables; Lemma A.3 in (Götze et al., 2019)). For any
0 < α < 1 and any random variables X,Y , we have

‖X + Y ‖ψα ≤ 21/α(‖X‖ψα + ‖Y ‖ψα).

5.5 Bound on ‖z̃Sc‖∞ and the estimation
error ‖ŵ −w∗‖∞

Since we have bounded each part of z̃Sc , we have
‖z̃Sc‖∞ < 1 with high probability, therefore the first
part of Theorem 4.1 about support recovery (S(ŵ) ⊆ S)
is proved through primal-dual witness by finishing step
1 and step 5. The proof for the second part of Theorem
4.1 about the estimation error uses similar techniques.
Details can be found in the appendix Section E.

6 EXPERIMENTS

In this section, we present simulations and a real-world
experiment with a gene expression dataset to support
Theorem 4.1 and show the advantage of our method.

6.1 Simulations

For all i ∈ [T ], j ∈ [l], m ∈ S, we set εti,j ∼ N(µ = 0,
σε = 0.1), ∆∗ti,m ∼ N(µ = 0, σ∆ = 0.2), Xti,j,m ∼
N(µ = 0, σx = 1), which are mutually independent.
We set p = 100 and w∗ having five entries equal to 1,
and the rest of the entries being 0. The support of ∆∗ti
is same as the support of w∗. We choose l ∈ {3, 5, 7, 10}
and use λ =

√
k log(p− k)/(5T l) for all the pairs of

(T, l). The results are shown in Figure 1. The number
of tasks T is rescaled to C := Tl

k log(p−k) . For different

choices of l, the curves for P (Ŝ = S) overlap with
each other perfectly. We compare our results to two
multi-task methods (Obozinski et al., 2011; Jalali et al.,
2010) (since they do not estimate S directly, we let

Ŝ :=
⋃T
i=1 Ŝi.) Multi-task methods perform worse

under larger T while our method performs better.

In the appendix Section H, we give the details of this
simulation, and show more simulations with different

settings (on changing p, changing k, random variables
with Uniform distribution, random variables with mix-
ture of sub-Gaussian distribution, and correlated Gaus-
sian covariates in X) and more analyses (on P (Ŝ = S),
‖ŵ−w∗‖∞, and P (ŜT = ST ) for multi-task methods).
All the results support our theoretical sample complex-
ity rate and estimation error bound ‖ŵ−w∗‖∞ ∈ O(λ).
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Figure 1: Simulations for Theorem 4.1 on the
Probability of Exact Support Recovery with λ =√
k log(p− k)/(T l). Left: Probability of exact sup-

port recovery for different number of tasks under
various settings of l. The x-axis is set to C :=
T l/(k log(p − k)). Right: Our method outperforms

multi-task methods (Ŝ :=
⋃T
i=1 Ŝi.)
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Figure 2: Comparison between our method and CP-
Regression under various settings of l. The x-axis is set
to C := T l/(k log(p− k)). The y-axis is the expected
mean square error of prediction on the novel task.

We also compare our method with Chorus of Propo-
types (CP)-Regression (Maurer, 2005). CP-Regression
uses prior tasks to add new covariates to the novel task
while our method uses S to remove inactive covariates.
We measure the performance of the two methods by the
expected mean square error of prediction on the novel
task. The simulation results in Figure 2 show that
our method performs better under l = 7 and l = 10.
Details of this experiment can be found in the appendix
Section H.
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6.2 Real-world experiments

The single-cell gene expression dataset from (Kouno
et al., 2013) contains expression levels of 45 transcrip-
tion factors measured at 8 distinct time-points. This
dataset was used in the experimental validation by
Ollier and Viallon (2017). Similar to their analysis,
we pick one transcription factor as the response vari-
able y, and the other 44 factors as the covariates X,
i.e., p = 44. Note that the true value of the support
size k is unknown, and the distribution of the noise is
also unknown (which may not be sub-Gaussian). We
choose l ∈ {5, 7, 10, 15} as the sample size of each task
to model this problem as few-shot learning.

We compare our method to two multi-task methods
(Obozinski et al., 2011; Jalali et al., 2010) and one
meta-learning method, CP-Regression (Maurer, 2005).
The results are shown in Figure 3. When l is small, our
method has lower MSE and comparable |Ŝ| to others,
which suggests that our Ŝ is more accurate. Details of
this experiment can be found in the appendix Section
I.
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Figure 3: Results on the Single-Cell Gene Expres-
sion Dataset. Left: The mean square error (MSE) of
prediction on the new task. Right: The size of the es-
timated common support Ŝ. Note that CP-Regression
does not estimate S.

7 DISCUSSIONS

Our problem setting and method are amenable to solid
statistical analysis. By focusing on sparse regression,
our analysis shows clearly the difference between meta-
learning and multi-task learning. In meta-learning,
we only need to recover w∗ and ∆∗tT+1

, thus the num-
ber of samples needed for each task (including the
novel task) is l ∈ O((k log p)/T + kT+1 log k). When
T →∞, meta-learning can recover w∗ with high prob-
ability (shown in the left panel of Figure 1 where
C := Tl

k log(p−k) ), therefore for the novel task, it only

needs l ∈ O(kT+1 log k). For multi-task learning, one
needs to recover (w∗+∆∗ti) for all ti, which requires the
sample size at least l ∈ O(k(T + log p)) (see Table 1.)
When T →∞, the sample size of multi-task learning
needed for support recovery goes to infinity which is

supported by the right panel of Figure 1.

While meta sparse regression might apparently look
similar to the classical sparse random effect model
(Bondell et al., 2010), a key difference is that in the
random effect model, the experimenter is interested on
the distribution of the estimator w∗ instead of support
recovery. To the best of our knowledge, our results are
the first to give upper and lower bounds of the sample
complexity of meta-learning problems.

Although our paper shows that a proper application of
`1 regularized (sparse) regression achieves the minimax
optimal rate, it is still unclear whether there is a method
that can improve the constants in our results. To have
further theoretical understanding of meta-learning, one
could consider other algorithms, such as nonparametric
regression or neural networks. We believe that our
results are a solid starting point for the sound statistical
analysis of meta-learning.
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