
Posterior Predictive Correlations

A Notation

Table 2: The notations used in the paper.

Notation Description

x the input vector
{xi}i2I a set of input vectors indexed by i
f the underlying function
yx the observed value of the function at a given location x
�n(x) the standard variance of the observation noise at x
�n the standard derivation of a homoscedastic observation noise
�x standard derivation of f(x)
⌘ the prior variance for BNNs

B The Pseudocodes

Algorithm 1 A procedure of (Transductive) Active Learning. We use red and blue to show the difference
between active learning and TAL. TIG and MIG can be replaced by any other acquisition functions.
Require: Selection Model : M

s; Prediction Model : M
p.

Require: Datasets: Dtr = {Xtr,ytr}, Dte = {Xte,yte}, Dpl = {Xpl,ypl}.
Require: Total active learning iterations: T ; #Queried samples per iteration: m.
1: R = ;.
2: for t = 1 to T do
3: Train M

p,Ms on Dtr until convergence.
4: Test M

p over Dte and put the result to R.
5: InfoG = TIG(Xpl,Ms) or InfoG = MIG(Xpl,Xte,Ms).
6: Sort InfoG in descending order and retrieve top m samples from Dpl as Dqe.
7: Dtr  Dtr [Dqe; Dpl  Dpl \ Dqe.
8: t t+ 1.
9: end for

10: return R,Mp,Dtr.

C Information Gains for Active Learning

We introduce three types of information gains and present their analytical forms for Gaussian predictive
distributions. Then, we provide a greedy approximation for computing the optimal batch corresponding to
BatchMIG.

C.1 Three Types of Information Gains

We firstly specify the analytic expressions for computing the information gain acquisition functions:

Total Information Gain (TIG), measures the mutual information between the queried point x and the model
parameters w,

TIG(x) := I(yx;w|Dtr)
Gaussian predictive dist

=
1

2
log
�
1 + �2

x/�n(x)
2
�
, (4)

Marginal Information Gain (MIG), measures the mutual information between the queried point x and a
point xu of interest,

MIG(x;xu) := I(yx; f(xu)|Dtr)
Gaussian predictive dist

= �
1

2
log

✓
1�

Cov(x,xu)2

�2
xu

(�2
x + �n(x)2

◆
, (5)
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Algorithm 2 Computing XLL and XLLR.
Require: Model Predictions {(µi,⌃i)}mi=1; Test set Dte; Batch size b
1: for j = 1 to m do . Reference Model
2: for i = 1 to m do . Normalize Predictive Marginals
3: D0

i =
p
diag(⌃j)/

p
diag(⌃i).

4: µ̄i = µj , ⌃̄i = D0
i⌃iD0

i .
5: end for
6: T

0 = {}.
7: for (x, y) 2 Dte do . Build Test Batches
8: Top correlated points Bx := {(xk, yk)}bk=1; Add Bx to T

0.
9: end for

10: for i = 1 to m do . Compute Log Joints
11: lldji =

1
|T 0|

P
B2T 0 logN (B|µ̄i, ⌃̄i).

12: end for
13: {rankji}

m
i=1 from sorting {lldji}

m
i=1 .

14: end for
15: lldi =

1
m

Pm
j=1 lld

j
i , ranki =

1
m

Pm
j=1 rank

j
i . Average over References

16: return {lldi}mi=1 and {ranki}mi=1.

(a) TIG                                            (b) MIG                                        (c) BatchMIG
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Figure 8: An illustration of how do TIG, MIG and BatchMIG compute the informativeness of two candidate points. TIG
measures the mutual information between data and model, whereas MIG and BatchMIG measure that between data and
test points. Dark regions represent the information gain is double-counted, i.e., both TIG and MIG overestimate the gain.

Batched Marginal Information Gain (BatchMIG), measures the mutual information between a batch of
queried points x1:q and the point xu of interest,

BatchMIG(x1:q;xu) := I(yx1:q ; f(xu)|Dtr)

Gaussian predictive dist
= �

1

2
log

 
1�

Cov (x1:q,xu)
> �Cov (x1:q,x1:q) + �2

n(x1:q)
��1

Cov (x1:q,xu)

�2
xu

!
, (6)

Again for MIG and BatchMIG, assuming that we are interested at a set of points {xi
u}

I
i=1, as rec-

ommended in MacKay (1992), we adopt the mean marginal information gains: 1
I

PI
i=1 MIG(x;xi

u) and
1
I

PI
i=1 BatchMIG(x;xi

u).

C.2 A Greedy Approximation of the Optimal Batch

In practice we will usually query a batch of points at each iteration for efficiency. For TIG and MIG, selecting
a batch corresponds to selecting the points with highest information gains, correspondingly. For BatchMIG,
although extending the information gain acquisition functions from the single-point scenario to the batch scenario
is straightforward, solving for the optimal batch requires a combinatorial explosion of computations. Following
(Kirsch et al., 2019), we adopt a greedy approximation of the optimal batch, which is specified in Alg 3.
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Algorithm 3 BatchBald (Kirsch et al., 2019): a greedy approximation of the optimal batch.
Require: Model M, Points of interest I, Query Batch Size q
Require: The information gain acquisition function IG.
1: A ;
2: for i = 1 to q do
3: x?

2 argmaxx IG({x} [A,M, I)
4: A = A [ {x?

}

5: end for
6: return A.

D Experimental Details

D.1 Hyperparameters

We use the standard regression task for tuning hyperparameters with respect to each method and each dataset.
Specifically, we split the dataset into train (60%), valid (20%) and test (20%). Across 10 different runs, we use
the same validation set but split train/test randomly. Finally the averaged validation log likelihood will be used
for selecting the hyperparameters. A list of details about hyperparameters is shown in Table 3.

With the tuned hyperparameters, we conduct transductive active learning and compute the XN-LLDR metrics.
To avoid that the test set being used for tuning hyper-parameters, we make sure the randomly selected test set is
disjoint with the validation set for hyperparameter tuning.

Table 3: The hyperparameters for each method

Methods Hyperparameters to tune

BBB lr: [0.001, 0.003, 0.01], hidden units: [50, 400], #eval_cov_samples: [100, 700, 5000]
NNG lr: [0.001, 0.003, 0.01], hidden units: [50, 400]
HMC lr: [0.001, 0.003, 0.01], hidden units: [50, 400]
FBNN lr: [0.001, 0.003, 0.01], number of random measurement points [5, 20, 100], hidden units: [50, 400]
Dropout lr: [0.001, 0.003, 0.01], hidden units: [50, 400], Dropout Rate: [0.0025, 0.01, 0.05],

Observation variance: [0.005, 0.025, 0.125]
Ensemble lr: [0.001, 0.003, 0.01], hidden units: [50, 400]

Methods Other Settings

(SV)GP Optimizer=Adam, lr=0.003, epochs=10,000, batch_size=min(5, 000,#training data),
lenghth_scale are initialized with k-means on training data, ARD=True, min_obsvar=1e-5 (ex-
cept for Wine dataset, we use min_obsvar = 1e-8); For large datasets, we adopt SVGP with
1,000 inducing points; For (SV)GP-NKN, we adopt the same NKN as in Sun et al. (2018) and
epochs=5,000.

BBB Optimizer=Adam, epochs=10,000, batch_size=100, #training_particles=10,
#test_particles=5,000.

NNG Optimizer=NG-KFAC(damping=1e-5, ema_cov_decay=0.999), epochs=10,000, lr decay
by a factor 0.1 every 5000 epochs, #training_particles=10, #test_particles=5,000,
#eval_cov_samples=5000.

HMC #chains = 10, burnin=5,000 for small datasets and 15,000 for larger ones, step_size starts at 0.01
but is adapted according to the acceptance rate, #leap_frog_steps=5; We select one particle
every 100 samples after burnin untill we collected 100 samples in each chain, which results at
1,000 samples for testing and computing the covariance. We use Adam Optimizer for optimizing
the prior hyperparameters ⌘, ⇠ every 10 HMC steps.

FBNN Optimizer=Adam, epochs=10,000, batch_size=#training data for small datasets and 900 for
larger datasets in order to match the computation complexity of SVGP. The network has 400
hidden units with cosine activations.

Dropout Optimizer=Adam, epochs=10,000, batch_size=100. We use 5, 000 samples for test and computing
the covariance. L2 regularization with 10�4

⇤ (1� dropout_rate)/(2. ⇤N ⇤ ⇠).
Ensemble Optimizer=Adam, epochs=10,000, batch_size=100, #networks=100.
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E Additional Results

We present here the additional results, including (1) Log Joints versus Log Marginals; (2) Average Rank in TAL;
(3) Average Log Joint Likelihood on UCI datasets; (4) RMSE performance of TAL using different Acquisition
functions; (5) Comparisons between Different Data Acquisition Functions; (6) TAL Results of Different Models
on Synthetic Dataset.

E.1 Log Joints versus Log Marginals

We visualize the scatter plot of the joint log-likelihoods and the marginal log-likelihoods in Figure 9. We observe
that the joint log-likelihood is positively correlated with the marginal log-likelihood.
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Figure 9: Scatters of log joint likelihoods versus log marginal likelihoods where each point represents one method. The
log joints are computed over random batches with 5 points.

E.2 Average Rank in TAL (Table 4)

Table 4: Average rank of each method’s LLD and RMSE on TAL at the last iteration with different prediction models.
We use red to highlight the best ones, and blue for the worst ones.

Prediction Model/Selection Model (SV)GP-RBF BBB NNG HMC FBNN Dropout Ensemble

RMSE

Oracle 2.4 4.3 3.8 2.0 2.4 3.0 3.0
Dropout 2.8 4.4 4.3 1.4 2.4 2.5 3.2

(SV)GP-RBF 2.4 4.3 3.7 1.6 2.0 3.2 3.8
NNG 2.7 3.9 3.7 1.9 2.1 3.2 3.5
HMC 2.4 4.4 3.4 2.5 1.8 3.4 3.1

Average Rank 2.5 4.3 3.8 1.9 2.1 3.1 3.3

LLD

Oracle 2.1 4.5 4.0 1.8 2.2 4.0 2.5
Dropout 2.8 4.5 4.1 1.8 2.6 2.6 2.6

(SV)GP-RBF 2.5 4.2 3.8 1.7 2.1 3.3 3.3
NNG 2.7 3.9 3.8 2.1 2.0 3.3 3.3
HMC 2.8 4.5 3.2 2.5 2.0 3.9 2.2

Average Rank 2.6 4.3 3.8 2.0 2.2 3.4 2.8

Table 4 shows the results of mixing and matching a wider variety of training and selection models. In general, we
observe that regardless of which model is used for training, the best results are obtained when queries are selected
using the most accurate models, rather than the same models used for training. We believe this experiment
directly indicates that high-quality posterior predictive distributions are useful for data selection, above and
beyond the benefits from making better predictions from a fixed training set.
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E.3 Average XLLs on UCI datasets (Table 5)

Table 5: The average XLL for each model on UCI datasets.

Dataset/Method (SV)GP-RBF BBB NNG HMC FBNN Dropout Ensemble

Boston -3.217 (0.134) -3.316 (0.156) -3.202 (0.133) -3.177 (0.133) -3.237 (0.138) -3.456 (0.160) -3.202 (0.139)
Concrete -3.342 (0.015) -3.394 (0.018) -3.351 (0.016) -3.336 (0.015) -3.344 (0.015) -3.615 (0.029) -3.340 (0.015)
Energy -1.382 (0.065) -1.430 (0.068) -1.437 (0.068) -1.378 (0.064) -1.384 (0.064) -1.434 (0.067) -1.386 (0.065)
Wine -1.215 (0.032) -1.266 (0.038) -1.228 (0.034) -1.224 (0.034) -1.222 (0.035) -1.306 (0.042) -1.226 (0.034)
Yacht -2.062 (0.115) -2.112 (0.108) -2.074 (0.102) -2.126 (0.118) -2.011 (0.103) -2.674 (0.166) -1.998 (0.102)
Kin8nm 0.902 (0.031) 0.892 (0.031) 0.890 (0.032) 0.902 (0.031) 0.901 (0.031) 0.796 (0.032) 0.897 (0.031)
Naval 6.853 (0.172) 6.795 (0.176) 6.811 (0.175) 6.882 (0.166) 6.870 (0.171) 6.971 (0.163) 6.920 (0.173)
Power_plant -2.793 (0.015) -2.812 (0.018) -2.821 (0.019) -2.801 (0.017) -2.806 (0.017) -2.828 (0.015) -2.796 (0.016)

E.4 RMSE performance of TAL using different Acquisition functions.

In addition to the LLD performance, we also present the RMSE performance of TAL using BatchMIG, MIG,
TIG and random selection with the ‘Oracle’ model in Figure 10 (right part).
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Figure 10: RMSE and LLD performance of TAL with the pre-trained NKN kernel (Oracle).
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E.5 Comparisons between Different Data Acquisition Functions

We present here the results using different data acquisition functions on synthetic datasets and on UCI datasets.
The results can be found in Figure 11 and Figure 12, where we can observe that TAL acquisition functions
consistently outperform other criterions.
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Figure 11: Comparisons between different acquisition functions with Oracle model.
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Figure 12: Right: Comparing TAL criteria on UCI datasets using the Oracle (NKN) model.
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E.6 TAL Results of Different Models on Synthetic Datasets

To evaluate how each models perform on TAL, we compare them with BatchMIG and TIG on the synthetic
datasets. The results are presented in Figure 13 and Figure 14 respectively.
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Figure 13: BatchMIG on toy datasets, with fixed observation variance.
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Figure 14: TIG on toy datasets, with fixed observation variance.



Posterior Predictive Correlations

F A Theoretical Connection between Log Likelihoods and Predictive
Correlations

To understand why XLL directly reflects the accuracy of the correlations, consider the following distributions:

p(y|X) = N (y|µgen, diag(�gen)Cgen diag(�gen)),

q(y|X) = N (y|µref, diag(�ref)C diag(�ref)),

pm(y|X) = N (y|µgen, diag(�gen)),

qm(y|X) = N (y|µref, diag(�ref)),

pc(y|X) = N (y|0,Cgen),

qc(y|X) = N (y|0,C), (7)

where p(y|X) is the data generating distribution, and µgen, �2
gen and Cgen are the ground-truth mean, variance

and correlations respectively. Observe that �KL (pkq) is the quantity that XLL is approximating using samples
(up to a constant), while KL (pckqc) is a measure of dissimilarity between the correlation matrices or the LogDet
divergence between two positive semidefinite matrices Cgen and C. We now show that, if the reference marginals
(i.e., µref,�ref) are close to the ground truth marginals, then KL (pkq) approximately equals KL (pckqc). Hence,
XLL can be seen as a measure of the accuracy of the predictive correlations.
Theorem 1. Let the predictive distributions be defined above, and let b be the number of points for evaluation, �
denote the smallest eigenvalue of C and ⇠ = KL (pmkqm). If ⇠ ⌧ 1, then we have:

|KL (pkq)�KL (pckqc)| = O

✓
b3/2

�

p
⇠

◆
. (8)

Remark 1. Because the expected joint log-likelihood Ep(y|X) log q(y|X) = Ep(y|X) log p(y|X) � KL (pkq), this
theorem illustrates that, for nearly-optimal reference marginals, the expected joint log-likelihood reflects the quality
of the predictive correlations. This validates the reliability of XLL.
Remark 2. In practice, the predictive covariance is ⌃+�2

nI, where �2
n is the variance of the modeled observation

noise and ⌃ is the predictive covariance for the underlying function. In general, �2
n and the predictive variances

in ⌃ are in the same order of magnitude. Therefore, the smallest eigenvalue � of the correlation matrix C is not
much smaller than 1. Furthermore, b is small because we evaluate XLL and XLLR over mini-batches (b = 5 in
our experiments).

As suggested by the theorem, the ideal reference model would be the oracle, i.e. the true data generating
distribution. However, in practice we only have access to models which imperfectly match the distribution.
Fortunately, we found that the relative order of XLL values do not appear to be overly sensitive to the choice
of reference model. Therefore, to further avoid favoring any particular model as the reference, we propose to
iterate through every candidate model to act as the reference model once. Then, for each candidate model, we
average its XLL or XLLR across all reference models. Empirically, we found that XLL and XLLR align well with
the corresponding performance in TAL benchmarks as well as the oracle-based meta-correlations. In below, we
provide the proof of Theorem 1:
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Proof. We first define:

d :=
µgen � µref

�ref
, r :=

�gen

�ref
, (9)

and let 1 2 Rb⇥b be the all-ones matrix and I be the identity matrix, then we have:

2KL (pkq) = log
|diag(�gen)Cdiag(�gen)|

|diag(�ref)Cgendiag(�ref)|
� b+ tr

�
C�1diag(r)Cgendiag(r)

�
+ d>C�1d

=
bX

i=1

log
�2

ref,i

�2
gen,i

+ log
|C|

|Cgen|
� b+ r>

�
C�1

�Cgen
�
r + d>C�1d

= log
|C|

|Cgen|
� b+ tr

��
C�1

�Cgen
�
1
�

| {z }
2KL(pckqc)

�

bX

i=1

log r2i + d>d+ r>r � b

| {z }
�2KL(pmkqm)

+ tr
��
C�1

�Cgen
� �

rr> � 1
��

| {z }
1

+tr
��
C�1

� I
�
dd>�

| {z }
2

+
�
b� r>r

�
| {z }

3

. (10)

Therefore, we have

2 |KL (pckqc)�KL (pkq)|  2KL (pmkqm)| {z }
2⇠

+
��� 1

���+
��� 2

���+
��� 3

��� , (11)

Given that the marginal KL divergence is upper bounded by,

2KL (pmkqm) = �
bX

i=1

log r2i + d>d+ r>r � b  2⇠, (12)

and since 8x, x� 1� log x � 0, we have

0  �
bX

i=1

log r2i + r>r � b  2⇠. (13)

Then 8i, r2i � log r2i � 1  2⇠, which means ri = 1 +O(
p
⇠). As a result, we have the following bounds,

kdd>
kF = d>d  2⇠, (14)

��b� r>r
�� = O(b

p
⇠), (15)

krr> � 1kF = O(b
p
⇠). (16)

We further let � := �min(C) be the smallest eigenvalue of C. Then, we have kC�1
k2 = 1

� . Because Cgen is a
correlation matrix, kCgenk1 = 1. Because

�
tr
�
A>B

��2
 tr

�
A>A

�
tr
�
B>B

�
= kAk2F kBk

2
F , (17)

which gives us the upper bound of
��� 1

���:
��� 1

��� =
��tr
��
C�1

�Cgen
� �

rr> � 1
����

kC�1
�CgenkF krr

>
� 1kF

kC�1
kF krr

>
� 1kF



p
b

�
krr> � 1kF ,

=

p
b

�
O(b

p
⇠). (18)
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Similarly, we can further bound
��� 2

��� by:

��� 2
��� =
��tr
��
C�1

� I
�
dd>���

kC�1
� IkF kdd>

kF



q
2b+ 2kC�1k2F kdd

>
kF



r
2b+

2b

�2
kdd>

kF



r
2b+

2b

�2
2⇠. (19)

Lastly, we can bound:
��� 3

��� =
��b� r>r

�� = O(b
p
⇠). (20)

Overall, since ⇠ ⌧ 1, we have

2 |KL (pckqc)�KL (pkq)| 2KL (pmkqm) +

p
b

�
O(b

p
⇠) +

r
2 +

2b

�2
2⇠ +O(b

p
⇠)

2⇠ +

p
b

�
O(b

p
⇠) +

r
2 +

2b

�2
2⇠ +O(b

p
⇠)

=O

✓
b3/2

�

p
⇠

◆
. (21)
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