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Abstract

In the Multiple Instance Learning (MIL) sce-
nario, the training data consists of instances
grouped into bags. Bag labels specify whether
each bag contains at least one positive in-
stance, but instance labels are not observed.
Recently, Haußmann et al [10] tackled the
MIL instance label prediction task by in-
troducing the Multiple Instance Learning
Gaussian Process Logistic (MIL-GP-Logistic)
model, an adaptation of the Gaussian Process
Logistic Classification model that inherits its
uncertainty quantification and flexibility. No-
tably, they give a fast mean-field variational
inference procedure. However, due to their
use of the logit link, they do not maximize the
variational inference ELBO objective directly,
but rather a lower bound on it. This approxi-
mation, as we show, hurts predictive perfor-
mance. In this work, we propose the Multiple
Instance Learning Gaussian Process Probit
(MIL-GP-Probit) model, an adaptation of the
Gaussian Process Probit Classification model
to solve the MIL instance label prediction
problem. Leveraging the analytical tractabil-
ity of the probit link, we give a variational
inference procedure based on variable augmen-
tation that maximizes the ELBO objective di-
rectly. Applying it, we show MIL-GP-Probit is
more calibrated than MIL-GP-Logistic on all
20 datasets of the benchmark 20 Newsgroups
dataset collection, and achieves higher AUC
than MIL-GP-Logistic on an additional 51
out of 59 datasets. Finally, we show how the
probit formulation enables principled bag la-
bel predictions and a Gibbs sampling scheme.
This is the first exact inference scheme for
any Bayesian model for the MIL scenario.
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MIL-GP-
Probit (ours) MIL-GP-

Logistic ([10])

Predictive likelihood wins on
20 Newsgroup dataset collection 20 0

AUC wins on
59 datasets from [18] 51 8

Table 1: Our MIL-GP-Probit model beats the state-of-
the-art MIL-GP-Logistic model of [10] on the majority
of datasets in 2 dataset collections in terms of instance
label predictive likelihood and AUC, due to our more
accurate variational inference method.

1 Introduction

In the Multiple Instance Learning (MIL) scenario [4],
the training data consists of instances grouped into
bags. Each instance has a binary instance label, but
it is unobserved. Instead, each bag is labelled with a
bag label according to the MIL labeling assumption:
a bag label is positive if and only if the bag contains
at least one positive instance. There are two possible
tasks in the MIL scenario: the bag label prediction
problem, and the instance label prediction problem.
The latter task is arguably harder, and more common.
In computer vision [22], one wants to classify whether
a patch is a dog, given training data that only specifies
whether each image contains at least one dog patch. In
activity recognition [8], one wants to classify whether
a person was exercising during a short time window,
given training data that only specifies whether a person
was exercising at any time within a long time window.

In this work, we tackle the MIL instance label predic-
tion problem. Prior work on this problem has included
maximum margin methods [2, 26] and probabilistic
methods [19, 24, 5], which explicitly model the prob-
ability instance labels are positive. A key aspect of
the MIL scenario is that there is lots of model uncer-
tainty, because there will be many models plausible
given the ambiguous training data. Consequently, a
series of Bayesian methods for the MIL scenario was
developed to explicitly account for model uncertainty,
including those based on Bayesian linear regression
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[20], Dirichlet Process Mixture Models [13], and Gaus-
sian Processes [14]. However, these methods all have
drawbacks. [20, 14] use Laplace’s approximation for in-
ference, which is slow and inaccurate; [13] uses a genera-
tive model, making it suitable only for low-dimensional
data, and [14] does not model instance labels, and thus
cannot solve the instance label prediction problem.

Recently, [10] developed MIL-GP-Logistic, an adap-
tation of the Gaussian Process Logistic Classification
model to solve the MIL instance label prediction prob-
lem that does not suffer from any of these drawbacks.
Their model is discriminative, offering the nonpara-
metric flexibility of the Gaussian Process model, and
explicitly models instance labels so that it can actu-
ally solve the instance label prediction problem. Fur-
thermore, they give a mean-field variational inference
procedure that has closed-form updates. Applying the
inference procedure, their model achieves state of the
art performance on several benchmark datasets. Yet,
MIL-GP-Logistic is not without flaws: due to their
choice of the logit link1, they do not maximize the
standard ELBO variational inference objective directly,
but rather a lower bound on it. As our experiments
show, this approximation hurts predictive performance.

To address this drawback, we propose the MIL-GP-
Probit model, an adaptation of the Gaussian Process
Probit Classification model to solve the MIL instance
label prediction problem. Leveraging the analytical
tractability of the probit link, we provide a variational
inference procedure based on variable augmentation
that maximizes the ELBO directly, instead of a lower
bound on it. Applying it, we show MIL-GP-Probit has
better predictive performance than MIL-GP-Logistic
on many MIL datasets (see Table 1).

Furthermore, we develop a Gibbs sampling inference
scheme for the MIL-GP-Probit model. To the best of
our knowledge, this is the first (asymptotically) exact
inference scheme for any Bayesian model for the MIL
scenario. Comparing the approximate posterior given
by our variational inference scheme to the exact pos-
terior given by our Gibbs sampling scheme, we find
that the former sacrifices little, if any, predictive per-
formance. Finally, although our focus is on predicting
instance labels, we also provide a principled way to
make bag label predictions that accounts for the de-
pendence between instance labels asserted by the GP
model. The model of [10] lacks this capability, which
would be crucial for active learning, where the bag
label that the model is most uncertain about might be
requested.

Our contributions are as follows: We 1) develop MIL-
GP-Probit, a Gaussian Process model for the MIL
instance label prediction problem which differs from

the state-of-the-art MIL-GP-Logistic model of [10] by
a crucial design choice: the use of a probit link in-
stead of logit link; leverage the analytical tractability
of the probit link to 2) develop a mean-field variational
inference scheme for MIL-GP-Probit that maximizes
the ELBO directly, instead of a lower bound as did
[10] and 3) develop a Gibbs sampling inference scheme
for MIL-GP-Probit - the first exact inference scheme
for any Bayesian model for the MIL scenario; 4) show
that MIL-GP-Probit with variational inference is signif-
icantly more calibrated than MIL-GP-Logistic on all 20
datasets of the benchmark 20 Newsgroups dataset col-
lection, achieves higher AUC than MIL-GP-Logistic on
an additional 51 out of 59 datasets, and gives predictive
performance comparable to Gibbs sampling.

2 Background

Multiple Instance Learning: In the Multiple In-
stance Learning (MIL) scenario, the training data con-
sists of N instances partitioned into a set of bags B, i.e.
b = {b1, .. ., b|b|} ⊆ [N ] for b ∈ B, where |b| is the size of
bag b. Bag b contains |b| instances Xb := {xi}i∈b, with
xi ∈ RD where D is the number of features, and asso-
ciated binary instance labels Hb := {hi}i∈b, hi ∈ {0, 1}
for i ∈ [N ]. The instance labels {Hb} are not ob-
served. Instead, one observes bag labels {Yb}. The
MIL labeling assumption is that Yb = 1 if and only
if any instance label in bag b is positive. That is,
Yb = maxi∈b hi. Thus, the training data comprises la-
belled bags {Xb}b∈B, {Yb}b∈B. Probabilistic MIL meth-
ods create a model P ({Yb}, {Hb}|{Xb}) that factors as
P ({Hb}|{Xb})Πb∈BP

MIL(Yb|Hb). They vary by how
they model P ({Hb}|{Xb}). However, the MIL labeling
assumption dictates that

PMIL(Yb|Hb) = 1[Yb = max
i∈b

hi]. (1)

Gaussian Process Classification:. Our Multiple
Instance Learning Gaussian Process model is an adap-
tation of a Gaussian Process (GP) classification model,
which is itself an adaptation of a Gaussian Process
model, which we describe first. Given instance fea-
tures x = (x1, .. ., xN ), instance scalars f = (f1, .. ., fN ),
where fn ∈ R, xn ∈ RD for n ∈ [N ] and D is
the number of features, and kernel function K(·, ·; θ)
parametrized by kernel hyperparameters θ, a Gaussian
Process (GP) model lets f ;x, θ ∼ N (0N ,Kxx;θ), where
0N is the length N vector of zeros. Throughout, given
x′ = (x1, .. ., xN ′), x′′ = (x1, .. ., xN ′′) and kernel func-
tion K(·, ·; θ), we overload Kx′x′′;θ to denote the N ′ ×
N ′′ gram matrix whose (i, j)-th entry is K(x′i, x

′′
j ; θ).

1. Logistic classification models use a logit link (equivalently,
logistic inverse link), whereas probit classification models use a
probit link, leading to unfortunate inconsistency in terminology.
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When f is observed, for test instances with features
x∗ and instance scalars f∗, the posterior predictive dis-
tribution f∗|x∗, f ,x; θ ∼ N (f∗Kx∗x;θK

−1
xx;θf ,Kx∗x∗;θ −

Kx∗x;θK
−1
xx;θKxx∗;θ). Due to the O(N3) cost of invert-

ing a N ×N matrix, the Fully Independent Training
Conditional (FITC) approximation [21] introduces R
inducing points z := (z1, .. ., zR) and inducing scalars
u := (u1, .. ., uR), where zr ∈ RD, ur ∈ R for r ∈ [R],
and lets

u; z, θ ∼ N (0R,Kzz;θ), (2)

f |u;x, z, θ ∼ N (Kxz;θK
−1
zz;θu,diag(K)), (3)

where K := Kxx;θ −Kxz;θK
−1
zz;θKzx;θ. and diag(K) is

the diagonal matrix whose diagonal equals that of K.
As the covariance of P (f |u;x, z, θ) is diag(K) instead of
K, inference cost is reduced to O(R2N). Throughout,
we omit notational dependence on z, θ if appropriate.

The Gaussian Process Logistic Classification model
(with FITC approximation) extends the model of Equa-
tions 2 and 3 by additionally modeling binary labels
h := (h1, . . . , hN ), letting

hi ∼ Bernoulli(logit−1(fi)) for i ∈ [N ], (4)

where logit−1(x) = 1
1+exp(−x) is the logistic function,

so that a logit link (equivalently, logistic inverse link)
is used.

Similarly, the Gaussian Process Probit Classification
model (with FITC approximation) extends the model
of Equations 2 and 3 by additionally modeling binary
labels h := (h1, . . . , hN ), but instead letting

hi ∼ Bernoulli(probit−1(fi)) for i ∈ [N ],

where probit−1(z) =
∫

1[x < z]N (x; 0, 1)dx is the cu-
mulative distribution function of the standard normal,
so that a probit link is used.

3 Multiple Instance Learning
Gaussian Process Probit Model

3.1 Model Formulation

Our Multiple Instance Learning Gaussian Process Pro-
bit model (MIL-GP-Probit) models the MIL setting
using the probabilistic approach described in Section
2, where the model for instance labels P ({Hb}|{Xb})
uses a Gaussian Process Probit Classification model
(with FITC approximation). Given R inducing points
z := (z1, .. ., zR) with zr ∈ RD and kernel func-
tion K(·, ·; θ) depending on hyperparameters θ, the
MIL-GP-Probit model for the MIL setting models

Yb hi fi ur

i ∈ b

b ∈ B
r ∈ [R]

Figure 1: In the MIL-GP-Probit model, instance labels
{hi} are modeled using a Gaussian Process Probit
Classification model (with FITC approximation), and
related to bag labels {Yb} using the MIL assumption.

P (u, f , {Hb}, {Yb}; {Xb}, z, θ) as:

u; z, θ ∼ N (0R,Kzz;θ), (5)

f |u;x, z, θ ∼ N (Kxz;θK
−1
zz;θu,diag(K)), (6)

hi ∼ Bernoulli(probit−1(fi)) for i ∈ [N ],(7)
Yb|Hb ∼ 1[Yb = max

i∈b
hi] for b ∈ B, (8)

where x denotes {Xb}, f ∈ RN denotes {Fb} where
Fb := {fi}i∈b and the fi are instance scalars, u :=
(u1, .. ., uR) where ur ∈ R are inducing scalars, and
K := Kxx;θ −Kxz;θK

−1
zz;θKzx;θ. Equations 5 - 7 specify

the Gaussian Process Probit Classification model (with
FITC approximation) for all instance labels {Hb} given
all instance features x := {Xb}, and Equation 8 speci-
fies the MIL labeling assumption that holds between a
given bag label Yb and the instance labels of the bag
Hb. Figure 1 depicts the MIL-GP-Probit model.

3.2 Model Inference

Given bag labels {Yb}, the inference task is to compute
P (u, f |{Yb};x, z, θ). A variable augmentation approach
enables efficient variational inference of this posterior.

Variable Augmentation: We modify the MIL-GP-
Probit model to obtain the augmented MIL-GP-Probit
model via 2 transforms.

In the 1st transform, we introduce augmenting variable
m := (m1, . . . ,mN ), with mi ∈ R, and we will define
Mb := {mi}i∈b. Then for i ∈ [N ] we let

mi ∼ N (fi, 1) (9)
hi ∼ 1[mi > 0]. (10)

The marginal distribution of the original variables is
identical between the original MIL-GP model and the
transformed model, as under the latter, for i ∈ [N ],

P (hi = 1|fi) = ∫ P (hi = 1|mi)P (mi|fi)dmi

= ∫ 1[mi > 0]N (mi; fi, 1)dmi

= ∫ 1[fi − x > 0]N (fi − x; fi, 1)dx

= ∫ 1[x < fi]N (x; 0, 1)dx

= probit−1(fi),
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so it remains that hi|fi ∼ Bernoulli(probit−1(fi)).

In the 2nd transform, we marginalize out {Hb} so that

P (Yb = 0|Mb) =
∑

Hb∈{0,1}|b|
P (Yb = 0|Hb)P (Hb|Mb)

=
∑

Hb∈{0,1}|b|
1[0 = max

i∈b
hi]Πi∈b1[hi > mi]

= Πi∈b1[0 > mi], and (11)
P (Yb = 1|Mb) = 1−Πi∈b1[0 > mi]. (12)

The result of these 2 transforms is the augmented MIL-
GP-Probit model P (u, f ,m, {Yb};x) given by Equa-
tions 5, 6, 9, 11, and 12.

This variable augmentation approach enabled Gibbs
sampling for binary probit models [1] and variational
inference for multi-class Gaussian Process probit mod-
els [7]. As we now show, it also enables variational
inference for our MIL-GP-Probit model.

Variational Inference: We use mean-field varia-
tional inference (VI) to efficiently approximate the
posterior of the augmented MIL-GP-Probit model,
P (u, f ,m|{Yb};x). We approximate this intractable
posterior with a variational distribution Q(u, f ,m) ∈
Q, where Q are distributions factorizing as:

Q(u, f ,m) = Q(u)Q(m)P (f |u;x) (13)

VI seeks argminQ∈QKL(Q||P (u, f ,m|{Yb};x)). This
is argmaxQ∈Q ELBO(Q), with

ELBO(Q) := EQ[logP (u, f ,m|{Yb};x)− logQ(u, f ,m)],

as KL(Q||P (u, f ,m|{Yb};x)) = −ELBO(Q) +
logP ({Yb};x). Based on standard VI theory, if Q ∈
argmaxQ∈Q ELBO(Q), then Q has the following form:

Q(u, f ,m) = Q(u)P (f |u)Πb∈BQ(Mb), with (14)
Q(u) = N (u;µu,Σu) (15)

Q(Mb) ∝ P (Yb|Mb)Πi∈bN (mi;µ
M
i , 1) for b ∈ B. (16)

Here, µu ∈ RR and Σu ∈ RR×R specifying the mean
and covariance of Q(u) and µM = (µM1 , . . . , µMN ), with
µMi ∈ R for i ∈ [N ], are the variational parameters
parametrizing Q.

Given this parametrization of Q, standard mean field
theory (see Appendix) gives closed form updates to the
variational parameters to maximize ELBO(Q):

Σu ← (K−1
zz +K−1

zz KzxKxzK
−1
zz )−1 (17)

µu ← ΣuK−1
zz KzxEQ(m)[m] (18)

µM ← KxzK
−1
zz µ

u (19)

In Equation 18, EQ(m)[m] can be computed by sepa-
rately computing EQ(Mb)[Mb] for each b ∈ B in closed

form. For a given bag b, there are two cases, depending
on whether it is a positive or negative bag.

If Yb = 0, then combining Equations 11 and 16, we
get Q(Mb) ∝ Πi∈b1[0 > mi]N (mi;µ

M
i , 1), so that the

{mi}i∈b (i.e. the entries of Mb) are independent of
each other under Q(Mb). Thus for i ∈ b,

Q(mi) ∝ 1[0 > mi]N (mi;µ
M
i , 1). (20)

Thus if Yb = 0, for i ∈ b, Q(mi) is a truncated normal
distribution, so that

EQ(mi)[mi] = S(µMi ), where (21)

S(m) := m− N (m; 0, 1)

1− probit−1(m)
(22)

is the mean of a N (m, 1) distribution right-truncated
at 0.

If Yb = 1, then combining Equations 12 and 16, we get

Q(Mb) = 1
Z

(
1−Πi∈b1[0 > mi]

)
Πi∈bN (mi;µ

M
i , 1), (23)

where normalizing constant Z is readily calculated as

Z = 1− ∫
Mb

Πi∈b1[0 > mi]N (mi;µ
M
i , 1)dMb

= 1−Πi∈b ∫
mi

1[0 > mi]N (mi;µ
M
i , 1)dmi

= 1−Πi∈b(1− probit−1(µMi )).

Thus, if Yb = 1, for i ∈ b,

EQ(mi)[mi]

= 1
Z ∫
Mb

mi

(
1−Πi∈b1[0 > mi]

)
Πi∈bN (mi;µ

M
i , 1)dMb

= 1
Z (µMi − ∫

Mb

miΠi∈b1[0 > mi]N (mi;µ
M
i , 1)dMb)

= 1
Z (µMi − S(µMi )Πi∈b(1− probit−1(µMi ))).

3.3 MIL-GP-Probit to MIL-GP-Logistic
Comparison

The MIL-GP-Logistic model of [10] is nearly identical
to our MIL-GP-Probit model, except that they use a
logit link to relate instance scalars to instance label
probabilities, whereas we use a probit link. In more
detail, the MIL-GP-Probit model is given by Equations
5, 6, 7, 8, whereas the MIL-GP-Logistic model is given
by Equations 5, 6, 4, 8. As the logit and probit link are
known to give similar predictive performance [11] in
Bayesian regression models, we can conclude that the
MIL-GP-Logistic and MIL-GP-Probit models should
also give similar predictive performance, provided ac-
curate posterior inference can be performed.

However, the inference procedure for MIL-GP-Logistic
makes an approximation that we do not make, which
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as our experiments will show, hurt their predictive per-
formance. Recall to approximate the posterior of the
MIL-GP-Probit model, we find argmaxQ∈Q ELBO(Q),
where ELBO(·) is given in Section 3.2, and the varia-
tional family Q is given by Equation 13. The inference
procedure for the MIL-GP-Logistic model infers the pos-
terior over their model’s parameters, P (u, f ,h|{Yb};x)
by approximating it with a variational distribution
Q(u, f ,h) ∈ Q̄, where Q̄ are distributions factoring
as Q(u)Q(h)P (f |u;x), and h := (h1, . . . , hN ). This
factorization assumption is similar to the one we make.

Where the inference methods for the two models
differ is the variational objective that is optimized.
Whereas we maximize the standard ELBO objective
directly over the variational family, they maximize a
lower bound on the ELBO over the variational family.
In particular, for the MIL-GP-Logistic model, they
find argmaxQ∈Q̄ ELBO−(Q), where ELBO−(Q) ≤
ELBO(Q) := EQ[logP (u, f ,h|{Yb};x)−logQ(u, f ,h)].

Please see [10] for the exact form of ELBO−(Q). What
matters is that above inequality is in general not an
equality. As maximizing the lower bound of a func-
tion is suboptimal, their inference method can and
we show, does lead to lowered predictive performance.
The reason they cannot maximize the ELBO directly
is because they use the logit link, and are forced to use
the Jaakkola lower bound. On the other hand, our use
of the probit link along with the variable augmentation
approach allows us to maximize the ELBO directly.

3.4 Making Test Predictions

For a test bag b∗ with instance featuresXb∗ := {x∗i }i∈b∗ ,
the posterior predictive distribution over u, instance
scalars Fb∗ := {f∗i }i∈b∗ , augmenting variables Mb∗ :=
{m∗i }i∈b∗ , and bag label Yb∗ is approximated analogous
to the augmented MIL-GP-Probit model of Section 3.2:

Q(u, Fb∗ ,Mb∗ , Yb∗) (24)
= Q(u)P (Fb∗ |u)P (Mb∗ |Fb∗)P (Yb∗ |Mb∗)

≈ P (u, Fb∗ ,Mb∗ , Yb∗ |{Yb}; {Xb}, z, θ), (25)

where Fb∗ |u;Xb∗ ∼ N (KXb∗zK
−1
zz u,diag(K∗)), with

K∗ := KXb∗Xb∗ − KXb∗zK
−1
zz KzXb∗ , m

∗
i ∼ N (f∗i , 1),

h∗i ∼ 1[m∗i > 0] for i ∈ b∗, and following Equation
12, P (Yb∗ = 1|Mb∗) = 1− Πi∈b∗1[0 > m∗i ]. Note that
h∗i |m∗i ∼ 1[m∗i > 0] for i ∈ b∗, giving the posterior
predictive distribution for each test instance label h∗i .
Marginalizing out u gives Q(Fb∗) = N (µFb∗ ,ΣFb∗ ),
where µFb∗ ,ΣFb∗ are given by the standard Gaussian
convolution formula. Then, Q(Mb∗) = N (µfb∗ ,Σfb∗ +
I|b∗|), where I|b∗| is the |b∗| × |b∗| identity matrix. The
Gaussian characterization of Q(Mb∗) makes it possible
to make both test instance and bag label predictions.

To make instance label predictions, note for i ∈ b∗,

Q(h∗i = 1) = ∫
m∗i

Q(m∗i )P (h∗i |m∗i )dm∗i

= ∫
m∗i

N (m∗i ;µ
Fb∗
ii ,ΣFb∗

ii + 1)1[m∗i > 0]dm∗i

= probit−1(
µ
Fb∗
i

Σ
Fb∗
ii +1

).

To make bag label predictions, note

Q(Yb∗ = 1) = ∫
M∗b

Q(M∗b )P (Yb∗ = 1|Mb∗)dM
∗
b

= 1− ∫
M∗b

N (µFb∗ ,ΣFb∗ + I|b∗|)Πi∈b∗1[0 > m∗i ]dM
∗
b .

The above integral is a Gaussian integral subject to
linear inequality constraints, and can be calculated
efficiently using the method of [6]. Note that the bag
label prediction accounts for dependence between the
instance labels in the bag, as ΣFb∗ is not diagonal.
This is the philosophically correct way to make bag
label predictions. Although we do not target bag label
predictions in this work, having some mechanism for
making them would still be important if performing ac-
tive learning, where uncertainty in bag label predictions
might be used to select the bag labels to acquire.

Note that to make bag label predictions with the MIL-
GP-Logistic model of [10], one would need to assume
instance labels are independent of each other, due to
the intractability of the logit link. This is philosophi-
cally incorrect simply due to the model not asserting
instance label independence. It is also intuitively incor-
rect; suppose a bag contained many identical instances.
Assuming independence of instance labels implies the
bag has almost no chance of being negative, as the
probability all the instance labels are independently
negative is vanishingly low.

3.5 Gibbs Sampling

We also derive a Gibbs sampling scheme for our MIL-
GP-Probit model. To the best of our knowledge, this
is the first (asymptotically) exact posterior inference
scheme for any Bayesian model for the MIL scenario,
and provides us not only ground truth, but the ability
to assess the effect of approximate variational inference.

We derive Gibbs sampling on the augmented MIL-GP-
Probit model of Section 3.2, for which the full condi-
tional distributions of P (u, f ,m|{Yb};x) can be derived.
First, we integrate out f to obtain P (u,m|{Yb};x). It
is then straightforward (see Appendix) to derive the full
conditional distributions of u and each mi for i ∈ [N ],
so that collapsed Gibbs sampling can be performed:

P (u|m, {Yb};x) = N (u; ΣuK−1
zz Kzxm,Σu),
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where Σu is given by Equation 17. For the full con-
ditional distribution of mi for i ∈ b, there are 3
cases depending on whether bag b is a negative bag,
and if not, whether any other instance within the
bag are positive given the current parameter values:

P (mi|{mi′}i′∈b,i′ 6=i,u, {Yb};x)
∝ N (mi;µ

M
i , 1)1[mi < 0] if Yb = 0 (26)

∝ N (mi;µ
M
i , 1)1[mi > 0] (27)

if Yb = 1 and mi′ < 0 ∀ i′ ∈ b, i′ 6= i

= N (mi;µ
M
i , 1) otherwise, (28)

where µM := (µM1 , . . . , µMN ) := KxzK
−1
zz u. The con-

ditional distributions of Equations 26 and 27 are uni-
variate truncated normal distributions, which can be
efficiently sampled from.

4 Experiments

Firstly, our MIL-GP-Probit model admits a variational
inference procedure that directly maximizes the ELBO.
On the other hand, MIL-GP-Logistic model of [10]
is similar to ours, but as described in Section 3.3, uses
a variational inference method that maximizes a lower
bound on the ELBO, instead of maximizing it directly.
Although their method was shown already to be the
state of the art, this approximation potentially hurts
their predictive performance. Thus the first question
we answer with experiments is:

Q1: How does the predictive performance of our
MIL-GP-Probit model compare to that of the
MIL-GP-Logistic model of [10]?

Secondly, we have also developed the first (asymp-
totically) exact posterior inference procedure for any
Bayesian model for the MIL scenario. In particu-
lar, we have developed a Gibbs sampler for our MIL-
GP-Probit model. Although MCMC procedures are
slower, they give us a “ground truth”. Thus the second
question we answer with our experiments is:

Q2: How does the predictive performance of our
MIL-GP-Probit model differ when (exact) posterior
inference via Gibbs sampling is used instead of varia-
tional inference?

To answer these questions, we evaluated the following
methods:

• MIL-GP-Probit: Our MIL-GP-Probit model, with
the variational inference method of Section 3.2 run-
ning for 25 iterations.

• MIL-GP-Probit-Gibbs: Our MIL-GP-Probit
model, with the Gibbs sampling inference method of
Section 3.5 providing 5000 samples with no thinning,

1000 samples of burn-in.
• MIL-GP-Logistic: The MIL-GP-Logistic model of

[10], with their variational inference method running
for 25 iterations (as they did).

• MIL-GP-Logistic-LM: [10] also developed a “large-
margin” extension of their MIL-GP-Logistic
model, which encourages the decision boundary to lie
far away from instances; see their paper for details.
This is that method, with the default hyperparame-
ters of C = 2, V = 2.

For all methods, we chose R = 50 inducing points via
K-means-++[3]. We only compare our methods to the
methods of [10], as the latter were already shown to be
the state of the art compared to other methods. Please
see [10] for comparison of their methods with others.

Since this paper tackles the instance label prediction
problem, we assume that given a test instance x∗, a
method can produce p∗, the predicted probability the
instance label is positive. For a given set of test in-
stances, the following criteria are used to evaluate the
predictions of the test instance labels, {p∗}, relative to
their true labels, {h∗}:

• AUC: Area under the Receiver Operating Curve.
• Loglik: The predictive log-likelihood over the test set
of instances: 1

N∗

∑
h∗ log p∗ + (1 − h∗) log(1 − p∗),

where N∗ is the number of test instances. This is the
standard criteria for evaluating probabilistic models,
measuring the KL-divergence between the predicted
test instance label distribution and the true test
instance label distribution.

• MAP: Mean-Average-Precision, i.e. the area under
the precision-recall curve.

4.1 Experiments on 20 Newsgroups datasets

The 20 Newsgroups dataset is a collection of 20 MIL
datasets first introduced by [25], where each dataset
is associated with a single newsgroup (out of 20), and
consists of bags of around 40 instances. Each instance
is positive if it came from that single newsgroup, and
is negative otherwise. Instances are represented by 200
TF-IDF features. Although it is synthetic, it has been
widely used as a benchmark to evaluate instance label
predictive performance for the MIL scenario, because
only about 3% of the instances in each positive bag are
positive instances.

For each of the 20 datasets, we perform 10 rounds of
10-fold cross-validation, using the publicly available
folds from [25]; a training fold contains labelled bags,
and a test fold contains test instances whose label is to
be predicted. Following [10], for all evaluated methods,
we use the Gaussian kernel, with the lengthscale set to
the square root of the instance feature dimension, and
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Criteria AUC Loglik MAP

Method MIL-GP-
Probit

MIL-GP-
Logistic

MIL-GP-
Probit

MIL-GP-
Logistic

MIL-GP-
Probit

MIL-GP-
Logistic

dataset

atheism 0.969 0.974 -0.036 -0.158 0.714 0.700
graphics 0.901 0.928 -0.052 -0.164 0.796 0.787
windows 0.903 0.922 -0.036 -0.159 0.543 0.541
pc 0.909 0.955 -0.038 -0.156 0.708 0.700
mac 0.943 0.947 -0.042 -0.159 0.761 0.763
windows.x 0.946 0.972 -0.056 -0.168 0.734 0.736
forsale 0.908 0.945 -0.034 -0.156 0.521 0.526
rec.autos 0.944 0.935 -0.051 -0.170 0.746 0.741
motorcycles 0.979 0.981 -0.040 -0.169 0.685 0.720
baseball 0.945 0.976 -0.051 -0.174 0.759 0.776
hockey 0.988 0.990 -0.075 -0.181 0.914 0.923
sci.crypt 0.988 0.995 -0.042 -0.161 0.703 0.773
electronics 0.990 0.967 -0.048 -0.154 0.926 0.918
sci.med 0.956 0.951 -0.054 -0.171 0.760 0.742
sci.space 0.962 0.981 -0.049 -0.175 0.731 0.752
christian 0.960 0.971 -0.040 -0.178 0.747 0.750
guns 0.979 0.975 -0.048 -0.163 0.702 0.723
mideast 0.974 0.974 -0.050 -0.160 0.805 0.850
politics 0.966 0.969 -0.037 -0.153 0.637 0.646
religion 0.932 0.937 -0.038 -0.171 0.561 0.531

wins 5 15 20 0 8 12

Table 2: On the 20 newsgroups dataset collection,
our method (MIL-GP-Probit) has higher predictive
log-likelihood than MIL-GP-Logistic [10] on all 20
datasets, and is comparable in terms of AUC and MAP.

use kernel PCA to reduce the instance feature dimen-
sion to 100. Table 2 shows the predictive performance
of MIL-GP-Probit compared to MIL-GP-Logistic
on each of the 20 MIL datasets in the 20 Newsgroups
dataset. The two methods are comparable in terms of
AUC and MAP. However, MIL-GP-Probit has higher
predictive log-likelihood than MIL-GP-Logistic on
all 20 datasets. Since the MIL-GP-Probit and MIL-
GP-Logistic models are very similar (see Section 3.3),
one can conclude the reason the MIL-GP-Probit out-
performs the MIL-GP-Logistic method in terms of
predictive log-likelihood is because the former uses a
variational inference method that directly optimizes the
ELBO, whereas the latter uses a variational inference
method that optimizes a lower bound on the ELBO.
Table 3 summarizes the performance of all considered
methods across the 20 datasets by giving the average
value of each criteria across all 20 datasets for each
method. We once again see that MIL-GP-Probit is
comparable to MIL-GP-Logistic in terms of AUC
and MAP. Comparing MIL-GP-Probit to MIL-GP-
Probit-Gibbs in terms of predictive log-likelihood,
we see that the former, which uses a variational ap-
proximation to the posterior, is actually comparable
to the latter, which avoids that approximation by us-
ing Gibbs sampling. In fact, the AUC and MAP of
MIL-GP-Probit-Gibbs are lower; this is due to a
peculiarity of this particular dataset collection: that
the true posterior predictive probabilities under the
assumed model are all close to 0.5. This causes all
posterior sampling methods to do poorly on evaluation
metrics based on correctly ordering the instances by
true posterior predictive probability; we now elaborate.

For any posterior sampler, the estimators of posterior

AUC Loglik MAP

MIL-GP-Probit-Gibbs 0.853 -0.045 0.651
MIL-GP-Probit 0.952 -0.046 0.723
MIL-GP-Logistic 0.962 -0.165 0.730
MIL-GP-Logistic-LM 0.957 -0.343 0.725

Table 3: The criteria for all considered methods, av-
eraged over all 20 datasets of the 20 Newsgroups
dataset collection. MIL-GP-Probit (ours) has
much higher predictive log-likelihood than MIL-GP-
Logistic ([10]), and is comparable in terms of AUC
and MAP. Despite its variational approximation, MIL-
GP-Probit has comparable predictive log-likelihood
to our exact inference method MIL-GP-Probit-
Gibbs, whose AUC and MAP suffer due to the difficulty
of distinguishing between instances with similar true
probabilities via sampling. MIL-GP-Logistic-LM
does poorly.

predictive probabilities are Monte Carlo means, and
are used to calculate AUC (and MAP). Suppose true
negatives and true positives have a true posterior pre-
dictive probability of 0.49 and 0.51, respectively (i.e.
all close to 0.5). Due to estimator variance, the esti-
mated posterior predictive probabilities for some true
negative instances would be higher than those of some
true positive instances. As instances are incorrectly
ordered, this lowers AUC. This happens even if the sam-
pler were “perfect” (directly samples the true posterior)
and the model were “perfect” (true posterior predictive
probabilities would give a perfect AUC). Under our
model, the true posterior predictive probabilities for
the 20 Newsgroups dataset collection are all close to
0.5, and so our Gibbs sampler has poor AUC simply
because it is a sampler. We also note that our model is
“correct” in the sense that the dataset was intentionally
created to make it hard to distinguish positive from
negative instances (by making positive instances a very
small fraction of the instances in positive bags), so that
the posterior predictive probabilities should all be close
to 0.5. The AUC can be improved simply by obtaining
more posterior samples to lower estimator variance.

4.2 Experiments on additional non-synthetic
datasets

We further evaluated all considered methods on an ad-
ditional 59 non-synthetic MIL datasets. [18] introduces
several datasets for the multi-label multiple instance
(MIML) learning scenario, where each instance is as-
sociated with one of K > 2 possible classes, and the
label for a bag indicates the union of the instance la-
bels within it. For a given MIML dataset where each
instance is one of K classes, we can transform it into
K separate MIL datasets by treating each class in turn
as the positive class.
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Criteria AUC Loglik MAP

Method MIL-GP-
Probit

MIL-GP-
Logistic

MIL-GP-
Probit

MIL-GP-
Logistic

MIL-GP-
Probit

MIL-GP-
Logistic

dataset

Salad_0 0.852 0.831 -0.252 -0.258 0.530 0.477
Salad_1 0.842 0.838 -0.258 -0.255 0.483 0.487
Salad_2 0.859 0.800 -0.166 -0.191 0.483 0.363
Salad_3 0.874 0.878 -0.412 -0.287 0.695 0.771
Salad_4 0.993 0.991 -0.106 -0.143 0.969 0.974
Salad_5 0.825 0.835 -0.198 -0.185 0.372 0.445
Voc12_0 0.643 0.542 -0.025 -0.025 0.012 0.009
Voc12_1 0.662 0.534 -0.073 -0.075 0.056 0.036
Voc12_10 0.551 0.446 -0.083 -0.091 0.044 0.034
Voc12_11 0.751 0.677 -0.061 -0.063 0.078 0.043
Voc12_12 0.817 0.746 -0.051 -0.053 0.092 0.047
Voc12_13 0.812 0.739 -0.068 -0.072 0.139 0.086
Voc12_14 0.724 0.714 -0.304 -0.346 0.534 0.518
Voc12_15 0.743 0.694 -0.086 -0.090 0.123 0.090
Voc12_16 0.708 0.576 -0.034 -0.034 0.023 0.015
Voc12_17 0.627 0.627 -0.083 -0.085 0.062 0.056
Voc12_18 0.552 0.385 -0.028 -0.027 0.010 0.007
Voc12_19 0.861 0.816 -0.063 -0.068 0.159 0.100
Voc12_2 0.727 0.696 -0.024 -0.023 0.017 0.014
Voc12_3 0.714 0.686 -0.041 -0.041 0.035 0.031
Voc12_4 0.554 0.528 -0.114 -0.114 0.077 0.072
Voc12_5 0.855 0.805 -0.058 -0.064 0.106 0.072
Voc12_6 0.876 0.853 -0.117 -0.129 0.359 0.285
Voc12_7 0.693 0.549 -0.042 -0.041 0.027 0.017
Voc12_8 0.808 0.807 -0.169 -0.174 0.375 0.357
Voc12_9 0.652 0.605 -0.051 -0.052 0.030 0.026
hja_0 0.756 0.734 -0.108 -0.159 0.134 0.117
hja_1 0.645 0.694 -0.155 -0.129 0.271 0.292
hja_10 0.837 0.638 -0.044 -0.055 0.177 0.040
hja_11 0.936 0.932 -0.158 -0.101 0.874 0.875
hja_12 0.763 0.746 -0.032 -0.037 0.025 0.023
hja_2 0.843 0.817 -0.095 -0.123 0.203 0.279
hja_3 0.934 0.927 -0.088 -0.088 0.490 0.502
hja_4 0.568 0.635 -0.023 -0.028 0.009 0.011
hja_5 0.759 0.788 -0.060 -0.082 0.058 0.070
hja_6 0.597 0.700 -0.012 -0.015 0.005 0.010
hja_7 0.882 0.786 -0.066 -0.077 0.399 0.239
hja_8 0.977 0.944 -0.028 -0.050 0.715 0.473
hja_9 0.619 0.661 -0.031 -0.043 0.015 0.018
msrcv2_0 0.843 0.768 -0.160 -0.184 0.415 0.246
msrcv2_1 0.873 0.870 -0.181 -0.215 0.694 0.614
msrcv2_10 0.928 0.896 -0.083 -0.094 0.327 0.210
msrcv2_11 0.792 0.575 -0.067 -0.071 0.079 0.040
msrcv2_12 0.632 0.327 -0.050 -0.049 0.029 0.018
msrcv2_13 0.852 0.821 -0.030 -0.032 0.312 0.207
msrcv2_14 0.772 0.633 -0.036 -0.035 0.037 0.025
msrcv2_15 0.564 0.405 -0.074 -0.075 0.043 0.035
msrcv2_17 0.581 0.528 -0.034 -0.032 0.033 0.035
msrcv2_18 0.833 0.754 -0.155 -0.169 0.403 0.225
msrcv2_2 0.827 0.726 -0.169 -0.188 0.309 0.224
msrcv2_20 0.687 0.519 -0.041 -0.040 0.024 0.015
msrcv2_21 0.762 0.726 -0.099 -0.105 0.142 0.137
msrcv2_22 0.754 0.691 -0.066 -0.070 0.077 0.062
msrcv2_3 0.828 0.753 -0.077 -0.082 0.113 0.075
msrcv2_5 0.815 0.654 -0.055 -0.056 0.063 0.032
msrcv2_6 0.881 0.842 -0.154 -0.192 0.522 0.385
msrcv2_7 0.812 0.787 -0.043 -0.048 0.053 0.044
msrcv2_8 0.826 0.753 -0.049 -0.054 0.056 0.039
msrcv2_9 0.889 0.860 -0.084 -0.095 0.305 0.187

wins 51 8 42 17 46 13

Table 4: MIL-GP-Probit (ours) is better than
MIL-GP-Logistic ([10]) on the majority of 59 non-
synthetic MIL datasets across all criteria.

To generate the 59 MIL datasets, we took all 4 non-
synthetic MIML datasets of [18] and applied the above
transformation. Each resulting MIL dataset is denoted
by the name of the original MIML dataset and the
index of the positive class. Those datasets are:

• msrcv2: Image annotation dataset where each bag
is an image and patches within an image are the
instances. Features are a 48-dimensional histogram
of gradients and colors vector. 1636 instances, 469
bags, 23 classes, 48 features, 2.5 mean bag label size.

• Voc12: Image annotation dataset like msrcv2. Same

AUC Loglik MAP

MIL-GP-Probit-Gibbs 0.764 -0.097 0.227
MIL-GP-Probit 0.770 -0.094 0.225
MIL-GP-Logistic 0.713 -0.099 0.190
MIL-GP-Logistic-LM 0.539 -0.133 0.110

Table 5: The criteria for all considered methods, aver-
aged over all 59 non-synthetic MIL datasets. Our meth-
ods (MIL-GP-Probit, MIL-GP-Probit-Gibbs), do
better than those of [10] (MIL-GP-Logistic, MIL-
GP-Logistic-LM), in terms of AUC and MAP. De-
spite its variational approximation, MIL-GP-Probit
has comparable performance to MIL-GP-Probit-
Gibbs, which characterizes the exact posterior via
sampling, but is slower. MIL-GP-Logistic-LM does
poorly.

features as msrcv2. 4142 instances, 1053 bags, 20
classes, 48 features, 2.3 mean bag label size.

• Salad: 100-second time windows are bags divided
into 2 second instances. Each instance’s label is the
activity a human subject was doing while in a kitchen,
such as cutting cheese, cutting lettuce, mixing in-
gredients. Features are derived from accelerometers
worn on the subject’s wrist. 2020 instances, 124 bags,
6 classes, 58 features, 2.3 mean bag label size.

• hja: Birdsong spectrogram dataset where each bag is
a 10 second time window, and instances are patches
of high intensity within it obtained using [17]. The
instance label is the bird species the patch came from.
Instances with no ground truth are removed. 4983
instances, 533 bags, 13 classes, 39 features, 2.1 mean
bag label size.

For each of the 59 datasets, we performed 100 rounds
of cross-validation, where in each round, we randomly
select 1

2 of the bags for training data, and the instances
in the remaining bags as the test instances. As before,
we follow the heuristic of [10] and set the length scale
of the kernel to the square root of the instance feature
dimension. However, for these 59 datasets we use the
exponential kernel, which modeled the data better.

Table 4 shows that MIL-GP-Probit does better than
MIL-GP-Logistic on 51, 47, and 46 of the 59 datasets
in terms of AUC, predictive log-likelihood, and MAP,
respectively. MIL-GP-Probit turns out to have sim-
ilar performance to MIL-GP-Probit-Gibbs: Table
5 shows that the average of the 3 criteria across all
59 datasets is similar for the two methods; see the
Appendix for results for individual datasets. Thus
MIL-GP-Probit is comparable in performance to
MIL-GP-Probit-Gibbs, which performs (asymptoti-
cally) exact inference, but takes longer to run. Finally,
MIL-GP-Logistic, as Table 4 already indicated, has
worse average performance than our methods, and
MIL-GP-Logistic-LM does worse.
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5 Related Work and Conclusion

We have created MIL-GP-Probit, a Bayesian Gaus-
sian Process model for the Multiple Instance Learn-
ing scenario for tackling the instance label prediction
problem. Our model is an adaptation of the MIL-GP-
Logistic model of [10] to use a probit instead of logit
link function. This seemingly small change enables our
first contribution: the variational inference procedure
we provide. Whereas the inference procedure of [10]
maximizes a lower bound on the ELBO objective, our
inference procedure leverages the analytical tractability
of the probit link to maximize the ELBO directly, and
achieves higher predictive performance than [10] on
the benchmark 20 Newsgroups dataset and 59 addi-
tional datasets. Secondly, we develop a Gibbs posterior
sampling scheme for our model, which enables (asymp-
totically) exact posterior inference. To the best of our
knowledge, this is the first MCMC posterior inference
procedure for any Bayesian model for the MIL scenario.

Related work includes aforementioned work on mul-
tiple instance learning. Our work is also related to
probabilistic methods for learning when training data
is not ideal, such as when given aggregate counts [16],
or group proportions [15]. Use of the probit link in
probabilistic models has been shown to enable efficient
and accurate posterior inference in Bayesian linear re-
gression [1] and multi-class Gaussian Process models
[7]. Our use of the probit link in the Bayesian MIL
scenario can be seen as an application of that insight.

Future work includes allowing extensions of the stan-
dard MIL bag label assumption as in [9], incorporating
a feature transformation step as in [23], and using our
model in Bayesian Active Learning [12]. In fact, one
of the advantages of our model is that computing the
BALD [12] acquisition function is tractable for it, unlike
for the MIL-GP-Logistic model of [10].
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