
Graphical Normalizing Flows

A Optimization procedure

Algorithm 2 Main Loop
epoch 0
while !Stopping criterion do

foreach batch X 2Xtrain do
loss computeLoss(flow, X)
optimize(flow, loss)

lossvalid computeLoss(flow,Xtest)
epoch epoch + 1
updateCoefficients(flow, epoch, lossvalid)
if isDagConstraintNull(flow) then

PostProcess(flow)

The method computeLoss(flow, X) is computed as described by equation (8). The optimize(flow, loss) method
performs a backward pass and an optimization step with the chosen optimizer (Adam in our experiments). The
post-processing is peformed by PostProcess(flow) and consists in thresholding the values in A such that the
values below a certain threshold are set to 0 and the other values to 1, after post-processing the stochastic door
is deactivated. The threshold is the smallest real value that makes the equivalent graph acyclic. The method
updateCoefficients() updates the Lagrangian coefficients as described in section 4.4.

B Jacobian of graphical conditioners

Proposition B.1. The absolute value of the determinant of the Jacobian of a normalizing flow step based on

graphical conditioners is equal to the product of its diagonal terms.

Proof. Proposition B.1 A Bayesian Network is a directed acyclic graph. Sedgewick and Wayne [2011] showed
that every directed acyclic graph has a topological ordering, it is to say an ordering of the vertices such that
the starting endpoint of every edge occurs earlier in the ordering than the ending endpoint of the edge. Let us
suppose that an oracle gives us the permutation matrix P that orders the components of g in the topological
defined by A. Let us introduce the following new transformation gP (xP) = Pg(P�1(Px)) on the permuted
vector xP = Px. The Jacobian of the transformation gP (with respect to xP) is lower triangular with diagonal
terms given by the derivative of the normalizers with respect to their input component. The determinant of such
Jacobian is equal to the product of the diagonal terms. Finally, we have

| det(JgP (xP))| = | det(P)|| det(Jg(x))|
| det(P)|

| det(P)|

= | det(Jg(x))|,

because of (1) the chain rule; (2) The determinant of the product is equal to the product of the determinants;
(3) The determinant of a permutation matrix is equal to 1 or �1. The absolute value of the determinant of
the Jacobian of g is equal to the absolute value of the determinant of gP , the latter given by the product of
its diagonal terms that are the same as the diagonal terms of g. Thus the absolute value of the determinant of
the Jacobian of a normalizing flow step based on graphical conditioners is equal to the product of its diagonal
terms.

C Experiments on topology learning

C.1 Neural networks architecture

We use the same neural network architectures for all the experiments on the topology. The conditioner functions
hi are modeled by shared neural networks made of 3 layers of 100 neurons. When using UMNNs for the normalizer
we use an embedding size equal to 30 and a 3 layers of 50 neurons MLP for the integrand network.

Antoine Wehenkel, Gilles Louppe

Figure 4: Ground truth adjacency matrices. Black squares denote direct connections and in light grey is their transposed.

(a) Arithmetic Circuit (b) 8 Pairs (c) Tree (d) Human Proteins

C.2 Dataset description

Arithmetic Circuit The arithmetic circuit reproduced the generative model described by Weilbach et al.
[2020]. It is composed of heavy tailed and conditional normal distributions, the dependencies are non-linear. We
found that some of the relationships are rarely found by during topology learning, we guess that this is due to
the non-linearity of the relationships which can quickly saturates and thus almost appears as constant.

8 pairs This is an artificial dataset made by us which is a concatenation of 8 2D toy problems borrowed from
Grathwohl et al. [2018] implementation. These 2D variables are multi-modal and/or discontinuous. We found
that learning the independence between the pairs of variables is most of the time successful even when using
affine normalizers.

Tree This problem is also made on top of 2D toy problems proposed by Grathwohl et al. [2018], in particular
a sample X = [X1, . . . , X7]T is generated as follows:

1. The pairs variables (X1, X2) and (X3, X4) are respectively drawn from Circles and 8-Gaussians;

2. X5 ⇠ N (max(X1, X2), 1);

3. X6 ⇠ N (min(X3, X4), 1);

4. X7 ⇠ 0.5N (sin(X5 +X6), 1) + 0.5N (cos(X5 +X6), 1).

Human Proteins A causal protein-signaling networks derived from single-cell data. Experts have annoted 20
ground truth edges between the 11 nodes. The dataset is made of 7466 entries which we kept 5, 000 for training
and 1, 466 for testing.

C.3 Additional experiments

Fig. 5 and Fig. 6 present the test log likelihood as a function of the `1-penalization on the four datasets for
monotonic and affine normalizers respectively. It can be observed that graphical conditioners perform better
than autoregressive ones for certain values of regularization and when given a prescribed topology in many cases.
It is interesting to observe that autoregressive architectures perform better than a prescribed topology when an
affine normalizer is used. We believe this is due to the non-universality of mono-step affine normalizers which
leads to different modeling trade-offs. In opposition, learning the topology improves the results in comparison
to autoregressive architectures.

D Tabular density estimation - Training parameters

Table 6 provides the hyper-parameters used to train the normalizing flows for the tabular density estimation
tasks. In our experiments we parameterize the functions hi with a unique neural network that takes a one hot
encoded version of i in addition to its expected input x� Ai,:. The embedding net architecture corresponds to
the network that computes an embedding of the conditioning variables for the coupling and DAG conditioners,

Graphical Normalizing Flows

Figure 5: Test log-likelihood as a function of `1-penalization for monotonic normalizers. The red horizontal line is the
average result when given a prescribed topology, the green horizontal line is the result with an autoregressive conditioner.

(a) Arithmetic Circuit (b) Tree (c) Human Proteins

Figure 6: Test log-likelihood as a function of `1-penalization for affine normalizers. The red horizontal line is the average
result when given a prescribed topology, the green horizontal line is the result with an autoregressive conditioner.

(a) Arithmetic Circuit (b) Tree (c) Human Proteins (d) 8 Pairs

for the autoregressive conditioner it corresponds to the architecture of the masked autoregressive network. The
output of this network is equal to 2 (2 ⇥ d for the autoregressive conditioner) when combined with an affine
normalizer and to an hyper-parameter named embedding size when combined with a UMNN. The number of
dual steps corresponds to the number of epochs between two updates of the DAGness constraint (performed as
in Yu et al. [2019]).

Dataset POWER GAS HEPMASS MINIBOONE BSDS300

Batch size 2500 10000 100 100 100

Integ. Net 3 ⇥ 100 3 ⇥ 200 3 ⇥ 200 3 ⇥ 40 3 ⇥ 150

Embedd. Net 3 ⇥ 60 3 ⇥ 80 3 ⇥ 210 3 ⇥ 430 3 ⇥ 630

Embed. Size 30 30 30 30 30

Learning Rate 0.001 0.001 0.001 0.001 0.001

Weight Decay 10�5 10�3 10�4 10�2 10�4

�`1
0 0 0 0 0

Table 6: Training configurations for density estimation tasks.

In addition, in all our experiments (tabular and MNIST) the integrand networks used to model the monotonic
transformations have their parameters shared and receive an additional input that one hot encodes the index
of the transformed variable. The models are trained until no improvement of the average log-likelihood on the
validation set is observed for 10 consecutive epochs.

E Density estimation of images

We now demonstrate how graphical conditioners can be used to fold in domain knowledge into NFs by per-
forming density estimation on MNIST images. The design of the graphical conditioner is adapted to images
by parameterizing the functions hi with convolutional neural networks (CNNs) whose parameters are shared
for all i 2 {1, ..., d} as illustrated in Fig. 7. Inputs to the network hi are masked images specified by both
the adjacency matrix A and the entire input image x. Using a CNN together with the graphical conditioner
allows for an inductive bias suitably designed for processing images. We consider single step normalizing flows
whose conditioners are either coupling, autoregressive or graphical-CNN as described above, each combined with
either affine or monotonic normalizers. The graphical conditioners that we use include an additional inductive

Antoine Wehenkel, Gilles Louppe

x Ai,:

Masking operation from the adjacency matrix. CNN

ci(x)

Figure 7: Illustration of how a graphical conditioner’s output ci(x) is computed for images. The sample x, on the left,
is an image of a 4. The stripes denote the pixel xi. The parents of xi in the learned DAG are shown as white pixels on the
mask Ai,:, the other pixels are in black. The element-wise product between the image x and the mask Ai,: is processed
by a convolutional neural network that produces the embedding vector ci(x) conditioning the pixel xi.

Model Neg. LL. Parameters Edges Depth

(a)
G-Affine (1) 1.81±.01 1⇥106 5016 103

G-Monotonic (1) 1.17±.03 1⇥106 2928 125

(b)

A-Affine (1) 2.12±.02 3⇥106 306936 783

A-Monotonic (1) 1.37±.04 3.1⇥106 306936 783

C-Affine (1) 2.39±.03 3⇥106 153664 1

C-Monotonic (1) 1.67±.08 3.1⇥106 153664 1

(c)
A-Affine (5) 1.89±.01 6⇥106 5⇥306936 5⇥783

A-Monotonic (5) 1.13±.02 6.6⇥106 5⇥306936 5⇥783

Table 7: Results on MNIST. The negative log-likelihood
is reported in bits per pixel on the test set over 3 runs
on MNIST, error bars are equal to the standard devia-
tion. The number of edges and the depth of the equivalent
Bayesian network is reported. Results are divided into 3
categories: (a) The architectures introduced in this work.
(b) Classical single-step architectures. (c) The best per-
forming architectures based on multi-steps autoregressive
flows.

Figure 8: The in (a) and out (b) degrees of the nodes in
the equivalent BN learned in the MNIST experiments.

bias that enforces a sparsity constraint on A and which prevents a pixel’s parents to be too distant from their
descendants in the images. Formally, given a pixel located at (i, j), only the pixels (i± l1, j± l2), l1, l2 2 {1, ..., L}
are allowed to be its parents. In early experiments we also tried not constraining the parents and observed slower
but successful training leading to a relevant structure.

Results reported in Table 7 show that graphical conditioners lead to the best performing affine NFs even if
they are made of a single step. This performance gain can probably be attributed to the combination of both
learning a masking scheme and processing the result with a convolutional network. These results also show that
when the capacity of the normalizers is limited, finding a meaningful factorization is very effective to improve
performance. The number of edges in the equivalent BN is about two orders of magnitude smaller than for
coupling and autoregressive conditioners. This sparsity is beneficial for the inversion since the evaluation of the
inverse of the flow requires a number of steps equal to the depth [Bezek, 2016] of the equivalent BN. Indeed, we
find that while obtaining density models that are as expressive, the computation complexity to generate samples
is approximately divided by 5⇥784

100 ⇡ 40 in comparison to the autoregressive flows made of 5 steps and comprising
many more parameters.

These experiments show that, in addition to being a favorable tool for introducing inductive bias into NFs,
graphical conditioners open the possibility to build BNs for large datasets, unlocking the BN machinery for
modern datasets and computing infrastructures.

Graphical Normalizing Flows

F MNIST density estimation - Training parameters

For all experiments the batch size was 100, the learning rate 10�3, the weight decay 10�5. For the graphical
conditioners the number of epochs between two coefficient updates was chosen to 10, the greater this number
the better were the performance however the longer is the optimization. The CNN is made of 2 layers of 16
convolutions with 3 ⇥ 3 kernels followed by an MLP with two hidden layers of size 2304 and 128. The neural
network used for the Coupling and the autoregressive conditioner are neural networks with 3 ⇥ 1024 hidden
layers. For all experiments with a monotonic normalizer the size of the embedding was chosen to 30 and the
integral net was made of 3 hidden layers of size 50. The models are trained until no improvements of the average
log-likelihood on the validation set is observed for 10 consecutive epochs.

	Introduction
	Background
	Normalizing flows as Bayesian networks
	Graphical normalizing flow
	Graphical conditioners
	Learning the topology
	Stochastic adjacency matrix
	Optimization

	Experiments
	On the importance of graph topology
	Density estimation benchmark

	Discussion
	Optimization procedure
	Jacobian of graphical conditioners
	Experiments on topology learning
	Neural networks architecture
	Dataset description
	Additional experiments

	Tabular density estimation - Training parameters
	Density estimation of images
	MNIST density estimation - Training parameters

