
Goodness-of-Fit Test for Mismatched Self-Exciting Processes

A Mixing of two Hawkes processes

We first present a useful lemma, which provides the proof for full model case (i.e. under H1). Another equivalent
definition of conditional intensity λ(t|Ht) for a counting process {N(t) : t ≥ 0} with history Ht (t ≥ 0) is

P(N(t+ h)−N(t) = m|Ht) =

 λ(t|Ht)h+ o(h), m = 1
o(h), m > 1
1− λ(t|Ht)h+ o(h), m = 0

We will make use of this definition to prove the following lemma.
Lemma A.1. Suppose we have n Hawkes processes {Nz(t) : t ≥ 0} (z = 1, 2, . . . , n) with conditional intensity
specified by (1). Define the mixing to be N(t) =

∑n
z=1Nz(t). The conditional intensity of mixing of n Hawkes

processes is sum of those n conditional intensities. That is,

λ(t|Ht) =

n∑
z=1

λz(t|Hz,t),

where Ht = ∪nz=1 Hz,t.

Proof of Lemma A.1. We prove by the definition of conditional intensity. For any non-negative integer m ∈ Z+,
denote

::
m = (m1, . . . ,mn) and M = {

::
m | m1 + · · ·+mn = m, mi ∈ Z+},

P(N(t+ h)−N(t) = m|Ht) =
∑

::
m∈M

n∏
i=1

P(Ni(t+ h)−Ni(t) = mi|Hi,t).

Case 1: When m > 1, it is easy to see P(N(t+ h)−N(t) = m|Ht) = o(h), since either there are at least two
mi’s ≥ 1 or at least one mi ≥ 2.

Case 2: When m = 1, there will be one and only one of all mi’s taking value 1 and the rest will be all zeros.
Thus, we have

P(N(t+ h)−N(t) = 1|Ht)

=

n∑
j=1

P(Nj(t+ h)−Nj(t) = 1|Hj,t)
n∏
i 6=j

P(Ni(t+ h)−Ni(t) = 0|Hi,t)

=

n∑
j=1

(λj(t|Hj,t)h+ o(h))

n∏
i6=j

(1− λi(t|Hi,t)h+ o(h)) =

n∑
j=1

λj(t|Hj,t)h+ o(h).

Case 3: When m = 0, all mi’s will be zeros and we will have

P(N(t+ h)−N(t) = 0|Ht) =

n∏
i=1

P(Ni(t+ h)−Ni(t) = 0|Hi,t)

=

n∏
j=1

(1− λi(t|Hi,t)h+ o(h)) = 1−
n∑
i=1

λj(t|Hj,t)h+ o(h).

Let λ(t|Ht) =
∑n
i=1 λi(t|Hi,t), and we will find out this is the conditional intensity for N(t).

Proof of Proposition 1. We can see under the alternative hypothesis, the result directly follows Lemma A.1.
Under null hypothesis, by Lemma A.1, it is easy to show N(t) defined in Proposition 1 has intensity

λ(t|Ht) = µ(1) + µ(2) +

∫ t

0

φ(t− u)d(N1(u) +N2(u)) = µ+

∫ t

0

φ(t− u)dN(u),

where Ht = H1,t ∪H2,t.

By the definition of Hawkes Process in Section 2, we can see the mixing of two Hawkes processes under H0 is still
a Hawkes process. We complete the proof.
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B A non-parametric estimation of the Quasi-conditional intensity

B.1 Probability Weighted Histogram Estimation under null hypothesis

Here, we redefine the Quasi-parameter as θ = (µ, α(1), g
(1)
1 , . . . , g

(1)
n0 , α

(2), g
(2)
1 , . . . , g

(2)
n0 ), where µ , µ(1) + µ(2).

This is because we will estimate the triggering magnitude and the temporal triggering function separately.

The full model Quasi-parameter space is given by

Θ =
{
θ
∣∣ µ > 0 and

∫ ∞
0

φ(z)(u)du =

∫ ∞
0

α(z)g(z)(u)du = α(z) < 1 (z = 1, 2)
}
.

Under H0, we have

θ0 ∈ Θ0 = {θ ∈ Θ | α(1) = α(2) = α and g
(1)
k = g

(2)
k = gk (k = 1, . . . , n0)}.

Denote Ht = H1,t ∪H2,t = {t1, . . . , tN}. Define the branching structure as follows:

pij =

 probability event i is triggered by event j, i > j
probability event i comes from background, i = j
0, i < j

Apparently, we want to estimate the Quasi-background intensity from background process only and Quasi-
triggering function from the triggered events only. Instead of using a hard-threshold indicator, Zhuang et al.
(2002) used a stochastic declustering procedure to separate the background events from triggered ones by assigning
each event a weight, or rather the probability that this event comes from background or is direct offspring from an
individual ancestor. Then, we can use a probability weighted estimator to estimate Quasi-background intensity
and Quasi-triggering function. The algorithm is as follows:

Assume we have estimated branching structure p(v)
ii at iteration v, then we can estimate the Quasi-background

intensity as follows:

µ(v) =
1

T

N∑
i=1

p
(v)
ii . (4)

For the Quasi-triggering component, as we assume g to be a p.d.f., we can estimate the magnitude of triggering
effect from triggered events only:

α(v) = 1−
N∑
i=1

p
(v)
ii /N. (5)

For the temporal component in the Quasi-triggering function, for each bin (as we discretize in (2)), we estimate
its parameter from those triggered events which falls into that bin, i.e.

g
(v)
k =

∑
Bk
p

(v)
ij

∆tk
∑N
i=1

∑i−1
j=1 p

(v)
ij

, (k = 1, . . . , n0). (6)

After estimating the Quasi-conditional intensity function, we update the branching structure. More specifically,
for i > j:

p
(v+1)
ij = P(i-th event is triggered by j-th event|Hti) =

α(v)g(v) (ti − tj)
µ(v) +

∑i−1
j=1 α

(v)g(v) (ti − tj)
, (7)

p
(v+1)
ii = P(i-th event comes from background|Hti) =

µ(v)

µ(v) +
∑i−1
j=1 α

(v)g(v) (ti − tj) .
(8)

We summarize the algorithm as follows:
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Algorithm 2 Probability Weighted Histogram Estimation of Quasi-log-likelihood under H0

Initialize: choose stopping critical value ε (e.g. 10−3), initialize p(0)
ij and set p(−1)

ij = ε + p
(0)
ij and iteration

index v = 0.
while maxi>j

∣∣∣p(v)
ij − p

(v−1)
ij

∣∣∣ < ε do
1. Estimate Quasi-background rate µ as in (4).
2. Estimate Quasi-triggering components magnitude α and temporal g(t) as in (5) and (6).
3. Update probabilities p(v+1)

ij ’s as in (7) and (8).
4. v ← v + 1

end while

B.2 EM-type algorithm derivation

In Fox et al. (2016), they assumed the ground-truth takes piecewise constant form (2) and demonstrated that
algorithm 2 is an EM-type algorithm under (2) by using complete data log-likelihood. However, they did not
explicitly show the E-step also maximizes the complete data log-likelihood (or rather complete data Quasi-log-
likelihood in our setting). We will first lower bound the Quasi-log-likelihood and then show that the algorithm
iterates between maximizing this lower bound w.r.t. branching structure (pij ’s) and w.r.t. the Quasi-conditional
intensity (Quasi-background rate µ, Quasi-triggering magnitude α and temporal Quasi-triggering function g).

First recall the Quasi-log-likelihood function under H0:

`0(θ) = −µT +

N∑
i=1

log

µ+
∑
i>j

φ (ti − tj)

− N∑
j=1

∫ T

tj

φ (t− tj) dt

We can simplify the last term above by using integral approximation of Schoenberg (2013):

N∑
j=1

∫ T

tj

φ (ti − tj) dt =

N∑
j=1

∫ T

tj

αg (t− tj) dt ≈
N∑
j=1

α

∫ ∞
tj

g (t− tj) dt = αN

Thus we can ignore the last term when maximizing the log-likelihood function. Next, we lower bound the first
term in the Quasi-log-likelihood function by Jensen’s inequality:

N∑
i=1

log

µ+
∑
i>j

φ (ti − tj)

 =
N∑
i=1

log

pii µ
pii

+
∑
i>j

pij
φ (ti − tj)

pij


≥

N∑
i=1

pii log

(
µ

pii

)
+
∑
i>j

pij log

(
φ (ti − tj)

pij

)
,

where pij ’s satisfy
∑
i≥j pij = 1. Then we can get a lower bound on the approximation of Quasi-log-likelihood

under the piecewise constant parameterization:

−αN − Tµ+

N∑
i=1

[
pii log (µ) +

∑
i>j

pij

(
logα+ log

( n0∑
k=1

gk1Bk
(ti − tj)

))
−
∑
i≥j

pij log(pij)

]

Denote this lower bound by ˜̀(θ). We maximize this lower bound under the following constraints:

n0∑
k=1

gk∆tk = 1, (g(t) is a p.d.f.)∑
i≥j

pij = 1, (pij ’s are probability weights)



Wei, Zhu, Zhang, Xie

By adding Lagrange multipliers, this is equivalent to maximizing the following objective:

L̃ =

N∑
i=1

[
pii log (µ) +

∑
i>j

pij

(
logα+ log

( n0∑
k=1

gk1Bk
(ti − tj)

))
−
∑
i≥j

pij log(pij)

]

− αN − Tµ− c1
(

n0∑
k=1

gk∆tk − 1

)
−

N∑
i=1

c
(i)
2

∑
i≥j

pij − 1

 .

M-step: By taking first order derivative w.r.t. µ and setting it to zero, we will have:

∂L̃

∂µ
=

N∑
i=1

(
pii
µ

)
− T = 0.

Solving for µ and we will get

µ =

∑N
i=1 pii
T

,

which is the same as the update in step 1 in Algorithm 2. This means when we have p(v)
ij ’s at iteration v, the

update in step 1 in Algorithm 2 leads to a larger Quasi-log-likelihood value. Similarly taking derivative w.r.t. α
and setting it to zero leads to the update in step 2: α(v) = 1−∑N

i=1 p
(v)
ii /N .

∂L̃

∂gk
=

N∑
i=1

∑
i>j

(
pij1Bk

(ti − tj)
gk

)
− c1∆tk = 0

∂L̃

∂c1
= 1−

n0∑
k=1

gk∆tk = 0

We can solve for gk and c1 by some simple algebra and then get the update for gk at iteration v (given p(v)
ij ’s) :

g
(v)
k =

∑N
i=1

∑
i>j p

(v)
ij 1Bk

(ti − tj)
∆tk

∑N
j=1

∑
i>j p

(v)
ij

.

E-step: As for pij ’s, denote

log φij = logα+ log

(
n0∑
k=1

gk1Bk
(ti − tj)

)
.

Repeat the similar procedure, we will get:

∂L̃

∂pij
= − log(pij)− 1− c(i)2 + log φij = 0

∂L̃

∂pii
= − log(pii)− 1− c(i)2 + logµ = 0

∂L̃

∂c
(i)
2

=
∑
i≥j

pij − 1 = 0

By the first two equations we have
pii
pij

=
µ

φij
.

Plug this back into the last equation and we will get the update in step 3 in Algorithm 2. Thus, we validate
Algorithm 2 as an EM-type algorithm.
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C Explicit form of GS statistic

Note that φ(z)(u) =
∑n0

k=1 φ
(z)
k 1Bk

(u). To simplify the explicit expressions, we first define the following notations:

G(i, z′; z) =

Nz′∑
j=1

φ(z)(t
(z′)
i − t(z)j ),

G′k(i, z′; z) =

Nz′∑
j=1

1Bk
(t

(z′)
i − t(z)j )

∆z,i = µ+G(i, z; z) +G(i, z; z′)

Here, G(i, z′; z) represents the triggering effect of events in process z to i−th event in process z′. G′k(i, z′; z) is
the partial derivative of G(i, z′; z) w.r.t. φ(z)

k .

Note that φ(z)(·) and 1Bk
(·) (k = 1, 2, . . . , n0) take value zero on (−∞, 0]. Thus we have

∑
j<i

φ(z)(t
(z)
i − t

(z)
j ) =

Nz∑
j=1

φ(z)(t
(z)
i − t

(z)
j ),

which can be denoted by G(i, z; z) we just defined. By our notations, the Quasi-log-likelihood takes the following
form:

`1(µ, φ(1), φ(2)|Ht) = −µ T +

2∑
z=1

Nz∑
i=1

log ∆z,i −
∫ T−t(z)i

0

φ(z)(u)du,

where (µ, φ(1), φ(2)) = (µ, φ
(1)
1 , . . . , φ

(1)
n0 , φ

(2)
1 , . . . , φ

(2)
n0 ). Those parameters are denoted by θ to simplify the

notations. To get the explicit form of GS statistic, we only need to calculate the first two order partial derivative
of `1(µ, φ(1), φ(2)|Ht) w.r.t. θ.

First order partial derivatives:

∂`1(µ, φ(1), φ(2)|Ht)
∂µ

=

2∑
z=1

Nz∑
i=1

1

∆z,i
− T,

∂`1(µ, φ(1), φ(2)|Ht)
∂φ

(z)
k

=

Nz∑
i=1

G′k(i, z; z)

∆z,i
+

Nz′∑
i=1

G′k(i, z′; z)
∆z′,i

−
Nz∑
i=1

∫ T−t(z)i

0

1Bk
(u)du.

Here, we get the explicit expression for ST (θ) and AT (θ).

Second order partial derivatives:

∂2`1(µ, φ(1), φ(2)|Ht)
∂µ2

=−
2∑
z=1

Nz∑
i=1

1

∆2
z,i

∂2`1(µ, φ(1), φ(2)|Ht)
∂(φ

(z)
k )2

=−
Nz∑
i=1

(
G′k(i, z; z)

∆z,i

)2

−
Nz′∑
i=1

(
G′k(i, z′; z)

∆z′,i

)2

∂2`1(µ, φ(1), φ(2)|Ht)
∂µ∂φ

(z)
k

=−
Nz∑
i=1

G′k(i, z; z)

∆2
z,i

+

Nz′∑
i=1

G′k(i, z′; z)
∆2
z′,i

∂2`1(µ, φ(1), φ(2)|Ht)
∂φ

(z)
k ∂φ

(z′)
l

=−
Nz∑
i=1

G′l(i, z; z
′)G′k(i, z; z)

∆2
z,i

+

Nz′∑
i=1

G′l(i, z
′; z′)G′k(i, z′; z)

∆2
z′,i

∂2`1(µ, φ(1), φ(2)|Ht)
∂φ

(z)
k ∂φ

(z)
l

=−
Nz∑
i=1

G′k(i, z; z)G′l(i, z; z)
∆2
z,i

+

Nz′∑
i=1

G′k(i, z′; z)G′l(i, z
′; z)

∆2
z′,i
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D Asymptotic properties of QMLE and GS test

D.1 Identifiability of the estimand and justification of our testing framework

Proof of Identifiability. One can verify that for each specific sample trajectory HT , `1(θ|HT ) is composed of two
parts: a linear function of θ plus several logarithm of a linear function of θ. This means that `1(θ|HT ) is concave
in θ. We will use a very simple example to elaborate on this.

Suppose we only have 3 events HT = {t(1)
1 , t

(2)
1 , t

(1)
2 }, where T = t

(1)
2 . Then

`1(θ|HT ) =− µT −
n0∑
k=1

φ
(1)
k

∫ T−t(1)1

0

1Bk
(u)du−

n0∑
k=1

φ
(2)
k

∫ T−t(2)1

0

1Bk
(u)du

+ logµ+ log(µ+ φ
(1)
k1

) + log(µ+ φ
(1)
k2

+ φ
(2)
k3

),

where k1, k2, k3 are the indices of the bins which t(2)
1 − t

(1)
1 , t

(1)
2 − t

(1)
1 , t

(1)
2 − t

(2)
1 fall into, respectively. Note that∫ t

0
1Bk

(u)du is the length of the intersection of [0, t] and Bk, which is a constant. Thus, it is easy to see from the
example that `1(θ|HT ) is concave in θ for any fixed trajectory.

Next, we can show that `1(θ|HT ) will remain the same for sample trajectories that are "close" to each other. In
the simple example above, as long as t(2)

1 − t
(1)
1 , t

(1)
2 − t

(1)
1 , t

(1)
2 − t

(2)
1 remain in bins Bk1 , Bk2 , Bk3 , the value of the

corresponding `1(θ|HT ) will not change. For fixed number of events N , we call all trajectories with N events
that corresponds to the same Quasi-log-likelihood value a case. It is easy to see the number of all cases for fixed
number of events N is countable. Then the expectation taken w.r.t. all possible trajectories will reduce to a
countablely infinite summation. That is

E[`1(θ|HT )] =
∑
i

`1,i(θ)pi,

where pi is the probability of all sample trajectories such that `1(θ|HT ) ≡ `1,i(θ). Note that we just show `1,i(θ)
is concave in θ. Thus the objective is a linear combination of concave functions. This means θ0 actually solves a
concave program. It is a unique maximizer of the expected Quasi-log-likelihood, i.e. globally identifiable. We
have a well-defined estimand here.

Justification of our testing framework. By adopting the view in Akaike (1998), in (3) we are actually trying to find
a θ0 ∈ Θ whose corresponding Quasi-likelihood has a minimum K-L divergence with the unknown ground-truth
λ∗.

As is suggested in Akaike (1998), we can view this as a statistical decision problem where the loss function is
log λ∗/λθ. For the simple example above, the loss function can be expressed by

(µ− µ∗)T +

n0∑
k=1

∫ T−t(1)1

0

(φ
(1)
k − φ∗(1)(u))1Bk

(u)du+

n0∑
k=1

∫ T−t(2)1

0

(φ
(2)
k − φ∗(2)(u))1Bk

(u)du

+ log(µ∗/µ) + log
µ∗ + φ∗(1)(t

(2)
1 − t

(1)
1 )

µ+ φ
(1)
k1

+ log
µ∗ + φ∗(1)(t

(1)
2 − t

(1)
1 ) + φ∗(2)(t

(1)
2 − t

(2)
1 )

µ+ φ
(1)
k2

+ φ
(2)
k3

,

Taking all possible sample trajectories into account, when φ∗(1) = φ∗(2), apparently we will achieve minimum risk
when θ0 ∈ Θ0.

D.2 Proof of Lemma 1: consistency and asymptotic normality of QMLE

Proof. We will provide a generalization of the asymptotic properties MLEs under correct model specification for
temporal Hawkes process in Ogata (1978) to model misspecification (or model mismatch) case.

We first show that the assumptions in Ogata (1978) hold for our Quasi-conditional intensity function.

(A) Since under our parameterization (2), we have
∫∞

0
αg(t)dt = α < 1, our point process model is stationary

and ergodic. It is easy to check assumptions (A1) ∼ (A3).
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(B) The Quasi-conditional intensity function we consider here is actually linear w.r.t. the parameters, then
it is arbitrarily order continuous differentiable (i.e. smooth) and bounded within any compact set in the
Quasi-parameter space. Assumptions (B1) ∼ (B7) hold trivially.

(C) By (2), the Quasi-temporal triggering function is truncated on [0, T0], which means and complete data
conditional intensity function λ(t|H−∞,t) will be exactly the same as λ(t|H0,t) as long as t > T0. Since Assumptions
(C1) ∼ (C4) only require stochastic approximations of λ(t|H0,t) to λ(t|H−∞,t) when t goes to infinity, it is easy
to see those assumptions are satisfied.

Next, since our parametric form (2) is only approximation to the true one, we need to slightly modify the
theoretical results in Ogata (1978) for our QMLE. Here we will not mention theorems or lemmas that we do not
need to modify under model mismatch (except that we should keep in mind that the "true" parameter in Ogata
(1978) is understood as the maximizer of Quasi-likelihood) and it is easy to verify those theoretical results (from
the beginning to Theorem 5) by just following the proof therein.

Before we proceed to the proof, we should note that the QMLE is θ̂QMLE under H0 and θ̃QMLE under H1. Under
H1 : θ0 6∈ Θ0, the estimator θ̃QMLE is obtained using the full model conditional intensity `1 instead of `0. The
estimation is given in Algorithm 3 in Appendix E.

For simplicity, we denote θ̄QMLE to be θ̂QMLE and θ̃QMLE under H0 and H1, respectively. That is,

θ̄QMLE =

{
θ̂QMLE , H0 is true
θ̃QMLE , H1 is true

Modifications on Theorem 1. Here θ0 is not the true parameter of the true conditional intensity function.
Instead, it is the maximizer of Quasi-log-likelihood, i.e. our approximation to the true log-likelihood function. By
the definition of θ0 and stationarity of the process, the first result still in this theorem still holds:

∂E
[
`1(θ|Ht)

]
∂θ

∣∣∣∣
θ=θ0

= 0.

However, the second result does not hold unless our approximation is indeed a correct specification of the model.
More specifically, in general,

dN(t) = λ∗(t|Ht)dt 6= λ(t|Ht)dt,
where λ∗ is the correct parametric form and typically unknown in practice.

Thus, we have

E
[
∂`1(θ|Ht)

∂θi

∂`1(θ|Ht)
∂θj

]∣∣∣∣∣
θ=θ0

6= −E
[
∂2`1(θ|Ht)
∂θi∂θj

]∣∣∣∣∣
θ=θ0

.

Using our notation, this can be re-expressed as A(θ0) 6= B(θ0).

Modifications on Theorem 2. The convergence in our case is much stronger. By following the proof in Fox
et al. (2016), the convergence in probability comes from Assumptions (C), where the convergence in the stochastic
approximation is only in probability sense. However, we just show that the stochastic approximation holds
for every sample path as long as t > T0 based on our parameterization (2) that the Quasi-temporal triggering
function is truncated, i.e. our convergence is in almost surely sense. Thus, we have:

θ̄QMLE
a.s.→ θ0 as T →∞.

Modifications on Theorem 4. Since A(θ0) 6= B(θ0), the convergence result should be

1√
T

∂`1(θ|HT )

∂θ

∣∣∣∣
θ=θ0

d→ N(0, A(θ0)) as T →∞.

This is because
E
[
∂`1(θ|H1)

∂θ

∂`1(θ|H1)

∂θᵀ

]
= A(θ0) 6= B(θ0),
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where the first equality comes from definition and stationarity of the process.

Modifications on Theorem 5. By the proof of this theorem one can reach this result:
√
T (θ̄QMLE − θ0)

d→ N
(

0, B−1(θ0)A(θ0)B−1(θ0)
)

as T →∞.

Again, since A(θ0) 6= B(θ0), the asymptotic covariance matrix is not B−1(θ0) and that’s the modification here.
Besides, the asymptotic χ2 distribution of log-likelihood ratio does not hold because of the model mismatch.

Here, we complete the proof.

D.3 Proof of Theorem 1: asymptotic distribution under null hypothesis

This proof is highly involved. To help better understand this proof, we first provide a high level sketch on why
our GS statistic follows a χ2 distribution.

Proof Sketch. θ̂QMLE solves the following problem

max
θ∈Θ

`1(θ|HT ) s.t. h(θ) = 0.

By adding Lagrange Multiplier ζT , we can derive that θ̂QMLE satisfies:

∇`1(θ̂QMLE |HT ) + ζᵀT∇h(θ̂QMLE) = ST (θ̂QMLE) + ζᵀT∇h(θ̂QMLE) = 0. (9)

Following idea in Boos (1992), we can use Taylor expansion to expand ST (θ0) about θ̂QMLE and h(θ̂QMLE) about
θ0 (note that we have h(θ0) = 0 under H0):

ST (θ̂QMLE) = ST (θ0)−BT (θ̂QMLE)(θ̂QMLE − θ0) + o(1),

0 = h(θ̂QMLE) = h(θ0) +∇h(θ0)(θ̂QMLE − θ0) + o(1).

Note that by our notation ∇h(θ) = H(θ). Since h(θ) is linear in θ, its gradient is a constant matrix and we can
denote H = ∇h(θ).

Pre-multiply the first equation above by Hᵀ
(
HB−1

T (θ)Hᵀ
)−1

HB−1
T (θ)

∣∣∣∣
θ=θ̂QMLE

Hᵀ
(
HB−1

T (θ)Hᵀ
)−1

HB−1
T (θ)ST (θ0)

∣∣∣∣
θ=θ̂QMLE

= B
1
2

T (θ)

(
B
− 1

2

T (θ)Hᵀ
(
HB−1

T (θ)Hᵀ
)−1

HB
− 1

2

T (θ)

)
B
− 1

2

T (θ)ST (θ)

∣∣∣∣
θ=θ̂QMLE

+ o(1).

The matrix in the middle of RHS is a projection matrix for the column space of B−
1
2

T (θ̂QMLE)Hᵀ, and from (9)
we know B

− 1
2

T (θ̂QMLE)ST (θ̂QMLE) is already in this space. This means the RHS is exactly ST (θ̂QMLE) and we
will get:

ST (θ̂QMLE) = Hᵀ
(
HB−1

T (θ0)Hᵀ
)−1

HB−1
T (θ0)ST (θ0) + o(1).

Rewrite GS statistic as
ĜST =

1√
T
Sᵀ
T (θ̂QMLE)

(
T Σ̂−1

) 1√
T
ST (θ̂QMLE).

By Lemma 1, one can verify ST (θ̂QMLE)/
√
T has a asymptotic normal distribution with T Σ̂−1 being a consistent

estimator of generalized inverse of its asymptotic covariance matrix.

Since H is of rank r, we verify that ĜST ∼ χ2
r.

Next, we present a more rigorous proof following the method in White (1982).
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Proof. We first state some useful results:

By the almost surely convergence of QMLE (modifications of Theorems 2 and 5 in Ogata (1978)), we have that

1

T
AT (θ̂QMLE)

a.s.→ A(θ0) as T →∞
1

T
BT (θ̂QMLE)

a.s.→ B(θ0) as T →∞.

The modification of Theorem 1 in Ogata (1978) can be re-expressed as S(θ0) = 0.

The modification of Theorem 4 in Ogata (1978) can be re-expressed as follows

1√
T
ST (θ0)

d→ N
(

0, A(θ0)
)

as T →∞,

where ST is the Quasi-score function (i.e. first order gradient of Quasi-log-likelihood function).

Under null hypothesis, the asymptotic χ2 distribution of GS statistic under model mismatch (e.g. Theorem 3.5.
in White (1982) and Section 4.2. in Boos (1992)) can be extended to temporal Hawkes process.

The QMLE actually solves the following optimization problem:

max
θ∈Θ0

`0(θ|HT ).

Since `1(θ) = `0(θ) (∀θ ∈ Θ0), equivalently it can be re-expressed as

max
θ∈Θ0

`1(θ|HT ),

or
max
θ∈Θ

`1(θ|HT ) s.t. h(θ) = 0.

We can reformulate this by adding Lagrange Multiplier ζT :

max
θ∈Θ

1

T
`1(θ|HT ) + ζᵀTh(θ).

Since h as well as ∇h both has full row rank r, by Lagrange Multiplier Theorem (e.g. Theorem 42.9 in Bartle
(1976)), we can guarantee the existence of ζT , which satisfies:

1

T
∇`1(θ̂QMLE |HT ) +

(
∇h(θ̂QMLE)

)ᵀ
ζT = 0, (10)

h(θ̂QMLE) = 0.

We denote ST (θ) = ∇`1(θ|HT ). By the mean-value theorem for random functions (Lemma 3 in Jennrich (1969)),
we have:

ST (θ̂QMLE) = ST (θ0) +BT (θ̄)(θ̂QMLE − θ0), (11)

0 = h(θ̂QMLE) = h(θ0) +∇h(θ̃)(θ̂QMLE − θ0), (12)

where θ̃ and θ̄ lies on the segment joining θ̂QMLE and θ0. Since θ̂QMLE converges to θ0 almost surely, θ̃ and θ̄
both converge to θ0 almost surely.

Under H0: θ0 ∈ Θ0, we have h(θ0) = 0. Plug this back into the mean-value expansion (12) we will get:

∇h(θ̃)
√
T (θ̂QMLE − θ0) = 0. (13)

Multiply (10) by
√
T and plug the mean-value expansion (11) into it, we will get:

1√
T
ST (θ0) +

1

T
BT (θ̄)

√
T (θ̂QMLE − θ0) +

√
T
(
∇h(θ̂QMLE)

)ᵀ
ζT = 0, (14)
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Since BT (θ̄)/T
a.s.→ B(θ0), the non-singularity of BT (θ̄) directly follows Assumption (B6) in Ogata (1978) for

sufficiently large T . Pre-multiplying (14) by ∇h(θ̃)B−1
T (θ̄) and plug (13) into it, we will get:

0 =∇h(θ̃)B−1
T (θ̄)

(
1√
T
ST (θ0) +

1

T
BT (θ̄)

√
T (θ̂QMLE − θ0) +

√
T
(
∇h(θ̂QMLE)

)ᵀ
ζT

)
=∇h(θ̃)B−1

T (θ̄)
1√
T
ST (θ0) +∇h(θ̃)B−1

T (θ̄)
(
∇h(θ̂QMLE)

)ᵀ√
TζT .

Note that for our testing problem, since h(θ) is linear in θ, ∇h(θ) does not depend on θ and has full row rank
r. We denote this by H. It is easy to verify that HB−1

T (θ̄)Hᵀ is non-singular for sufficiently large T . Thus,
pre-multiply (HB−1

T (θ̄)Hᵀ)−1 and rearrange the terms, we will get:

√
TζT = −

(
HB−1

T (θ̄)Hᵀ
)−1

HB−1
T (θ̄)

1√
T
ST (θ0).

Note that we have shown that ST (θ0)/
√
T is asymptotically normally distributed with covariance matrix A(θ0),

thus we will have

√
TζT

d→ N

(
0,
(
HB−1(θ0)Hᵀ

)−1

HB−1(θ0)A(θ0)B−1(θ0)Hᵀ
(
HB−1(θ0)Hᵀ

)−1
)
. (15)

We denote this covariance matrix by Q(θ0).

Denote

√
T ζ̃T (θ) = −

(
HB−1

T (θ)Hᵀ
)−1

HB−1
T (θ)

1√
T
ST (θ). (16)

By 2c.4(x.a) in Rao et al. (1973), we will have

√
TζT −

√
T ζ̃T (θ0)

p→ 0.

Meanwhile, by pre-multiplying (10) by
(
HB−1

T (θ̂QMLE)Hᵀ
)−1

HB−1
T (θ̂QMLE) (again the non-singularity holds

for sufficiently large T ), we will have √
TζT =

√
T ζ̃T (θ̂QMLE).

Thus, by (15), we have when T →∞,
√
T ζ̃T (θ̂QMLE)

d→ N
(

0, Q(θ0)
)
.

We can easily re-write GS statistic ĜST as a quadratic form of score function ST (θ̂QMLE). By the notation we
just defined in (16) we will have:

ĜST =
√
T ζ̃ᵀT (θ)HB−1(θ)Hᵀ

(
HB−1(θ)

AT (θ)

T
B−1(θ0)Hᵀ

)−1

HB−1(θ)Hᵀ
√
T ζ̃T (θ)

∣∣∣∣∣
θ=θ̂QMLE

,

where the matrix in the middle

HB−1(θ)Hᵀ

(
HB−1(θ)

AT (θ)

T
B−1(θ0)Hᵀ

)−1

HB−1(θ)Hᵀ

∣∣∣∣∣
θ=θ̂QMLE

is a consistent estimator of Q(θ0), since θ̂QMLE converges to θ0 almost surely.

By Lemma 3.3 in White (1980), we can verify the asymptotic χ2 distribution of our GS statistic.
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D.4 Proof of Theorem 2: asymptotic power under alternative hypothesis

Proof. We make use of the Generalized Wald (GW) test statistic here, which is asymptotically equivalent to GS
statistic under both H0 and H1. More specifically, by 2c.4(xiv) in Rao et al. (1973) (or Theorem 1 in 13.6 in
Engle (1984)),

ĜST − ĜWT
p→ 0,

where ĜWT is the GW test statistic. We define it as follows:

ĜWT = h(θ)ᵀ
(
H(θ)B−1

T (θ)AT (θ)B−1
T (θ)H(θ)ᵀ

)−1

h(θ)

∣∣∣∣
θ=θ̃QMLE

, (17)

where θ̃QMLE is QMLE under H1.

As we have mentioned above, h(θ) is linear in θ, thus its first order gradient is a constant matrix, i.e. H(θ) = H.
More specifically, h(θ) = Hθ. Then it is not hard to verify the asymptotic normal distribution of h(θ̃QMLE) based
on asymptotically normality of θ̃QMLE . That is

√
T
(
h(θ̃QMLE)− h(θ0)

)
d→ N

(
0, HB−1(θ0)A(θ0)B−1(θ0)Hᵀ

)
as T →∞.

Then the noncentral χ2 distribution of ĜWT as well as ĜST directly follow.

Since

θᵀ0H
ᵀHθ0 =

(
α(1) − α(2)

)2

+

n0∑
k=1

(
g

(1)
k − g

(2)
k

)2

= ‖φ(1) − φ(2)‖22,

and H is of rank r, the noncentrality parameter is T‖φ(1) − φ(2)‖22 and the degree of freedom is r. Thus, we get
that the asymptotic power function is Marcum-Q-function.

Another proof of consistency of GS test. We can re-express GW test statistic as:

ĜWT = T h(θ)ᵀ
(
H(θ)

(BT (θ)

T

)−1AT (θ)

T

(BT (θ)

T

)−1

H(θ)ᵀ
)−1

h(θ)

∣∣∣∣∣
θ=θ̃QMLE

.

From Lemma 1 which we just prove, we have (i) h(θ̃QMLE)→ h(θ0) 6= 0 almost surely, where the last inequality
comes form H1 : θ0 6∈ Θ0; and (ii) AT (θ̃QMLE)/T , BT (θ̃QMLE)/T converges to A(θ0), B(θ0) almost surely. Thus,
we can verify

ĜWT →∞ as T →∞.
Thus, we have

ĜST →∞ as T →∞,
which indicates the unit asymptotic power of the proposed GS test, i.e. this test is consistent.

E Numerical experiments

E.1 Testing details

The testing procedures are detailed in Algorithm 1. We specify the data sequence sets we use, the initialization
and other experiment configurations in Algorithm 1 here for all experiments above.

Validation of asymptotic properties in Section 5.1: (a) For each α ∈ {1.5, 2, 2.5, 3, 3.5}, generate L data
sequences as D1 and another L data sequences as D2; (b) Generate L data sequences from α = 1 as D1 and
another L data sequences as D2 from α = 4; (c) Use the first pair of data sequence set in (a) (corresponding to
α = 1.5) as positive sample and data sequence set in (b) as the negative sample. For experiments in Sections 5.2
and 5.3, data generation mechanisms for D1 and D2 are the same.
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The experiment configurations (initialization) are as follows: L = 1, 000, n0 = 14 and endpoints for those
bins are (0, .04, .08, .12, .16, .2, .26, .32, .38, .45, .55, .65, .75, 1, 2) for all experiments. (a) N = 200, K = 20; (b)
N ∈ {50, 150, . . . , 850}, K = 5; (c) N ∈ {25, 50, 100}, K = 150.

For the experiment on how n0 influences our proposed test, the endpoints for bins with n0 = 2, 3, 4, 7, 14, 28 are
(0, .6, 2), (0, .2, .6, 2), (0, .1, .2, .6, 2), (0, .08, .16, .2, .32, .45, .65, 2), (0, .04, .08, .12, .16, .2, .26, .32, .38, .45, .55, .65, .75,
1, 2) and (0, .02, .04, .06, .08, .1, .12, .14, .16, .18, .2, .23, .26, .29, .32, .35, .38, .41, .45, .5, .55, .6, .65, .7, .75, .8, 1, 1.5, 2),
respectively. We use L = 1, 000 sequences in computing ĜST .

Goodness-of-fit in Section 5.4: D1 is chosen to be the testing data and D2 is generated from the model fitted
on the training data. The endpoints of bins are

(i) (0, .02, .04, .06, .08, .1, .12, .14, .16, .18, .2, .25, .3, .35, .4, .5) for Exp and Matern data;

(ii) (0, .02, .04, .06, .08, .1, .12, .14, .16, .18, .2, .5, .6, .8, 1) for MIMIC data;

(iii) (0, .05, .1, .15, .2, .25, .3, .35, .4, .45, .5, .6, .8, 1) for MEME data.

For 911 call data, L = 364 and we use the first 200 sequences to as the training data to fit the model and the rest
164 sequences as D1. Then we generate 164 data sequences as D2 to perform the testing procedure. We choose
N = 20, K = 1 and use (0, .02, .04, .06, .08, .1, .12, .14, .16, .18, .2, .5, 1) as endpoints for bins.

E.2 Additional experiments

Validation of our proposed method as an model free approach. We use different synthetic data
to validate our theoretical results. Here, the triggering function used to generate synthetic data is power
function (which is commonly used in seismology) : φ(t) = α(P − 1)cP−1(t + c)−P1{t>0} with parameters
µ = 20, α = 0.2, C = 2, P = 13, 14, . . . , 17. The experiment configurations are as follows: L = 1, 000, n0 = 12
and endpoints for those bins are (0, .04, .08, .12, .16, .2, .24, .28, .32, .36, .4, .7, 2) for all experiments. (a) N = 200,
K = 20; (b) N ∈ {50, 150, . . . , 850}, K = 5; (c) N ∈ {50, 100, 200}, K = 150. See the results in Figure 8.
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Figure 8: Simulation results: (a) Quantiles of calculated scores against theoretical quantiles of χ2
n0+1 distribution

under H0; (b) mean and variance of scores with increasing N under H1; (c) ROC curve for different N .

Comparison with Ripley’s K function. See Figure 9.
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Figure 9: Heatmap of estimated Ripley’s K function value K̂(t) for t = 1, . . . , 5 (top), t = 6, . . . , 10 (bottom). For
each pixel, the data sequence D1 and D2 are generated from the same distribution as in Figure 6 (a).
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Algorithmic behavior of Exp GD method on Exp data. In our experiment, we saw a very interesting
phenomenon — no matter where we initialize α̂, using GD to maximize log-likelihood under correct model
specification would yield very biased estimate.

As illustrated in Figure 10, we observe that when α̂ is around the ground-truth 1, the log-likelihood is very large.
But it keeps growing larger when α̂ keeps decreasing. The same is also true for β̂. We can see that even though
we got very large log-likelihood, the estimate is very biased. Clearly, overfitting occurs here — we only gain very
little log-likelihood increment but the estimates are getting futther away from the ground-truth. Therefore, using
log-likelihood as GOF would be questionable.
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Figure 10: Algorithmic behavior illustration of Exp GD method on Exp data.

Probability weighted histogram estimation under H1. As one may see from our proof in Appendix D,
GS and GW tests are asymptotically equivalent. One would ask why we choose GS test over GW test. The
reason is two-fold. Firstly, it is not computationally efficient, since using GW test involves estimating r more
parameters. Secondly and most importantly, its power is far less than GS test. That’s because, in empirical
study, the QMLE θ̃QMLE does maximize the full model Quasi-likelihood but fails to differentiate two different
triggering components, which makes ‖h(θ̃QMLE)‖2 much smaller than ‖h(θ0)‖2. We will further illustrate this
by performing the estimation of the full model (Algorithm 3 in next section) and visualizing the estimation of
triggering function as follows:

We can see a very interesting pattern: when the true triggering functions for D1 and D2 are different (off-diagonal
panels), histogram estimation tends to yields two piecewise constant triggering function lie between those two
different true ones. This means the estimated difference between two triggering functions are much smaller than
the truth, or rather ‖h(θ̃QMLE)‖2 will be much smaller than it should be. By the form of GW test statistic (17),
we can see the power of GW test statistic is highly dependent on ‖h(θ̃QMLE)‖2 and histogram estimation will
make the resulting GW test less powerful.

F Some useful functions

F.1 Marcum-Q-function

In statistics, the Marcum-Q-function QM is defined as

QM (a, b) =

∫ ∞
b

x
(x
a

)M−1

exp

(
−x

2 + a2

2

)
IM−1(ax)dx,

or

QM (a, b) = exp

(
−a

2 + b2

2

) ∞∑
k=1−M

(a
b

)k
Ik(ab),
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Figure 11: Histogram estimation under H1: µ = 20, α = 2, β = 1, 2, 3, 4, 5. The solid line is the true triggering
function whereas the dashed line is the estimated one (blue for D1 and red for D2).
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with modified Bessel function IM−1(·) of order M − 1. Abdel-Aty (1954) proved the following approximation
formula:

Qk/2(
√
λ,
√
x) ≈ 1− Φ


(

x
k+λ

)1/3

−
(

1− 2
9f

)
√

2
9f

 ,

where f = (k+λ)2

k+2λ = k + λ2

k+2λ and Φ(·) is CDF of standard Gaussian random variable. We can easily verify that
Qk/2(

√
λ,
√
x)→ 1 as λ→∞. Also, this is illustrated in Figure 3. What’s more, by the Theorem 1 in Sun et al.

(2010), Marcum-Q-function QM (a, b) is monotonically increasing w.r.t. a.

F.2 Matérn covariance function

The Matérn covariance between two points separated by d distance units is defined as

Cρ,ν(d) = σ2 21−ν

Γ(ν)

(√
2ν
d

ρ

)ν
Kν

(√
2ν
d

ρ

)
.

where Γ(·) is the gamma function, Kν(·) is the modified Bessel function of the second kind, and ρ and ν are
non-negative parameters of the covariance.

G Probability weighted histogram estimation under alternative hypothesis

Under H1, the triggering mechanism is more complex compared to univariate Hawkes Process, since each event
can be either from the background, direct offspring from an individual ancestor in Hawkes Process 1 or Hawkes
Process 2 and the triggering effects of events in two different processes are different.

We denote the branching structure matrix P(z)(z′) ∈ R(N1+N2)×(N1+N2) (z, z′ ∈ {1, 2}). The element in i−th row
and j−th column is defined to be the probability that event i in process z is triggered by event j in process z′
if either i 6= j or z 6= z′ (case 1) or the probability that event i in process z is a background event if i = j and
z = z′ (case 2). That is,(

P(z)(z′)

)
ij

=

{
probability that event i in process z is triggered by event j in process z′, case 1
probability that event i in process z is a background event, case 2

Note that the probability is zero when t(z)i ≤ t
(z′)
j , which means the event that happens earlier in the process

cannot be triggered by those which happen later.

As discussed above, we focus on differentiating difference in triggering effect. Thus we estimate the sum of two
background intensities from all background events:

µ(v) =
1

T

2∑
z=1

Nz∑
i=1

(
P

(v)
(z)(z)

)
ii
. (18)

For the triggering components, we estimate the magnitude for process z (z = 1, 2) using events from aggregated
data triggered by process z and estimate the temporal triggering density function from those events which fall
into the corresponding bin. Note that we have(

P
(v)
(z′)(z)

)
ij

=
(
P

(v)
(z′)(z)

)
ij
1{t(z′)i >t

(z)
j }

.

This is because the probability will be zero if t(z
′)

i ≤ t(z)j as discussed above. Thus, for z = 1, 2 and k = 1, . . . , n0,
the estimators can be expressed as

α(v)
z =

∑Nz

i=1

∑i−1
j=1

(
P

(v)
(z)(z)

)
ij

+
∑Nz′
i=1

∑Nz

j=1

(
P

(v)
(z′)(z)

)
ij

Nz
, (19)

g
(v)
z,k =

∑Nz

i=1

∑i−1
j=1

(
P

(v)
(z)(z)

)
ij
1Bk

(
t
(z)
i − t

(z)
j

)
+
∑Nz′
i=1

∑Nz

j=1

(
P

(v)
(z′)(z)

)
ij
1Bk

(
t
(z′)
i − t(z)j

)
∆tk

(∑Nz

i=1

∑i−1
j=1

(
P

(v)
(z)(z)

)
ij

+
∑Nz′
i=1

∑Nz

j=1

(
P

(v)
(z′)(z)

)
ij

) . (20)
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And the updates for the branching probabilities are similar, for z = 1, 2, z 6= z′ and i = 1, 2, . . . , Nz:

λ
(v)
z,i = µ(v) +

i−1∑
j=1

α(v)
z g(v)

z

(
t
(z)
i − t

(z)
j

)
+

Nz′∑
j=1

α
(v)
z′ g

(v)
z′

(
t
(z)
i − t

(z′)
j

)
1{t(z)i >t

(z′)
j }(

P
(v+1)
(z)(z)

)
ii

=
µ(v)

λ
(v)
z,i

(21)

(
P

(v+1)
(z)(z)

)
ij

=
α

(v)
z g

(v)
z

(
t
(z)
i − t

(z)
j

)
λ

(v)
z,i

(for i > j) (22)

(
P

(v+1)
(z)(z′)

)
ij

=
α

(v)
z′ g

(v)
z′

(
t
(z)
i − t

(z′)
j

)
1{t(z)i >t

(z′)
j }

λ
(v)
z,i

(23)

Here we summarize the algorithm as follows:

Algorithm 3 Probability Weighted Histogram Estimation of Quasi-log-likelihood under H1

Initialize: choose stopping critical value ε (e.g. 10−3), initialize P (0)
(z)(z′) and set

(
P

(−1)
(z)(z′)

)
ij

= ε+
(
P

(0)
(z)(z′)

)
ij

and iteration index v = 0.
while max

t
(z)
i >t

(z′)
j

∣∣∣∣(P (v)
(z)(z′)

)
ij
−
(
P

(v−1)
(z)(z′)

)
ij

∣∣∣∣ < ε do

1. Estimate background rate µ as in (18).
2. Estimate triggering components αz, gz(t) as in (19) and (20).
3. Update probabilities

(
P

(v+1)
(z)(z′)

)
ij
’s as in (21), (22) and (23).

4. v = v + 1
end while

We follow the derivation of EM-type algorithm in Appendix. B.2 and derive that Probability Weighted Histogram
Estimation under the full model is again an EM-type algorithm. Similar to the proof framework above, we first
use integral approximation of Schoenberg (2013) to approximate the Quasi-log-likelihood function and then lower
bound it using Jensen’s inequality:

˜̀(θ) ≈ 2∑
z=1

Nz∑
i=1

[(
P(z)(z)

)
ii

logµ+
∑
j<i

(
P(z)(z)

)
ij

(
logαz + log

(
n0∑
k=1

gz,k1Bk

(
t
(z)
i − t

(z)
j

)))

+

Nz′∑
j=1

(
P(z)(z′)

)
ij

(
logαz′ + log

(
n0∑
k=1

gz′,k1Bk

(
t
(z)
i − t

(z′)
j

))]
− Tµ−N1α1 −N2α2

−
2∑
z=1

Nz∑
i=1

∑
i≥j

(
P(z)(z)

)
ij

log(
(
P(z)(z)

)
ij

) +

Nz′∑
j=1

(
P(z)(z′)

)
ij

log(
(
P(z)(z′)

)
ij

)1{t(z)i >t
(z′)
j }

 ,

where z′ 6= z. Note that the term −N1α1 −N2α2 comes from integral approximation. Add Lagrange multipliers
and we will get the following objective function:
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L̃(θ) =

2∑
z=1

Nz∑
i=1

[(
P(z)(z)

)
ii

logµ+
∑
j<i

(
P(z)(z)

)
ij

(
logαz + log

(
n0∑
k=1

gz,k1Bk

(
t
(z)
i − t

(z)
j

)))

+

Nz′∑
j=1

(
P(z)(z′)

)
ij

(
logαz′ + log

(
n0∑
k=1

gz′,k1Bk

(
t
(z)
i − t

(z′)
j

))]
− Tµ−N1α1 −N2α2

−
2∑
z=1

Nz∑
i=1

∑
i≥j

(
P(z)(z)

)
ij

log(
(
P(z)(z)

)
ij

) +

Nz′∑
j=1

(
P(z)(z′)

)
ij

log(
(
P(z)(z′)

)
ij

)1{t(z)i >t
(z′)
j }


−

2∑
z=1

cz,1( n0∑
k=1

gz,k∆tk − 1

)
−

Nz∑
i=1

c
(i)
z,3

∑
i≥j

(
P(z)(z)

)
ij

+

Nz′∑
j=1

(
P(z)(z′)

)
ij
1{t(z)i >t

(z′)
j } − 1

 .
Then, by taking first order derivatives and setting them to zero we can validate Algorithm 3 as an EM-type
algorithm.


