
Direct Loss Minimization for Sparse Gaussian Processes:
Supplementary Materials

Yadi Wei Rishit Sheth Roni Khardon
Indiana University Microsoft Research New England Indiana University

1 Efficient Implementation of Product Sampling

Efficient Rejection Sampling: Recall that we want to sample from q̃(f |θ) = q(f |θ)p(y|f)
Eq(f|θ) p(y|f) where the normal-

izing constant Eq(f |θ) p(y|f) is not known. Naive rejection sampling will have a high rejection rate and more
advanced sampling techniques, such as adaptive rejection sampling, will be too slow because we need to sample the
gradient for each example in each minibatch of optimization. We next show how to take advantage of the structure
of q̃(f) to construct an efficient sampler. Recall the standard setting for rejection sampling. To sample from an
unnormalized distribution h1(f) we introduce h2(f) which is easy to sample from and such that Kh2(f) ≥ h1(f).
Then we sample f∗ ∼ h2(f), and accept f∗ with probability h1(f∗)/Kh2(f∗).

In our case h1 is a product of a normal distribution q(f) = N (µ, σ2) and a likelihood function `(f) = p(y|f).
In the following we assume that `(f) ≤ `max is bounded, which is true for discrete y and can be enforced by
lower bounding the variance when y is continuous. The main issue for sampling is the overlap between the “high
value regions” of q() and `(). If they are well aligned, for example, argmaxf∈µ±σ`(f) ≥ 0.5, then we can use
h2(f) = q(f) with K = 1 and the rejection rate will not be high. However, if they are not aligned then sampling
from q() will have a high rejection rate. To address this, we fix a small integer n and sample from a broader
distribution with the same mean h2(f) = N (µ, nσ2).

Let a, b be the intersection points of the PDFs of q() and h2() (µ ± r for r = σ
√

log n/(1− 1/n)) and let
m1 = maxf∈[a,b]`(f) and m2 = minf∈[a,b]

h2(f)
q(f) = 1√

n
. Note that m1

m2
increases with n. To balance the sampling

ratios within and outside [a, b], we pick the largest n ≤ 10 s.t. m1 ≤ m2`max and use K = `max. Then in the
interval [a, b] we have h2(f)`max ≥ h2(f)m1

m2
≥ q(f)`(f) and outside the interval we have h2(f) ≥ q(f) and

therefore h2(f)`max ≥ q(f)`(f) as required.

The only likelihood specific step in the computation is the value of m1. For the binary case with sigmoid or
probit likelihood the maximum is obtained at one of the endpoints p(a), p(b). For count regression with Poisson
likelihood with link function λ = ef , if the observation log y ∈ [a, b] then we also need to evaluate p(y|λ = y). The
crucial point is that because of the structure of q() and h2() the values of m1,m2 can be calculated analytically in
constant time and the cost of determining n is not prohibitive.

Vectorized sampling: The process above yields efficient sampling, where after an initial set of learning
iterations the average number of rejected samples is low (approximately 2 in our evaluation). However, in practice
the process is still slow. One of the reasons is the fact that we calculate n which defines the sampling distribution
separately for each example i and then perform rejection sampling separately for each i. Modern implementations
gain significant speedup by vectorizing operations, but this is at odds with individual rejection sampling. We
partly alleviate this cost by a hybrid procedure as follows. Note that for each i we have h2(fi) = N (µi, niσ

2
i) and

that the samples for different i’s are independent. We can therefore collect these and sample from a multivariate
normal with diagonal covariance. However, each such vector of samples will have some rejected entries. Our
hybrid procedure repeats the vectorized sampling twice, uses the first successful sample for each i, and for entries
which had no successful sample, resorts to individual sampling. We have found that this reduces overall run time
by at least 50%.

Direct Loss Minimization for Sparse Gaussian Processes: Supplementary Materials

2 Convergence of smooth-bMC with Probability 1

This section develops an analysis of smoothed bMC estimates. It is shown that by adding a small factor to the
denominator of the gradient estimate we can bound the step direction and guarantee convergence w.p. 1.

Consider gradient based minimization of a function f() with step direction gt = st + wt and step size γt.
Assumption 7. The function f : Rn → R, and st, wt, γt satisfy the following conditions:

(a) f(r) ≥ 0 for all r ∈ Rn.

(b) The function f is continuously differentiable and there exists some constant L such that

‖∇f(r)−∇f(r̄)‖ ≤ L‖r − r̄‖,∀r, r̄ ∈ Rn.

(c) There exists positive constant c1, c2 such that ∀t,

c1‖∇f(rt)‖2 ≤ −∇f(rt)
T E[st|Ft],

E[‖st‖2] ≤ c2‖∇f(rt)‖2.

(d) There exists positive constant p, q such that

E[‖wt‖2] ≤ (γt(q + p‖∇f(rt)‖))2.

Notice that condition (d) in Assumption 7 implies E[‖wt‖] ≤ γt(q+p‖∇f(rt)‖). This can be derived from Jensen’s
inequality where the quadratic function is convex.
Proposition 8. Consider the algorithm

rt+1 = rt + γt(st + wt),

where the stepsizes γt are nonnegative and satisfy
∞∑
t=0

γt =∞,
∞∑
t=0

γ2
t <∞.

Under Assumption 7, the following hold with probability 1:

(a) The sequence f(rt) converges.

(b) We have limt→∞∇f(rt) = 0.

(c) Every limit point of rt is a stationary point of f .

The proposition and its proof are a slight modification of Proposition 4.1 by Bertsekas and Tsitsiklis (1996).
Compared to that result, Assumption 7 splits the conditions on the step direction gt = st + wt from Bertsekas
and Tsitsiklis (1996) into portion c on st and portion d on wt. This slight weakening of the condition enables our
application in Corollary 9. We include the proof here for completeness.

Proof. This proof slightly modifies the proof of Proposition 4.1 in Bertsekas and Tsitsiklis (1996). As shown
there (in Eq 3.39), if ∇f() is L-Lipschitz then, for two vectors r, z, f(r + z)− f(r) ≤ zT∇f(r) + L

2 ‖z‖
2. Then

replacing z with γt(st + wt) and taking expectation, we have

E[f(rt+1)] ≤ f(rt) + γt∇f(rt)
T E[st + wt] +

γ2
tL

2
E[‖st + wt‖2]

≤ f(rt) + γt∇f(rt)
T E[st] + γt∇f(rt)

T E[wt] + γ2
tLE[‖st‖2] + γ2

tLE[‖wt‖2]

≤ f(rt) + γt(−c1‖∇f(rt)‖2 + ‖∇f(rt)‖E[‖wt‖]) + γ2
tL(c22‖∇f(rt)‖2

+ γ2
t q

2 + 2γ2
t pq‖∇f(rt)‖+ γ2

t p
2‖∇f(rt)‖2)

≤ f(rt)− γt(c1 − γtp− γtc22L− γ3
t p

2L)‖∇f(rt)‖2 + γ2
t (q + 2γ2

t pqL)‖∇f(rt)‖+ γ4
t q

2L.

Yadi Wei, Rishit Sheth, Roni Khardon

The second inequality uses ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 for any two vector a, b. The third inequality uses the
conditions in Assumption 7. Let ct = c1 − γtp− γtc22L− γ3

t p
2L, dt = q + 2γ2

t pqL. Then,

E[f(rt+1)] ≤ f(rt)− γtct‖∇f(rt)‖2 + γ2
t dt‖∇f(rt)‖+ γ4

t q
2L

≤ f(rt)− γtct‖∇f(rt)‖2 + γ2
t dt(1 + ‖∇f(rt)‖2) + γ4

t q
2L

= f(rt)− γt(ct − γtdt)‖∇f(rt)‖2 + γ2
t dt + γ4

t q
2L

= f(rt)−Xt + Zt,

where Xt =

{
γt(ct − γtdt)‖∇f(rt)‖2, if ct ≥ γtdt,
0, otherwise,

, and

Zt =

{
γ2
t dt + γ4

t q
2L, if ct ≥ γtdt,

γ2
t dt + γ4

t q
2L− γt(ct − γtdt)‖∇f(rt)‖2, otherwise.

Notice that ct − γtdt is monotonically decreasing in γt and limt→∞ γt = 0, so there exists some finite time after
which γtdt ≤ ct. It follows that after some finite time, we have Zt = γ2

t dt + γ4
t q

2L and therefore
∑∞
t=0 Zt <∞.

Applying Proposition 4.2 (Supermartingale Convergence Theorem) in Bertsekas and Tsitsiklis (1996), we can
conclude that f(rt) converges which establishes part (a) of the proposition, and in addition that

∑
tXt <∞.

Similarly after some time, we have ct − γtdt ≥ c1
2 and

Xt = γt(ct − γtdt)‖∇f(rt)‖2 ≥
c1
2
γt‖∇f(rt)‖2.

Hence,
∞∑
t=0

γt‖∇f(rt)‖2 <∞.

Below we prove that ‖∇f(rt)‖ converges to 0. Let gt = st + wt,

E[‖gt‖2] = E[‖st + wt‖2]

≤ E[2‖st‖2 + 2‖wt‖2]

≤ 2c2‖∇f(rt)‖2 + 2γ2
t (q + p‖∇f(rt)‖)2

= 2c2‖∇f(rt)‖2 + 2γ2
t (q2 + 2pq‖∇f(rt)‖+ p2‖∇f(rt)‖2)

≤ 2(c2 + p2γ2
t + 2pqγ2

t)‖∇f(rt)‖2 + 2γ2
t q

2 + 4pqγ2
t .

Suppose max γt ≤ γ, letK1 = 2(c2+p2γ2+2pqγ2) andK2 = 2γ2q2+4pqγ2, we have E[‖gt‖2] ≤ K1‖∇f(rt)‖2+K2.
Then all the remaining steps in the proof in (Bertsekas and Tsitsiklis, 1996) for claims (b),(c) can be followed by
replacing st in Bertsekas and Tsitsiklis (1996) with our gt.

In order to establish convergence w.p. 1 we need to bound the norm of the step direction. To achieve this we add
a smoothing parameter ν to the denominator of the estimate. This yields the smooth-bMC algorithm, whose step
directions are

di,m(r) :=

∑L
`=1 φ

′
i(r, ε

(`))∑L
`=1 φi(r, ε

(`)) + ν
ai,1

di,V (r) :=

∑L
`=1 φ

′′
i (r, ε(`))∑L

`=1 φi(r, ε
(`)) + ν

ai,2a
>
i,2

2

and thus

wt,i,m =
ai,1
n

(
(1/L)

∑
` φ
′
i(rt, ε

(`))

(1/L)
∑
` φi(rt, ε

(`)) + νt
−

EN (ε|0,1) φ
′
i(rt, ε)

EN (ε|0,1) φi(rt, ε)

)
and a similar expression holds for V’s portion. We now have:

Direct Loss Minimization for Sparse Gaussian Processes: Supplementary Materials

Corollary 9. If for every t and i, Eq(fi|r) p(yi|fi) ≥ ζ > 0, smooth-bMC uses νt = γtζ, and

L >
log(6n/δt)

2γ2
t

max

{
B2

|EN (ε|0,1) φi(r, ε)|2
,

(B′ − b′)2

P 2
,

(B′′ − b′′)2

Q2

}
, (18)

where P =

{
|EN (ε|0,1) φ

′
i(r, ε)|, if EN (ε|0,1) φ

′
i(r, ε) 6= 0

1, otherwise
, Q =

{
|EN (ε|0,1) φ

′′
i (r, ε)|, if EN (ε|0,1) φ

′′
i (r, ε) 6= 0

1, otherwise
,

and δt = γ4
t , then smooth-bMC satisfies the conditions of Proposition 8 and hence converges w.p. 1.

Proof. Conditions (a,b,c) of Assumption 7 are handled exactly as in the main paper. Thus we only need to show
that (d) holds.

First consider the case when E[φ′] 6= 0 and E[φ′′] 6= 0. With

L ≥ log(6n/δt)

2α2
max

{
B2

E[φi(r, ε)]2
,

(B′ − b′)2

|E[φ′i(r, ε)]|
2 ,

(B′′ − b′′)2

|E[φ′′i (r, ε)]|2

}

we have that ∀i, t,

(1− α)|E[φi]| ≤

∣∣∣∣∣(1/L)

L∑
l=1

φi(r, ε
(l))

∣∣∣∣∣ ≤ (1 + α)|E[φi]|,

(1− α)|E[φ′i]| ≤

∣∣∣∣∣(1/L)

L∑
l=1

φ′i(r, ε
(l))

∣∣∣∣∣ ≤ (1 + α)|E[φ′i]|,

(1− α)|E[φ′′i]| ≤

∣∣∣∣∣(1/L)

L∑
l=1

φ′′i (r, ε(l))

∣∣∣∣∣ ≤ (1 + α)|E[φ′′i]|.

hold simultaneously w.p. ≥ 1− δt
n .

Since φi > 0, we have (1/L)
∑L
l=1 φi(r, ε

(l)) + ν ≥ (1− α) E[φi] + ν ≥ (1− α) E[φi]. In addition

(1/L)

L∑
l=1

φi(r, ε
(l)) + ν ≤ (1 + α) E[φi] + ν ≤ (1 + α+

ν

ζ
) E[φi].

Then

‖wt,i,m‖2 ≤
‖ai,1‖2

n2
max

(
1 + α

1− α
− 1, 1− 1− α

1 + α+ ν
ζ

)2(
E[φ′i(rt, ε)]

E[φi(rt, ε)]

)2

=
‖ai,1‖2

n2
max

(
2α

1− α
,

2α+ ν
ζ

1 + α+ ν
ζ

)2(
E[φ′i(rt, ε)]

E[φi(rt, ε)]

)2

.

Let ν = αζ, then ν
ζ = α. Thus

max

(
2α

1− α
,

2α+ ν
ζ

1 + α+ ν
ζ

)
= max

(
2α

1− α
,

3α

1 + 2α

)
≤ 3α

1− α
.

Using α ≤ 0.5 we get ‖wt,i,m‖2 ≤
(

6B∗α
ζ
‖ai,1‖
n

)2

.

Yadi Wei, Rishit Sheth, Roni Khardon

Next consider the case when E[φ′] = 0. In this case we can select L ≥ (B′−b′)2 log(6n/δt)
2α2 such that

|(1/L)
∑
l φ
′(r, ε(l))| ≤ α w.p.≥ 1 − δt/(3n). At the same time, (1/L)

∑
l φi(r, ε

(l)) + ν ≥ (1 − α) E[φi(r, ε)].
Thus,

‖wt,i,m‖2 ≤
(
‖ai,1‖
n

α

ζ(1− α)

)2

≤
(

2α

ζ

‖ai,1‖
n

)2

.

Combined two cases, we have

‖wt,i,m‖2 ≤
(

2α

ζ

‖ai,1‖
n

(3B∗ + 1)

)2

.

wt,i,V can be bounded similarly. Thus, ‖wt,i‖2 can be upper bounded with high probability. Overall, w.p. at
least 1− δt,

‖wt‖2 ≤
∑
i

∑
j

‖wt,i‖‖wt,j‖ ≤
(
A

2α

ζ
(3B∗ + 1)

)2

,

where A = maxi ‖ai‖.

However, w.p. at most δt, the above inequality does not hold. In order to bound the expectation we use the
following upper bound which always holds:

‖wt,i,m‖2 =
‖ai,1‖2

n2

∣∣∣∣ (1/L)
∑
l φ
′
i(r, ε

(l))

ν + (1/L)
∑
l φi(r, ε)

− E[φ′i(r, ε)]

E[φi(r, ε)]

∣∣∣∣2
≤ ‖ai,1‖

2

n2

(
2

(
(1/L)

∑
l φ
′
i(r, ε

(l))

ν + (1/L)
∑
l φi(r, ε

(l))

)2

+ 2

(
E[φ′i(r, ε)]

E[φi(r, ε)]

)2
)

≤ 2
‖ai,1‖2

n2
max{|b′|, |B′|}2

(
1

ν2
+

1

ζ2

)
≤ 2
‖ai,1‖2

n2
(B∗)2

(
1

ν2
+

1

ζ2

)
= 2
‖ai,1‖2

n2
(B∗)2

(
1

α2
+ 1

)
1

ζ2

≤ 4
‖ai,1‖2

n2
(B∗)2 1

α2ζ2
.

In the third step, we used the fact that φ′i is bounded between b′ and B′. In the last step, we use the fact that
1 ≤ 1

α2 . Similar arguments can be derived for wt,i,V . Thus ‖wt,i‖2 ≤ 4‖ai‖
2

n2 (B∗)2 1
α2ζ2 . Further,

‖wt‖2 = ‖
∑
i

wt,i‖2 ≤
∑
i

∑
j

‖wt,i‖‖wt,j‖ ≤ 4A2(B∗)2 1

α2ζ2
=
D

α2
.

where D =
(
A 2
ζB
∗
)2

is a constant.

Thus, E[‖w‖2] can be bounded,

E[‖wt‖2] ≤ (1− δt)(A
2α

ζ
(3B∗ + 1))2 + δtD ≤ (A

2α

ζ
(3B∗ + 1))2 + δt

D

α2
.

Here let α = γt (hence νt = γtζ) and δt = γ4
t , then condition (d) of Assumption 7 holds with p = 0 and

q2 = (A 2
ζ (3B∗ + 1))2 +

(
A 2
ζB
∗
)2

.

Suppose γt = 1
t , then the sample size L ∝ t2 log(nt), which matches the sample size in the main paper. As in the

discussion there, in practice we use a fixed sample size L and we use a fixed smoothing factor ν.

Direct Loss Minimization for Sparse Gaussian Processes: Supplementary Materials

3 Proof of Proposition 4 from Main Paper: Bounds on φ, φ′, φ′′

In this section we show that bounds of the form φ < B, b′ < Φ′ < B′, and b′′ < Φ′′ < B′′ holds in each cases as
listed in the following table:

Likelihood B b′ B′ b′′ B′′

Logistic, σ(yf) 1 − 1
4

1
4 − 1

4
1
4

Gaussian, e−(y−f)2/2σ2
, c = 1√

2πσ
c − c√

eσ
c√
eσ

− c
σ2

2c

σ2e3/2

Probit, Φ(yf), Φ is cdf of Gaussian 1 −1/
√

2π 1/
√

2π −1/
√

2πe 1/
√

2πe

Poisson, g(f)yeg(f)

y! ,g(f) = log(ef + 1) 1 −1 1 −2.25 2.25

Poisson, g(f)yeg(f)

y! ,g(f) = ef 1 −y − 1 y −y − 1/4 2y2 + 3y + 2

Student’s t, c(1 +
(y−f)2

σ2ν
)−

ν+1
2 , c =

Γ(ν+1
2

)

Γ(ν
2

)
√
πνσ

c −
c
σ
ν+1
ν

√
ν
ν+2

(ν+3
ν+2

)(ν+3)/2

c
σ
ν+1
ν

√
ν
ν+2

(ν+3
ν+2

)(ν+3)/2
− c
σ2

ν+1
ν 2 c

σ2
ν+1
ν (ν+2

ν+5)(ν+5)/2

logistic: For convenience let the label yi be in {−1, 1}. Then φ = σ(yifi) ≤ 1, φ′ = yiσ(yifi)(1 − σ(yifi)) ∈
[−0.25, 0.25], and φ′′ = y2

i σ(yifi)(1− σ(yifi))[1− 2σ(yifi)] ∈ [−0.25, 0.25].

Gaussian: The Gaussian likelihood is φ = p(y|f, σ2) = c exp(−(y − f)2/2σ2), c = 1√
2πσ

. In the following, let
x = (y − f)/σ to reduce clutter. The first derivative of φ w.r.t. f is given by φ′ = c exp(−x2/2)x 1

σ whose
root at f = y (x = 0) corresponds to the maximum of the likelihood c. The second derivative is given
by φ′′ = c

σ2 exp(−x2/2)(x2 − 1). The first derivative evaluations at the second derivative roots defined by
f = y ± σ (x = ±1) are ± c

σ

√
e. The third derivative is given by φ′′′ = c

σ3 exp(−x2/2)x(x2 − 3). The second
derivative evaluations at the third derivative roots defined by f = y (x = 0) and f = y ± σ

√
3 (x2 = 3) are − c

σ2

and 2c
σ2 exp(−3/2), respectively. Finally, the first and second derivatives clearly approach 0 as f approaches ±∞

since exp(f2/2) dominates the growth of any polynomial in f .

probit: For convenience let the label yi be in {−1, 1}. Then φ = Φ(yifi), where Φ is the CDF of the standard
normal and clearly φ ∈ [0, 1]. Let h() be the PDF of the standard normal. Then φ′ = yih(yifi) and φ′ = y2

i h
′(yifi).

Bounds for these are given by bounds above for the normal distribution with µ = 0 and σ2 = 1, where we have to
account for the sign flip in φ′ = yih().

Poisson: Here we also need to consider the link function. Two standard options are λ = g(fi) = efi or
λ = g(fi) = ln(efi + 1).

For the first option we have λ = g(fi) = efi . As above it is obvious that φ ≤ 1. φ′ = λye−λ

y! (y − λ) = yφ− (y +

1)λ
y+1e−λ

(y+1)! . Thus, φ
′ ≥ b′ = −y−1 and φ′ ≤ B′ = y. φ′′ = λye−λ

y! (y2−(2y+1)λ+λ2) = λye−λ

y! ((λ−(y+ 1
2))2−y− 1

4) ≥
−y − 1

4 . On the other hand, φ′′ = (λ
ye−y

y!)y2 − λy+1e−λ

(y+1)! (2y + 1)(y + 1) + λy+2e−λ

(y+2)! (y + 1)(y + 2) ≤ 2y2 + 3y + 2.

For the second option we have λ = g(fi) = ln(efi + 1). Below we use φt(λi) to denote p(t|fi) =
λtie

λi

t! . First

note that g′(fi) = efi

efi+1
= σ(fi) ∈ [0, 1] and g′′(fi) ∈ [0, 0.25] . We have φ =

λ
yi
i e

λi

yi!
≤ 1, φ′ = g′(fi)φ

′(λi) =

g′(fi)(φ(λi)− φyi−1(λi)) implying −1 < φ′ < 1, and

φ′′ = g′′(fi)(φ(λi)− φyi−1(λi)) + (g′(fi))
2(φ′yi−1(λi)− φ(λi)

′)

= g′′(fi)(φ(λi)− φyi−1(λi)) + (g′(fi))
2(φyi−2(λi)− φyi−1(λi)− φyi−1(λi) + φyi(λi))

which is bounded because all its components are bounded. Plugging in 0 ≤ g′ ≤ 1, 0 ≤ g′′ ≤ 0.25, we get that
φ′′ > −2.25 and φ′′ < 2.25.

Student T: The student’s t likelihood is p(y|f, ν, σ2) = c
(

1 + (y−f)2

σ2ν

)−(ν+1)/2

, c =
Γ(ν+1

2)

Γ(ν2)
√
πνσ

, ν ∈ R+. In the

following, let x = (y − f)/σ to reduce clutter. The first derivative is given by −cν+1
ν

x

(1+ x2

ν)(ν+3)/2
(− 1

σ). The only

first derivative root at f = y (x = 0) corresponds to the maximum of the likelihood c. The second derivative is

Yadi Wei, Rishit Sheth, Roni Khardon

given by

− cν + 1

ν
[

1

(1 + x2

ν)(ν+3)/2
−

x2 ν+3
ν

(1 + x2

ν)(ν+5)/2
]

1

σ2

= −cν + 1

ν
(1 +

x2

ν
)−(ν+5)/2[1 +

x2

ν
− x2 ν + 3

ν
]

1

σ2

= −cν + 1

ν

1− x2 ν+2
ν

(1 + x2

ν)(ν+5)/2

1

σ2
.

The first derivative evaluations at the second derivative roots defined by f = y ± σ
√

ν
ν+2 (x = ±

√
ν
ν+2) are

± c
σ
ν+1
ν

√
ν
ν+2/(

ν+3
ν+2)(ν+3)/2. Also, since ν > 0, the denominator of the first derivative is a polynomial of degree

at least 3 implying that as f approaches ±∞, the first derivative approaches 0. Hence, the first derivative is
bounded over its domain. The third derivative is given by

− cν + 1

ν
[−ν + 5

ν

x

(1 + x2

ν)(ν+7)/2
[1− x2 2 + ν

ν
] +

1

(1 + x2

ν)(ν+5)/2
(−2x)

2 + ν

ν
](
−1

σ3
)

= c
ν + 1

ν2
(1 +

x2

ν
)−(ν+7)/2x[(ν + 5)[1− x2 2 + ν

ν
] + (1 +

x2

ν
)2(2 + ν)](

−1

σ3
)

= c
ν + 1

ν2
(1 +

x2

ν
)−(ν+7)/2x[ν + 5− x2 (2 + ν)(5 + ν)

ν
+ 2(2 + ν) +

x2

ν
2(2 + ν)](

−1

σ3
)

= c
ν + 1

ν2
(1 +

x2

ν
)−(ν+7)/2x[− (2 + ν)(3 + ν)

ν
x2 + 3(3 + ν)](

−1

σ3
)

= c
(ν + 1)(ν + 3)

ν2
(1 +

x2

ν
)−(ν+7)/2x[−2 + ν

ν
x2 + 3](

−1

σ3
).

The second derivative evaluations at the third derivative roots f = y (x = 0) and f = y± σ
√

3ν
2+ν (x2 = 3ν

2+ν) are

− c
σ2

ν+1
ν and 2 c

σ2
ν+1
ν (ν+2

ν+5)(ν+5)/2, respectively. Also, the denominator of the second derivative is a polynomial
of degree at least 5 whereas the numerator is a polynomial of degree 2 implying that as f approaches ±∞, the
second derivative approaches 0. Hence, the second derivative is bounded over its domain.

4 Complete Experimental Details

Training: For regression, the algorithms are implemented in PyTorch. DLM is implemented as described in the
main paper. Where simplified objectives are available, specifically regression ELBO for SVGP and regression
objective for FITC, we implement the collapsed forms. For classification and count prediction, we extend the
implementation from GPyTorch (Gardner et al., 2018). Isotropic RBF kernels are used unless otherwise specified.
(We also repeated all experiments with Matern kernels and there is no big difference.) We use a zero mean
function for experiments in regression and count prediction and a constant mean function for binary prediction
(because some of the datasets require this to obtain reasonable performance with GP).

All algorithms are trained with the Adam optimizer where we use a learning rate of 10−1 for batch data training
and 10−3 for stochastic training. The same stopping criteria consisting of either convergence or max iterations is
used in all cases. Almost all runs across algorithms and datasets resulted in convergence. Convergence is defined
when the difference between the minimum and maximum of the loss in the last I iterations does not exceed 10−4,
for I = 50 iterations in regression, and I = 20 iterations in classification and count prediction. For square loss
DLM the optimization for m has a closed form, i.e., it is optimized in one step. If the log loss does not converge,
we stop when the number of iterations exceeds 5000 for regression, and 3000 for classification and count regression.
Evaluations are performed on held-out test data and 5 repetitions are used to generate error bars.

Datasets: Table 1 shows the datasets used and their characteristics. In the table, “dim” refers to the number
of features and M is the number of inducing points used in our experiments. Notice that in some datasets,
categorical features are converted to dummy coding, i.e., we use L− 1 binary features to represent a feature with
L categories. One category is assigned the all zero code while the other L− 1 categories are assigned to the unit
vector with the corresponding entry set to 1.

Direct Loss Minimization for Sparse Gaussian Processes: Supplementary Materials

dataset type size dim M
pol1 regression 15000 26 100

cadata2 regression 20640 8 206
sarcos3 regression 48933 21 100
song4 regression 515345 90 100

banana5 classification 5300 2 53
thyroid4 classification 3772 6 37
twonorm6 classifcation 7400 20 74
ringnorm7 classification 7400 20 74
airline8 classification 2055733 8 200
abalone4 count 4177 9 41

Peds1_dir09 count 4000 30 40
Peds1_dir19 count 4000 30 40
Peds1_dir29 count 4000 30 40

Table 1: Details of datasets

Evaluation: Each regression dataset is split into portions with relative sizes 67/8/25 for training, validation
and testing. For classification and count regression, we select a number of training sizes (up to 2000) and pick
10% of all data to be the validation set. From the remaining examples we randomly choose up to 1000 samples
for testing (to reduce test time for the experiments). For the larger song dataset (≈ 0.5M samples in total), we
randomly choose a subset of 10000 examples for test data in order to reduce the test time in experiments. To
reduce run time for DLM on large datasets we use mini-batch training with batches of 6000 samples.

For the ≈ 2M-size airline dataset of Hensman et al. (2015), we split a 100000 test set from the full dataset,
and trained on the remaining data for 20 epochs with Adam and learning rate 10−3. The number of inducing
points was set to 200 and the mini-batch size was 1000. Here, we used the RBF-ARD kernel. For fixed-DLM the
train/evaluation protocol is as follows: SVGP was trained with all hyperparameters and variational parameters
being learned; then, DLM was initialized with the learned SVGP hyperparameters which were then fixed; the
DLM variational parameters were learned from scratch.

In all cases, mean negative log likelihood (NLL) − logEq(f)p(y|f) is calculated on the test set. NLL is computed
exactly for regression and classification. For count regression it is calculated using quadrature. Additionally, we
compute test set mean squared error (MSE) in regression, mean error in classification, and mean relative error
(MRE) in count regression; the latter is defined as |ŷ−y|

max(1,y) , ŷ = Eq(y)[y] = Eq(f)q(y|f)[y]. ŷ can be calculated
analytically as Eq(y|f)[y] = λ = ef and Eq(f)[e

f] is the MGF of the normal distribution.

All datasets are normalized with respect to training data and the same normalization is performed on validation
and test data.

Results: Here, we include the complete experimental results stated in the main paper.

Log-loss and sq-loss in sGP Regression and β values: Figure 1 shows results for log loss in regression. In
3 of the datasets joint-DLM is significantly better than other algorithms and in cadata, where hyperparameter
selection is sensitive, fixed-DLM is significantly better than other algorithms. Figure 1 also shows values selected
for β on small and large train sizes for the cadata dataset. As discussed in the main paper this illustrates that
values of β larger than 1 are needed in some cases.

Figure 2 shows results for square loss on the same datasets. Note that in addition to the previous algorithms here

1https://github.com/trungngv/fgp/tree/master/data/pol
2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression/cadata
3(Rasmussen and Williams, 2006)
4http://archive.ics.uci.edu/ml/index.php
5https://www.kaggle.com/saranchandar/standard-classification-banana-dataset
6https://www.cs.toronto.edu/~delve/data/twonorm/desc.html
7https://www.cs.toronto.edu/~delve/data/ringnorm/desc.html
8(Hensman et al., 2015)
9http://visal.cs.cityu.edu.hk/downloads/

https://github.com/trungngv/fgp/tree/master/data/pol
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression/cadata
http://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/saranchandar/standard-classification-banana-dataset
https://www.cs.toronto.edu/~delve/data/twonorm/desc.html
https://www.cs.toronto.edu/~delve/data/ringnorm/desc.html
http://visal.cs.cityu.edu.hk/downloads/

Yadi Wei, Rishit Sheth, Roni Khardon

1000 2000 3000 4000 5000 6000 7000 8000
Training Size

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
NL

L
pol

SVGP
FITC
fixed log dlm
beta SVGP
joint log dlm

2000 4000 6000 8000 10000
Training Size

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

NL
L

cadata
SVGP
FITC
fixed log dlm
beta SVGP
joint log dlm

10−2 10−1 100 101 102

Regularization factor

2

4

6

8

10

NL
L

cadata, size 691
fixed dlm
beta SVGP
joint dlm

5000 10000 15000 20000 25000 30000 35000
Training Size

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

NL
L

sarcos
SVGP
FITC
fixed log dlm
beta SVGP
joint log dlm

20000 30000 40000 50000 60000 70000 80000
Training Size

1.05

1.10

1.15

1.20

1.25

NL
L

song

SVGP
FITC
fixed log dlm
beta SVGP
joint log dlm

10−2 10−1 100 101 102 103 104

Regularization factor

0.9

1.0

1.1

1.2

1.3

1.4

1.5

NL
L

cadata, size 11063
fixed dlm
beta SVGP
joint dlm

Figure 1: sGP Regression: Left and middle columns show a comparison of SVGP, FITC and DLM on mean test
NLL in 4 datasets. The right column shows NLL as a function of β for cadata for a small training size and a
large training size. In all plots, lower values imply better performance.

we show results for DLM that optimizes for square loss. The same pattern is repeated here where joint-sq-DLM
dominates in 3 of the datasets and fixed-sq-DLM dominates in cadata. Note that sq-DLM algorithms improve
over log-DLM algorithms for square loss.

Log-loss DLM in non-conjugate sGP: Figure 3 shows log loss in classification, and Figure 4 shows the
corresponding classification error in the same experiments. In this case except for ringnorm the differences are
small and DLM variants are comparable to SVGP variants.

Figure 5 shows log loss in count regression, and Figure 6 shows relative error in the same experiments. For log
loss joint-DLM dominates in 3 of the datasets and fixed-DLM is equal or better in the 4th dataset. Figure 6
shows that the better calibrated prediction in terms of log loss is achieved while maintaining competitive MRE.

Non-conjugate DLM on a large dataset: Figure 7 shows a comparison between SVGP and the two DLM
variants on the airline dataset for three values of β. As observed in the main paper, for this dataset, both DLM
variants perform better than SVGP for all values of β tested.

Evaluation of the sampling algorithms (bias statistics): Figure 8 shows statistics of the gradients for the
mean variables using uPS, bMC and smooth-bMC. The statistics for the gradients are collected immediately after
the initialization of the algorithm. We show statistics for conditions similar to (i,ii) in Proposition 2 of the main
paper as an estimate of the bias as compared to exact gradients. uPS is well behaved for all 3 measures. We
observe that bMC with 1 sample is significantly more noisy. For the other cases the constant for condition (i) is
roughly 1 (as would be with the true gradient) and the norm in condition (ii) is closer to the true gradient. The
bias for bMC is significantly larger than uPS. smooth-bMC reduces the bias of bMC without negative effect on
conditions (i,ii). However, as discussed below this does not lead to improvements in log loss.

Evaluation of the sampling algorithms (learning comparison):

Figures 9, 10, and 11 compare learning with exact gradients to learning with bMC and uPC for β = 0.1, 1, 10
respectively on the airline dataset. We observe that with enough samples both uPS and bMC recover the result
of exact gradients, but uPS can do so with less samples. Figure 12 compares learning with exact gradients to
learning with bMC and smooth-bMC when β = 0.1. Smooth-bMC is very close to bMC when the number of
samples are the same and thus, they overlap with each other. Hence in this case the potential improvement in
bias resulting from smoothing does not lead to performance improvement in terms of log loss.

Direct Loss Minimization for Sparse Gaussian Processes: Supplementary Materials

1000 2000 3000 4000 5000 6000 7000 8000
Training Size

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22
M

SE

pol
SVGP
FITC
fixed log dlm
beta SVGP
joint log dlm
fixed sq dlm
joint sq dlm

2000 4000 6000 8000 10000
Training Size

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

M
SE

cadata
SVGP
FITC
fixed log dlm
beta SVGP
joint log dlm
fixed sq dlm
joint sq dlm

5000 10000 15000 20000 25000 30000 35000
Training Size

0.01

0.02

0.03

0.04

0.05

M
SE

sarcos
SVGP
FITC
fixed log dlm
beta SVGP
joint log dlm
fixed sq dlm
joint sq dlm

20000 30000 40000 50000 60000 70000 80000
Training Size

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

M
SE

song
SVGP
FITC
fixed log dlm
beta SVGP
joint log dlm
fixed sq dlm
joint sq dlm

Figure 2: Square loss in sGP Regression: Comparison of SVGP, FITC, DLM and SQ_DLM in MSE. In all plots,
lower values imply better performance.

Figure 13 shows learning curves for count prediction on two datasets, comparing bMC and uPS sampling.
Figure 14 compares bMC and smooth-bMC. In these experiments we have found uPS to be more sensitive and
have reduced the learning rate for Adam from 0.1 to 0.01. Here there are no significant differences between uPS,
bMC and smooth bMC in terms of log loss.

Finally, Figure 15 compares learning with exact gradients to learning with bMC on the 4 regression datasets. For
all datasets, bMC-1 is the worst and there is almost no difference between exact and bMC-100.

In summary all the experiments suggest that with enough samples bMC results in competitive performance. uPS
makes better use of samples in some cases. However, this comes with a significant cost in terms or run time.
Hence bMC appears to be a better choice in practice.

Yadi Wei, Rishit Sheth, Roni Khardon

250 500 750 1000 1250 1500 1750 2000
Training Size

0.20

0.22

0.24

0.26

0.28

0.30

NL
L

banana
SVGP
fixed dlm
beta SVGP
joint dlm

250 500 750 1000 1250 1500 1750 2000
Training Size

0.01

0.02

0.03

0.04

0.05

0.06

0.07

NL
L

thyroid
SVGP
fixed dlm
beta SVGP
joint dlm

250 500 750 1000 1250 1500 1750 2000
Training Size

0.06

0.07

0.08

0.09

0.10

NL
L

twonorm
SVGP
fixed dlm
beta SVGP
joint dlm

250 500 750 1000 1250 1500 1750 2000
Training Size

0.04

0.06

0.08

0.10

0.12

NL
L

ringnorm
SVGP
fixed dlm
beta SVGP
joint dlm

Figure 3: sGP Classification: Comparison of SVGP and DLM in mean NLL. In all plots, lower values imply
better performance.

Direct Loss Minimization for Sparse Gaussian Processes: Supplementary Materials

250 500 750 1000 1250 1500 1750 2000
Training Size

0.09

0.10

0.11

0.12

0.13

Er
ro

r

banana
SVGP
fixed dlm
beta SVGP
joint dlm

250 500 750 1000 1250 1500 1750 2000
Training Size

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

Er
ro

r

thyroid
SVGP
fixed dlm
beta SVGP
joint dlm

250 500 750 1000 1250 1500 1750 2000
Training Size

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

Er
ro

r

twonorm
SVGP
fixed dlm
beta SVGP
joint dlm

250 500 750 1000 1250 1500 1750 2000
Training Size

0.010

0.015

0.020

0.025

0.030

Er
ro

r

ringnorm
SVGP
fixed dlm
beta SVGP
joint dlm

Figure 4: sGP Classification: Comparison of SVGP and DLM in term of mean error. In all plots, lower values
imply better performance.

Yadi Wei, Rishit Sheth, Roni Khardon

200 400 600 800 1000
Training Size

2.14

2.16

2.18

2.20

2.22

2.24

NL
L

Peds1_dir0
SVGP
fixed dlm
beta SVGP
joint dlm

200 400 600 800 1000
Training Size

2.18

2.20

2.22

2.24

2.26

NL
L

Peds1_dir1
SVGP
fixed dlm
beta SVGP
joint dlm

200 400 600 800 1000
Training Size

2.54

2.56

2.58

2.60

2.62

2.64

2.66

NL
L

Peds1_dir2
SVGP
fixed dlm
beta SVGP
joint dlm

200 400 600 800 1000
Training Size

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

NL
L

abalone
SVGP
fixed dlm
beta SVGP
joint dlm

Figure 5: sGP Count Prediction: Comparison of SVGP and DLM with 10 MC samples in terms of mean NLL. In
all plots, lower values imply better performance.

Direct Loss Minimization for Sparse Gaussian Processes: Supplementary Materials

200 400 600 800 1000
Training Size

0.08

0.09

0.10

0.11

0.12

M
RE

Peds1_dir0
SVGP
fixed dlm
beta SVGP
joint dlm

200 400 600 800 1000
Training Size

0.070

0.075

0.080

0.085

0.090

M
RE

Peds1_dir1
SVGP
fixed dlm
beta SVGP
joint dlm

200 400 600 800 1000
Training Size

0.045

0.050

0.055

0.060

0.065

0.070

M
RE

Peds1_dir2
SVGP
fixed dlm
beta SVGP
joint dlm

200 400 600 800 1000
Training Size

0.150

0.155

0.160

0.165

0.170

0.175

M
RE

abalone
SVGP
fixed dlm
beta SVGP
joint dlm

Figure 6: sGP Count Prediction: Comparison of SVGP and DLM with 10 MC samples in terms of MRE. In all
plots, lower values imply better performance.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
No. of training epochs

0.6100

0.6125

0.6150

0.6175

0.6200

0.6225

0.6250

0.6275

0.6300

M
ea

n
NL

L
on

 te
st

airline
SVGP 0.1
SVGP 1
SVGP 10
fixed dlm 0.1
fixed dlm 1
fixed dlm 10
joint dlm 0.1
joint dlm 1
joint dlm 10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
No. of training epochs

0.345

0.350

0.355

0.360

0.365

0.370

0.375

Er
ro

r r
at

e
on

 te
st

airline
SVGP 0.1
SVGP 1
SVGP 10
fixed dlm 0.1
fixed dlm 1
fixed dlm 10
joint dlm 0.1
joint dlm 1
joint dlm 10

Figure 7: Comparison of SVGP and DLM with exact gradients on the binary classification airline dataset. On
the left is mean NLL and on the right is mean error. In both plots, lower values imply better performance.

Yadi Wei, Rishit Sheth, Roni Khardon

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
̂∇f⊤∇f/||∇f||2

0

5

10

15

20

25

Co
un

t (
10

0
to

ta
l)

mean ps
uPS-1
uPS-10
uPS-100

0.020 0.025 0.030 0.035 0.040
|| ̂∇f||22

0

5

10

15

20

25

Co
un

t (
10

0
to

ta
l)

mean ps
True
uPS-1
uPS-10
uPS-100

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025
|| ̂∇f− ∇f||22

0

5

10

15

20

25

Co
un

d
(1

00
 to

ta
l)

mean ps
uPS-1
uPS-10
uPS-100

1 2 3 4 5
̂∇f⊤∇f/||∇f||2

0

5

10

15

20

25

Co
un

t (
10

0
to

ta
l)

mean mc
bMC-1
bMC-10
bMC-100

0.0 0.2 0.4 0.6 0.8
|| ̂∇f||22

0

5

10

15

20

25

Co
un

t (
10

0
to

ta
l)

mean mc
True
bMC-1
bMC-10
bMC-100

0.0 0.1 0.2 0.3 0.4 0.5 0.6
|| ̂∇f− ∇f||22

0

5

10

15

20

25

Co
un

d
(1

00
 to

ta
l)

mean mc
bMC-1
bMC-10
bMC-100

1.0 1.5 2.0 2.5 3.0
̂∇f⊤∇f/||∇f||2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
un

t (
10

0
to

ta
l)

mean mc-smooth
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

0.05 0.10 0.15 0.20 0.25 0.30
|| ̂∇f||22

0

5

10

15

20

25

Co
un

t (
10

0
to

ta
l)

mean mc-smooth
True
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
|| ̂∇f− ∇f||22

0

5

10

15

20

25

Co
un

d
(1

00
 to

ta
l)

mean mc-smooth
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

Figure 8: Statistics for calculation of biased gradients for the mean parameter for Count prediction in the Abalone
dataset. First row uPS, second row bMC, and third row smooth-bMC(ν = 10−4). Left: condition (i). Middle:
condition (ii). Right: estimate of bias. Exact gradients estimated from 10000 bMC samples.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
No. of training epochs

0.6100

0.6125

0.6150

0.6175

0.6200

0.6225

0.6250

0.6275

0.6300

M
ea

n
NL

L
on

 te
st

airline
fixed dlm
bMC-1
bMC-10
bMC-100
uPS-1
uPS-10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
No. of training epochs

0.345

0.350

0.355

0.360

0.365

0.370

0.375

Er
ro

r r
at

e
on

 te
st

airline
fixed dlm
bMC-1
bMC-10
bMC-100
uPS-1
uPS-10

Figure 9: Comparison of DLM with exact gradients, bMC gradients and uPS gradients with β = 0.1 on the binary
classification airline dataset. On the left is mean NLL and on the right is mean error. In both plots, lower values
imply better performance.

Direct Loss Minimization for Sparse Gaussian Processes: Supplementary Materials

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
No. of training epochs

0.6125

0.6150

0.6175

0.6200

0.6225

0.6250

0.6275

0.6300
M

ea
n

NL
L

on
 te

st
airline

fixed dlm
bMC-1
bMC-10
bMC-100
uPS-1
uPS-10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
No. of training epochs

0.345

0.350

0.355

0.360

0.365

0.370

0.375

Er
ro

r r
at

e
on

 te
st

airline
fixed dlm
bMC-1
bMC-10
bMC-100
uPS-1
uPS-10

Figure 10: Comparison of DLM with exact gradients, bMC gradients and uPS gradients with β = 1 on the binary
classification airline dataset. On the left is mean NLL and on the right is mean error. In both plots, lower values
imply better performance.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
No. of training epochs

0.616

0.618

0.620

0.622

0.624

0.626

0.628

0.630

M
ea

n
NL

L
on

 te
st

airline
fixed dlm
bMC-1
bMC-10
bMC-100
uPS-1
uPS-10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
No. of training epochs

0.350

0.355

0.360

0.365

0.370

0.375
Er

ro
r r

at
e

on
 te

st
airline

fixed dlm
bMC-1
bMC-10
bMC-100
uPS-1
uPS-10

Figure 11: Comparison of DLM with exact gradients, bMC gradients and uPS gradients with β = 10 on the
binary classification airline dataset. On the left is mean NLL and on the right is mean error. In both plots, lower
values imply better performance.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
No. of training epochs

0.6100

0.6125

0.6150

0.6175

0.6200

0.6225

0.6250

0.6275

0.6300

M
ea

n
NL

L
on

 te
st

airline
fixed-dlm
bMC-1
bMC-10
bMC-100
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
No. of training epochs

0.345

0.350

0.355

0.360

0.365

0.370

0.375

Er
ro

r r
at

e
on

 te
st

airline
fixed-dlm
bMC-1
bMC-10
bMC-100
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

Figure 12: Learning curve of bMC and smooth-bMC, β = 1.

Yadi Wei, Rishit Sheth, Roni Khardon

0 50 100 150 200 250 300
iteration

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1
abalone, beta 0.1

bMC-1
bMC-10
bMC-100
uPS-1
uPS-10
uPS-100

0 50 100 150 200 250 300
iteration

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1
abalone, beta 1.0

bMC-1
bMC-10
bMC-100
uPS-1
uPS-10
uPS-100

0 50 100 150 200 250 300
iteration

2.5

2.6

2.7

2.8

2.9

3.0

3.1
abalone, beta 10.0

bMC-1
bMC-10
bMC-100
uPS-1
uPS-10
uPS-100

0 50 100 150 200 250 300
iteration

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7
Peds1_dir0, beta 0.1

bMC-1
bMC-10
bMC-100
uPS-1
uPS-10
uPS-100

0 50 100 150 200 250 300
iteration

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7
Peds1_dir0, beta 1.0

bMC-1
bMC-10
bMC-100
uPS-1
uPS-10
uPS-100

0 50 100 150 200 250 300
iteration

2.1

2.2

2.3

2.4

2.5

2.6

2.7
Peds1_dir0, beta 10.0

bMC-1
bMC-10
bMC-100
uPS-1
uPS-10
uPS-100

Figure 13: Comparison of uPS and bMC on two datasets for Count Prediction.

0 50 100 150 200 250 300
iteration

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

NL
L

abalone, beta 0.1
bMC-1
bMC-10
bMC-100
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

0 50 100 150 200 250 300
iteration

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

NL
L

abalone, beta 1.0
bMC-1
bMC-10
bMC-100
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

0 50 100 150 200 250 300
iteration

2.5

2.6

2.7

2.8

2.9

3.0

3.1

NL
L

abalone, beta 10.0
bMC-1
bMC-10
bMC-100
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

0 50 100 150 200 250 300
iteration

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

NL
L

Peds1_dir0, beta 0.1
bMC-1
bMC-10
bMC-100
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

0 50 100 150 200 250 300
iteration

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

NL
L

Peds1_dir0, beta 1.0
bMC-1
bMC-10
bMC-100
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

0 50 100 150 200 250 300
iteration

2.1

2.2

2.3

2.4

2.5

2.6

2.7

NL
L

Peds1_dir0, beta 10.0
bMC-1
bMC-10
bMC-100
smooth-bMC-1
smooth-bMC-10
smooth-bMC-100

Figure 14: Comparison of bMC and smooth-bMC on two datasets for Count Prediction.

Direct Loss Minimization for Sparse Gaussian Processes: Supplementary Materials

0 100 200 300 400 500
No. of training epochs

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
NL

L
on

 te
st

pol
fixed dlm
bMC-1
bMC-10
bMC-100

0 100 200 300 400 500
No. of training epochs

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

M
ea

n
NL

L
on

 te
st

cadata
fixed dlm
bMC-1
bMC-10
bMC-100

0 100 200 300 400 500
No. of training epochs

−0.6

−0.4

−0.2

0.0

0.2

0.4

M
ea

n
NL

L
on

 te
st

sarcos
fixed dlm
bMC-1
bMC-10
bMC-100

0 100 200 300 400 500
No. of training epochs

1.20

1.25

1.30

1.35

1.40

M
ea

n
NL

L
on

 te
st

song
fixed dlm
bMC-1
bMC-10
bMC-100

Figure 15: Comparison of exact and bMC on four datasets for regression when β = 0.1.

Yadi Wei, Rishit Sheth, Roni Khardon

References

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G. (2018). Gpytorch: Blackbox
matrix-matrix gaussian process inference with GPU acceleration. CoRR, abs/1809.11165.

Hensman, J., Matthews, A., and Ghahramani, Z. (2015). Scalable variational Gaussian process classification.
JMLR.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.

	Efficient Implementation of Product Sampling
	Convergence of smooth-bMC with Probability 1
	Proof of Proposition 4 from Main Paper: Bounds on , ', ''
	Complete Experimental Details

