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Abstract

The paper provides a thorough investigation
of Direct Loss Minimization (DLM), which
optimizes the posterior to minimize predictive
loss, in sparse Gaussian processes. For the
conjugate case, we consider DLM for log-loss
and DLM for square loss showing a significant
performance improvement in both cases. The
application of DLM in non-conjugate cases is
more complex because the logarithm of expec-
tation in the log-loss DLM objective is often
intractable and simple sampling leads to bi-
ased estimates of gradients. The paper makes
two technical contributions to address this.
First, a new method using product sampling
is proposed, which gives unbiased estimates
of gradients (uPS) for the objective function.
Second, a theoretical analysis of biased Monte
Carlo estimates (bMC) shows that stochastic
gradient descent converges despite the biased
gradients. Experiments demonstrate empir-
ical success of DLM. A comparison of the
sampling methods shows that, while uPS is
potentially more sample-efficient, bMC pro-
vides a better tradeoff in terms of convergence
time and computational efficiency.

1 Introduction

Bayesian models provide an attractive approach for
learning from data. Assuming that model assumptions
are correct, given the data and prior one can calculate
a posterior distribution that compactly captures all our
knowledge about the problem. Then, given a predic-
tion task with an associated loss for wrong predictions,
we can pick the best action according to our posterior.
This is less clear, however, when exact inference is not
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possible or when the model is misspecified. Variational
inference, which is widely used, chooses the approxi-
mate posterior that minimizes the KL-divergence to
the true Bayesian posterior, and equivalently maxi-
mizes a lower bound on the marginal likelihood. While
these properties provide some intuitive justification,
they do not immediately guarantee that the resulting
approximation has good performance.

To address this, prior work, which is discussed in more
details below, showed that (under some technical con-
ditions) variational inference or some variants converge
to the “best parameter setting” in the class considered,
or has loss comparable to that parameter. These are
strong guarantees but they do not show performance
competitive with the “prediction resulting from the best
posterior over parameters” in the class considered. The
latter might use a broad posterior whose predictions
are much better in some cases, so there is room for
improvement either in better analysis of variational
inference or in alternative algorithms.

As argued by several authors (e.g., Lacoste-Julien et al.
(2011); [Stoyanov et al.| (2011))), when exact inference is
not possible, it makes sense to optimize the choice of
approximate posterior so as to minimize the expected
loss of the learner in the future. This requires using
the loss function directly during training of the model.
We call this approach direct loss minimization (DLM).
Exploring this idea, Sheth and Khardon| (2019) have
shown theoretically that (under some technical con-
ditions) DLM does provide performance competitive
with the “prediction resulting from the best posterior
over parameters” in the class considered.

1.1 DLM and Our Contributions

Motivated by these observations, in this paper we ex-
plore the potential of DLM to improve performance
in practice, in the context of sparse Gaussian Pro-
cesses (sGP), and in the process make technical con-
tributions to the problem of gradient estimation for
log-expectation terms.

To ground the discussion consider a model with latent
variables z and observations y, generating examples via
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p(2) [1p(yilz:). When calculating the posterior p(z|y)
is hard, variational inference finds an approximation
q(z) by maximizing the evidence lower bound (ELBO)
or minimizing its negation:

—logp(y)
< - /q(Z) log (58 Hp(yilzi)> dz
= 37 Eye - lompluslz]) + 8 drcs a(2)p(2)

where dg is the Kullback-Leibler divergence, and
8 =1 (but we discuss other values of 8 below). From
this perspective variational inference is seen to perform
regularized loss minimization, with dx as the regular-
izer. But viewed in this manner the loss on example 7 is
assumed to be Eq(.,)[—log p(yi|2;)] which is not the in-
tended process for a Bayesian predictor. Instead, given
a posterior, ¢(z), the Bayesian algorithm first calcu-
lates its predictive distribution q(y;) = Ey(.,)[p(yil2:)],
potentially calculates a prediction g;, and then suffers
a loss that depends on the context in which the algo-
rithm is used. For the case of log-loss, where g; is not
used, the loss term is —log ¢(y;). This suggests a new
regularized direct-loss objectve:

LoglLoss DLM objective

Comparing LogLoss DLM to the ELBO we see that
the main difference is the log term which is applied
before the expectation. On the other hand, if we care
about square loss in the case of regression, the training
criterion becomes

squareLoss DLM objective
=D (@i — ) + B drrla(2), p(2)).

Other losses will similarly lead to different objectives,
and hence different posteriors even when trained on
the same dataset. This distinction is important. It is
not required when performing exact Bayesian inference
in correct models but it has practical implications with
approximate inference. One of the contributions of this
paper is to investigate this issue empirically and our
experimental evaluation shows that this distinction is
important in practice.

Applying log-loss DLM raises the difficulty of opti-
mizing objectives including log E (., [p(y:]2:)] terms in
cases when the expectation is not analytically tractable.
The standard Monte Carlo estimate of the objective,
log 7 >, p(yi\zi(k)), where zi(k) ~ q(z) (or its reparam-
eterized version) is biased leading to biased gradients

— we call this approach bMC. We make two technical
contributions in this context. The first is a new method,
uPS, for unbiased estimates of gradients for objectives
with log-expectation terms through Product Sampling.
The method is general and we develop a practical ver-
sion for the case when ¢(z;) is Gaussian. Our second
contribution is a theoretical analysis of bMC, showing
that (under some technical conditions) stochastic gra-
dient descent using bMC gradients converges despite
the bias. bMC has been used in some prior work either
explicitly or implicitly and therefore the result may be
of independent interest.

An empirical evaluation in sGP for regression, classifi-
cation and count prediction compares log-loss DLM, to
ELBO, as well as S-ELBO (which explicitly optimizes
the regularization parameter for ELBO). The evalua-
tion shows that DLM is an effective approach which
in some cases matches and in some cases significantly
improves over the performance of variational inference
and S-ELBO. Results comparing the sampling methods
show that uPS is potentially more sample-efficient but
bMC provides a better tradeoff in terms of convergence
time and computational efficiency.

To summarize, the paper develops new analysis for sam-
pling methods and optimization with log-expectation
terms, shows how this can be incorporated in DLM for
sGP, and shows empirically that DLM has the potential
for significant performance improvements over ELBO.

2 ELBO and DLM for Sparse GP

In this section we review sGP and the development of
ELBO and DLM for this model. The GP (Rasmussen
and Williams|, |2006) is a flexible Bayesian model captur-
ing functions over arbitrary spaces but the complexity
of inference in GP is cubic in the number of examples n.
Sparse GP solutions reduce this complexity to O(M?n)
where M is the number of pseudo inputs which serve as
an approximate sufficient statistic for prediction. The
two approaches most widely used are FITC (Snelson
and Ghahramani, |2006) and the variational solution
of [Titsias| (2009). The variational solution has been
extended for large datasets and general likelihoods and
is known as SVGP (Hensman et al., [2013} |2015; [Sheth
et al., [2015).

In sGP, the GP prior jointly generates the pseudo val-
ues u and the latent variables f which we write as
p(u)p(flu) and the observations y = {y;} are gener-
ated from the likelihood model p(y;|f;). Most pre-
vious works use a restricted form for the posterior
q(u, f) = q(u)p(flu) where g(u) = N(m,V) is Gaus-
sian and where the conditional p(f|u) remains fixed
from the prior. Although sGP is slightly more general
than the model discussed in the introduction a simi-
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lar derivation yields the same forms for ELBO and
DLM as above, where the loss term in the ELBO
is Eqyp(s:ju[—logp(wil fi)] = Eq(p)[—log p(yil fi)]-
B-SVGP optimizes the objective with regularizer
Bdkr(q(u),p(u)) where sampling through reparam-
eterization is used when exact computation of the
objective is not tractable. The collapsed form (Tit-
siag, [2009) for the regression case uses the fact
that Ey(,)[—logp(y:|fi)] has an analytic solution and
through it derives an analytic solution for m, V' so that
only hyperparameters need to be optimized explicitly.
FITC (Snelson and Ghahramanil [2006) is not specified
using the same family of objective functions but has a
related collapsed form which is used in our experiments.

The log-loss term for DLM is —1og Ey(u)p(f,|u) [P(Yil fi)]
= —log Eq(s,)[p(yil fi)] = —logq(y:). Since both ¢(u)
and p(f;|u) are Gaussian distributions, the marginal
q(f;) is also Gaussian with mean pu; = K;, K,,}m and
variance v; = Ki; + K K1 (V — Ky ) KL Ko where
Ky, = K(u,u), Kiy = K(z;,u) etc.

In the following we consider log loss for regression, bi-
nary prediction through Probit regression and count
prediction through Poisson regression. For regression
we have p(yi|f;) = N(fi,02) and the loss term is
—logq(y;) = —log N (yi|pi,vi + 02). For probit re-
gression p(y; = 1|f;) = ®(f;) where ®(f) is the CDF
of the standard normal distribution. Here we_have
for y; € {0,1}, —logq(y;) = —log® (2%%)1“ . In
both cases we can calculate derivatives directly through
—log q(y;). For Poisson regression (with log link func-
tion) we have p(y;|f;) = e=e” e¥ifi [y;! and we do not
have a closed form for ¢(y;). In this case we must resort
to sampling when optimizing the DLM objective.

For square loss, ¢(y;) is the same as in the regres-
sion case, but calculating the loss requires optimal
prediction ¢;. In this case, the optimal prediction
is the mean of the predictive distribution, that is
9 = KK 'm. Therefore the loss term in square
loss DLM is % (K; K, ,lm — y;)?. It is easy to show
that the the optimization criterion simplifies into an
objective that depends only on m, and the regu-
larized square loss DLM objective for sparse GP is
3 2 (KK im — yi)? + ngKJulm-

To summarize, both ELBO and DLM include a loss
term and KL regularization term. When the loss
term is analytically tractable optimization can be per-
formed as usual. When it is not, solutions use sampling
where ELBO can use unbiased estimates of derivatives
through reparameterization, but log-loss DLM has to
compute derivatives for log-expectation terms which
are more difficult.

3 Unbiased Gradient Estimates

In this section we develop a new approach for gradients
of log-expectation terms. In particular, we describe an
extension of a standard technique from the Reinforce al-
gorithm (Williams|, 1992) that yields unbiased gradient
estimates, by sampling from a product of distributions.
The following proposition describes the technique.

Proposition 1. The estimate

G(0) = Vylogq(f"16), (1)
where fO ~ G(fV10) and G(f|0) = %, is an

unbiased estimate of Vg log Eqri9) p(ylf)-

Proof. The true derivative G(6) = Vg log Eq(f0) p(ylf)
is given by
VoEqgri0)PWlf) _  Gn(9) 2
EqrioypWlf)  Eqcp10) Pl f)
We next observe using (Williams| [1992)) that G,,(6) can
be written as

Gn(0)

= q()]cfl‘e) [p(y‘f)ve log q(f|9)] ) (3)

The expectation of with respect to the sample ()
is given by

E  Vglogq(f©9)

a6
) )
0 c
_ 1 ) W] = Gnl0) _
= G o POV loga(f V)] = T2 = G0,

where C' = Eg(fj9) p(y|f), and the second-to-last equal-
ity follows from the identity . O

The derivation in the lemma is general and does not
depend on the form of f. However, the estimate can
have high variance and in addition the process of sam-
pling can be expensive. In this paper we develop an
effective rejection sampler for the case where f is 1-
dimensional and ¢(f) = N (u,0?). We provide a sketch
here and full details are given in the supplement. Let
£(f) = p(y|f). To avoid a high rejection rate we sample
from ha(f) = N (i, no?) with the same mean as g() but
larger variance. We optimize the width multiplier n to
balance rejection rate in the region between intersection
points of ¢() and ho() (where ¢() is larger) and outside
this region (g() is smaller). It is easy to show that this
gives a valid rejection sampler with K = max¢(f),
that is, ho(f)K > q(f)4(f). This construction requires
separate sampling for each example in the dataset (or
a minibatch) and significant speedup can be obtained
by partly vectorizing the individual samples.
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4 Convergence with Biased Gradients

This section shows that biased Monte Carlo esti-
mates can be used to optimize the DLM objective.
For presentation clarity, in this section we scale
the objective by the number of examples n to get
— 5 3 10g Eypy [p(yil £:)] + 8% drer(a(), )] Let
r := (m,V) and consider the univariate distribution
q(filr) == N(fl-|a;1m +b;1, aI2Vai_,2 +b; 2) for known
vector a; 1, a; 2 and scalar constants b; 1, b; . This form
includes many models including sGP. In the follow-
ing, references to the parameter V' and gradients w.r.t.
it should be understood as appropriately vectorized.
We consider the reparameterized objective h;(r) =

—log Enr(ejo,1) P(yil fi = 9i(7,€)) and its gradient

Ve Enepo,n) PWilfi = gi(r,€))
Enr(ejo,n) P(yil fi = gi(r,€))

_EN(E\O,l) {% [p(ilfi = gi(r,€))| Vrgi(r, 6)]

Vrhi (T‘) =

En(ejo,) p(wil fi = gi(r,€))
(4)

where g;(r,€) ,/aZQVam + b;0€e + a;-':lm + bi1.

Letting 01(r.¢) == p(ulfi = 5i(r.e)) . ¢1(r0) =
2l = gi(r,0), and ¢(re) = Loep(uilfi
gi(r,€)), the components of the gradient in are

~ En(eo [#(r,€)]
En(eo,1) [@i(r,€)]

Vinhi(r) = i, (5)

En(ejo,1) [¢5(r, €)e] i 20 o

Exelo [9:(r 0] 2, faT,Va, 5 + by

_ _Entaon [#(r,0)] aizai, (6)
Ex(epo [¢i(r, )] 27
where the final equality holds under various conditions

(Opper and Archambeau, [2009; [Rezende et al.l 2014}
Sheth et al.| [2015).

Vvhi(r) =

We consider the bMC procedure that replaces the
fraction in the true gradients of the loss term with

(s Vep (il )/ (i, pwil £17)) where £ ~
q(fi]r),1 < £ < L. The corresponding bMC estimates
of the gradients are

_ X i)
- ZeLzl ¢i(r, €®)
_ ZeLzl @7 (r,e®) ainay
T dilne®) 2

Thesparse GP case, the KL term is over the inducing

inputs, whereas for the simpler model in the introduction,
the KL term is over f.

di,m(r) : i1 (7)

di’v(T’) . (8)

where {¢)}}_| are drawn i.i.d. from N ([0, 1).

The main result of this section, given in Corollary

shows that it is safe to use , instead of , @,

with a gradient descent procedure.

Our proof uses the following result from Bertsekas and
Tsitsiklis| (1996|) establishing conditions under which
deterministic gradient descent with errors converges:

Proposition 2 (Proposition 3.7 of Bertsekas and Tsit-
siklis| (1996)). Let ry be a sequence generated by a gra-
dient method ri11 = ri + Yidy, where dy = (8¢ + wy)
and s; and wy satisfy (i) c1||Vh(re)||* < =Vh(ry) sy,
(ii) Isoll < e Vh(rol, and (i) Jwdll < v(es +
ca||Vh(re)|]) for some positive constants ci1,ca, 3, ca. If
V() is Lipschitz and Yoy v < 00 and Yoy vt = 00,
then either h(ry) — —oo or else h(ry) converges to a
finite value and lim;—,o, VA(ry) = 0.

Intuitively, condition (i) guarantees that the step is in
roughly opposite direction of the true gradients and
thus the objective is decreasing; condition (ii) bounds
the relative magnitude of the step with respect to true
gradients; condition (iii) bounds the norm of the error
and thus bounds the negative impact of the errors so
that the objective can converge to a stationary point.

The next condition is needed for the proof, and as
shown by the following proposition it is easy to satisfy.

Assumption 3. There exist finite constants
B,V,B"v',B" such that B > ¢i(r,e) > 0,
B’ > ¢i(r,e) > bV and B" > ¢}/ (r,e) > b". Further,
denote B* = maz{B,|B’|,|B"|, V|, |b"|}.
Proposition 4. Assumption[3 holds for the likelihood
models shown in Table [

The proof of the proposition is given in the supplement.
We can now state the main result of this section:

Corollary 5. Suppose Assumption [3 holds. If for
every t and i, Eqp, ) p(yilfi) > (>0 and

log(6n/:)

L> M where 9
297 ®)
B2 B —b 2 B" ' 2
M = max 5 ( 5 ) , ( 5 )
| Exrejo,1) @i(r, €)| P Q
(10)

if Eneo,) @5(rs€) #0
otherwise
_ JIEN(o) 87 (6], if Enejon) @7 (re) #0
QR = .
1, otherwise
and Y, 0 = 0§, then with probability at least 1 — ¢,

bMC satisfies the conditions of the Proposition |3 and
hence converges.

)

1

)

o {Eme.o,l) 8(r, €,

7
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Table 1: Derivative bounds for different models

Likelihood B b’ B’ b’ B
Logistic, o(yf) s 1 -1 I -1 I
Gaussian, ¢~V 117" 0 = ¢ ~ 7> s 2 o
Probit, ®(yf), ® is cdf of Gaussian 1 —1/V2m 1/+V2m —1/V2me 1/V2me

Yeg(f
Poisson, Miiq(),g(f) = log(ef +1) 1 -1 1 —2.25 2.25

e9(F
Poisson, g(f)yyi,g),g(f) =ef 1 —y—1 Yy —y—1/4 292 + 3y +2
vl Tl v I o
) (w—p2 - T ) o v Vu+f2 o v Vut2 vt1 c vl 42y (v+5)/2
Student’s t, C(1+T) ,c= W c T (EE, w182 (VEB (v T3)/2 -2z 257 (F3%)
v+2 v+2

The first condition for convergence requires a uniform
lower bound ¢ on the overall “agreement” between
q(fi|r) and p(y;|f;). Intuitively this is reasonable be-
cause we expect the agreement to improve with the
training process (albeit not simultaneously for all exam-
ples). The second condition requires that the number
of samples L is sufficiently large. We first introduce
the following lemma.

Lemma 6 (Two-sided relative Hoeffding bound).
Consider i.i.d. draws {x'} from a random variable
with mean p # 0 and support [a,b]. For §,a €

(0,1), if L > 7((ba a)) log 2, then, w.p. at least 1 — 6,

(1/L) 3, 29 and p have the same sign and 0 < 1—a <
7 PN

Proof. First, assume p > 0. From Hoeffding’s inequal-
ity, we know that if the condition on L is met, then
w.p. > 1-6, we have p—ap < (1/L) Y,z < p+ap
from which the result follows. If u < 0, apply the same
argument to the negation of the random variable. [

The main ideas of the proof are as follows. Let s;
be the true gradient, then conditions (i),(ii) hold triv-
ially with ¢y = ¢ = 1. Then we aim to bound the
error wy. According to Lemma[6] for suﬁiciently large
sample size L, with high probability, + >, ¢/(r, €®)
and 1 T bi(r,€®)) are close to En(ejo,1) #;(r, €) and
Enr(ejo,1) @5 (7€), up to a factor of . Looking back at
and and using Assumption (3} we show that the
error term can be bounded linearly in «. Finally we
set the value of « at iteration t to be ; to guarantee
that the error decreases with iterations.

Proof of Corollary[J We first show that h has Lip-
shitz gradients. This follows from a generalization
of the mean-value theorem applied to continuous and
differentiable vector-valued functions (see e.g., Theo-
rem 5.19 of |[Rudin| (1976)). The Lipschitz constant
will be equal to the maximum norm of the gradient
over the domain and, in our case, will be finite when

Eq(s.my P(wil fi) > ¢ > 0. Note that it is always the
case that the expectation is > 0 but we must assume a
uniform bound for all ¢, 1.

Let d; = s;+w; where s; = —Vh(r;) so that conditions
(1),(il) hold trivially with ¢; = co = 1. We next develop
the expression for w; to show that condition (iii) holds.

Now w; = ), w; ; where m’s portion of wy ; is
w o G ((l/L) > ¢i(r ) Enepon) ¢, 6))
t,i,m — -
n \(1/L) Zz éi(r, 6(@) Enr(ejo,1) Bi(r,€)

(11)
and a similar expression holds for V’s portion.

Our claim follows from three conditions that hold
with high probability. When E¢’ # 0 and E¢” # 0
the conditions require the averages (1/L) ", ¢i(r, €9),
(1/L) 5, 64(r,€®), (1/L) 3, 6! (r,®) to be close to
their expectations, i.e. within 1 + « relative error, w.p.
>1-6/(3n). Using Lemma [6| these are accomplished

by assuming that L > MM.

From ( we have

||w1t,i,m||2

En(eo,1) @5(r,€) |

N (e0,1) Pi(Ts €)
(12)

Considering the portion with absolute value, if
Enr(ejo,1) #5(7,€) # 0 then both fractions have the same
sign. Then since i<

> 2

‘la
(1

) >0 9i(r,e?)

) 3¢ ¢ilr,e®)

_ laiall
n2

/L
/L

—«

1
1>1- 4

-«

(

we have
[e3

En(ejo,1) #5(,
Enr(ejo,1) ¢i(r,

2
I

o _ llaiqll
< =

(1+a)
(1-a)

l|we,i,

mll

||ai71||2 2« ? B* 2 (13)
n2 1-a ¢ )’
. o llaiall\2
and using o < 0.5 we get ||we;m|* < (%w) )

When Epr(¢jo,1) ¢;(7, €) = 0, we use the standard Hoeffd-
. (B’ —b")%log(6n/5)

ing bound and L > 502 to guarantee that
|(1/L) Y, #i(r, e < @ wp. > 1—6/(3n). We also
have (1/L)3, (bi(r,e(e)) > En(ejo) ¢i(r,e)(1 —a) >
¢(1 — @), and therefore, for m’s portion we have

il
n

il 2

c

e}
<

RErE (14)

”wt,mn” < n
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Therefore we can bound m’s portion by the sum of
bounds from the two cases:

aiall 20
lweim| < T?@B +1). (15)

Similar expressions for both cases hold simultaneously
for V, replacing a;; with ai’ga;':Q, and, therefore, com-
bining bounds for m,V we have

lal| 2?0‘(23* 1) (16)

[[we,ql| <
where a; is the concatenation of a;; and the vectoriza-
. T
tion of a; 2a; 5.

Summing over all examples, we see that

horll = 1S weal) < \/ZZ s

< A2?a(2B* +1) (17)

[l

where A = max; ||a;||. Using the union bound we see
that this holds w.p. > 1 — 4.

To complete the analysis we need to make sure that the
above holds for all iterations simultaneously. For this
let ; be such that )", §; = 6. For example, 6, = %t%.

Use 6; in the definition of L above to obtain the result.

This satisfies condition (iii) if we set « for step t to be
a; =y and set c3 = A%(QB* +1)and ¢y =0. O

The implication of the choices of oy and §; is that the
number of samples L increases with ¢. Specifically, for
v = 1/t this implies L o t?log(nt). While this is a
strong condition, we are not aware of any other analysis
for a procedure like bMC. In practice, we use a fixed
sample size L in our experiments, and as shown there,
the procedure is very effective.

Notice that Corollary [5| only guarantees convergence
with high probability. By adding a smoothing factor
to the denominator of and , we can strengthen
the result and prove convergence w.p. 1. However,
smoothing did not lead to a significant difference in
results of our experiments. Details of the proof and
experimental results are provided in the supplement.

5 Related Work

DLM is not a new idea and it can be seen as regular-
ized empirical risk minimization (ERM), a standard ap-
proach in the frequentist setting. An intriguing line of
work in the frequentist setting follows [McAllester et al.
(2010) to develop DLM algorithms for non-differentiable
losses. Extending the ideas in this paper to develop

Bayesian DLM for non-differentiable losses is an im-
portant challenge for future work. In the following we
disucss related work along several dimensions.

Approximating the Bayesian objective function:
In the Bayesian context, DLM can be seen as part of
a larger theme which modifies the standard ELBO
objective to change the loss term, change the regular-
ization term, and allow for a regularization parameter,
as captured by the GVI framework (Knoblauch et al.|
2019; [Knoblauchl 2019)) which is a view strongly con-
nected to regularized loss minimization. For example,
the robustness literature, e.g., [Knoblauch et al.| (2019);
Chérief-Abdellatif and Alquier| (2019)); Bissiri et al.
(2016)); Futami et al.| (2018); Knoblauch| (2019), aims to
optimize log loss but changes the training loss function
in order to be robust to outliers or misspecification
and the safe-Bayesian approach of |Griinwald, (2012);
Grinwald and van Ommen| (2017) selects 8 in order to
handle misspecification. However, in all these papers
the loss term is the Gibbs loss, E,)[{()], where £() is
the training loss. In contrast, DLM uses the loss of the
Bayesian predictor with the motivation that this makes
sense as an empirical risk minimization algorithm.

Another interesting connection arises w.r.t. power-EP
and a-divergence minimization and their approxima-
tions in the BB-a and AEPEP objectives (Hernandez-
Lobato et all [2016; [Li and Gal, 2017; |Villacampa
Calvo and Hernandez-Lobato, [2020]) where the latter
optimizes = Y. —log Eq(z,)[p(yil2i)*]+dk L (q(2), p(2)).
The two objectives are identical when oo = 5 = 1. How-
ever, for other values of 8, LogLoss DLM cannot be
replaced by this objective because AEPEP uses « also
as a power of the likelihood. In practice, Logloss DLM
tends to pick small 8 values but the a-divergence crite-
rion tends to pick a closer to 1 showing the difference
is important. On the other hand the DLM perspective
can be seen to provide a theoretical motivation for
BB-a and AEPEP.

Convergence analysis for Bayesian approxima-
tions: A range of approaches have also been used
from a theoretical perspective. Some prior analysis of
Bayesian algorithms aims to show that the approxima-
tions recover exact inference under some conditions.
This includes, for example, consistency results for vari-
ational inference (Wang and Blei, [2019alb) and the
Laplace approximation (Dehaene, 2017)). For sparse
GP, Burt et al| (2019)) shows that this holds when
using the RBF kernel, and when the number and lo-
cation of pseudo inputs are carefully selected. The
work of |Alquier et al.| (2016)) uses PAC Bayes theory
and formulates conditions under which the variational
approximation is close to the true posterior. In con-
trast to these, |Alquier et al| (2016) and |Sheth and
Khardon| (2017, 2019)) analyze variational and DLM al-
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gorithms bounding their prediction loss relative to the
“best approximate pseudo posterior”. Our paper further
elaborates algorithmic details of DLM and provides an
empirical evaluation.

Sparse GPs: sGP have received significant attention
in the last few years. [Bauer et al.|(2016) investigates
the performance of the variational and FITC approxi-
mations and provide many insights. Their observations
on difficulties in the optimization of hyperparameters in
FITC might have parallels in DLM. Our experimental
setup explicitly evaluates joint optimization of hyper-
parameters with DLM as well as a hybrid algorithm to
address these difficulties. |Reeb et al.(2018) develops a
new sGP algorithm by optimizing a PAC-Bayes bound.
The output of their algorithm is chosen in a manner
that provides better upper bound guarantees on its
true error, but the actual test error is not improved
over SVGP. The work of [Salimbeni et al.| (2018]) devel-
ops a novel variant of SVGP that uses different pseudo
locations for m and V. In contrast with these works
our paper emphasizes the DLM objective and evaluates
its potential to improve performance.

DLM: Several works have explored the idea of DLM
for Bayesian algorithms. |[Sheth and Khardon| (2017)
demonstrated the success of DLM in topic models.
The work of [Sheth and Khardon| (2016); |Jankowiak
et al. (2020bja)) applied log loss DLM and variants
for regression showing competitive performance with
ELBO. Our work significantly improves over this work
by exhibiting the differences between square-loss DLM
and log-loss DLM for regression, and by developing
extensions, sampling methods and analysis for the non-
conjugate case of log-loss DLM, which are stated as
open questions by Jankowiak et al.| (2020a). Finally,
Masegosal (2020) motivates DLM as the right procedure,
but then identifies a novel alternative objective which
is sandwiched between ELBO and DLM. This offers
an interesting alternative to DLM with the potential
advantage that its loss term is the Gibbs loss (i.e., does
not have log-expectation issues), but the disadvantage
that it is an approximation to true DLM.

Overall, the space of loss terms, regularizers, and the
balance between them offer a range of choices and
identifying the best choice in any application is a com-
plex problem. We believe that DLM is an important
contribution in this space.

6 Experimental Evaluation

Our experimentéﬂ have two goals, the first is to evaluate
whether DLM provides advantages over variational

2The code used in our experiments is available at https:
//github.com/weiyadi/dlm_sgp.

inference in practice, and the second is to explore the
properties of the sampling methods, including efficiency,
accuracy and stability. Due to space constraints, we
summarize the main results here, and full details are
provided in the supplement.

6.1 Details of Algorithms and Experiments

Preliminary experiments with joint optimization of
variational parameters and hyperparameters in DLM
showed that it is successful in many problems but that
in some specific cases the optimization is not stable.
We suspect that this is due to interaction between op-
timization of variational parameters and hyperparam-
eters which complicates an experimental comparison.
We therefore run two variants of DLM. The first per-
forms joint optimization of variational parameters and
hyperparameters. The second uses fixed hyperparame-
ters, fixing them to the values learned by SVGP. This
also allows us to compare the variational posterior of
SVGP and DLM on the same hyperparameters.

Prior theoretical results do not have a clear recommen-
dation for setting the regularization parameter 8 where
some analysis uses 8 = 0 (no regularization), 8 = 1 (the
standard setting), and 5 = ©(y/n). Here we use grid
search with a validation set on an exponentially-spaced
grid, i.e., 8 =[n,n/2,n/4,n/8,...,0.01]. In some exper-
iments below we diverge from this and present results
for specific values of 8. To facilitate a fair comparison,
we include ELBO with 8 = 1 and a variant of ELBO
that selects 8 in exactly the same manner as DLM.

We selected 4 moderate size datasets for each of the
likelihoods, giving 16 test cases including regression,
square error, classification, and count prediction. In
addition, we selected one large classification dataset
that has been used before for evaluating sparse GP.

All algorithms are trained with the Adam optimizer.
Isotropic RBF kernels are used except for the airline
dataset where an ARD RBF kernel was used. Eval-
uations are performed on held-out test data and 5
repetitions are used to generate error bars. Full details
of the experiments are given in the supplement.

6.2 Results

Our first set of experiments aims to evaluate the merit
of the DLM objective as compared to ELBO. To achieve
this, we fix the number of pseudo points and then
each point in Figure 1| (a-e), shows the final test set
loss score when the algorithm has converged on the
corresponding sample size. That is, we compare the
quality that results from optimizing the objective, and
not the optimization algorithm or convergence speed.
This allows a cleaner separation of the objectives.
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Figure 1: Selected results. Description of individual plots is given in the text.

Log-loss and sq-loss in sGP Regression: Fig-
ure (a) shows the result for log-loss regression on
the sarcos dataset where log-loss DLM has a significant
advantage. Figure b) shows the result for square-loss
on the same dataset. Here we see that square-loss DLM
has a significant advantage over other algorithms (in-
cluding log-loss DLM). This illustrates the point made
in the introduction, that optimizing DLM for a specific
loss can have an advantage over methods that aim for
a generic posterior. We can also observe that S-ELBO
shows a clear improvement over ELBO, which suggests
that selection of 8 should be adopted more generally in
variational inference. The supplement includes results
for 3 additional datasets with similar trends.

B-values: It is interesting to consider the g8 values
selected by the algorithms. For most datasets and
most training set sizes a small value of 8 < 1 is often
a good choice. However, this is not always the case.
Figure c) shows a plot of log-loss as a function of 8

for a small (691) training set size on the cadata dataset.
We observe that the optimal /5 is larger than 1 for all
methods. For larger size data (see supplement) joint
DLM selects 8 < 1 but other methods do not.

These values can be seen in the context of the safe-
Bayes algorithm |Griinwald| (2012); |Grinwald and van|
that selects n = 1/, but does so using
Gibbs loss in a sequential Bayesian prediction. The
theoretical analysis leading to safe-Bayes suggests using
n =1/ < 1 and similarly PAC-Bayes analysis yields
the choice 8 = y/n > 1 both leading to more regular-
ization. However, the best choice might depend on the
relation between dataset size and the difficulty of the
problem and in practice might mean less regularization.

Log-loss DLM in non-conjugate sGP: Figure [I]
(d-e) show log-loss results for classification on the ring-
norm dataset and for count regression on the pedsl
dataset, where DLM for count regression uses bMC
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sampling with 10 samples. We observe that log-loss
DLM is comparable to or better than ELBO and -
ELBO. The supplement includes results for 3 additional
datasets for each likelihood with similar trends. In some
cases hyperparameter optimization in joint-DLM is sen-
sitive, but taken together the two DLM variants are
either comparable to or significantly better than ELBO
and B-ELBO. In addition, results from the same exper-
iments which are included in the supplement show that
DLM achieves better calibration in the non-conjugate
cases without sacrificing classification error or count
mean relative error.

Non-conjugate DLM on a large dataset: We next
consider whether DLM is applicable on large datasets
and whether it still shows an advantage over ELBO.
For this we use the airline dataset (Hensman et al.l
2015) which has been used before to evaluate sGP for
classification. Due to the size of the dataset we do
not perform S selection and instead present results
for values 0.1, 1, and 10. In contrast with previous
plots, Figure (f) is a learning curve, showing log-loss
as a function of training epochsﬂ We observe that
for all values of B in the experiment both variants of
B-DLM significantly improve over S-ELBO and they
significantly improve over ELBO (8 = 1).

Evaluation of the sampling algorithms: We first
explore the quality of samples regardless of their effect
on learning. Figure [1| portions (g,h) show estimates of
bias for bMC and uPS on the abalone count prediction
dataset (where the true gradient is estimated from
10000 bMC samples). The statistics for the gradients
are collected immediately after the initialization of the
algorithm. Additional plots in the supplement show
estimates for the direction of the update step d; and its
norm relative to the true gradient (similar to conditions
(i) and (ii) of Proposition [2[ but for d; and similar to
conditions in Proposition 4.1 in |Bertsekas and Tsitsiklis
(1996))). The plots show that uPS indeed has lower bias
as expected (note the scale in z-axis in the plots).

We next compare the quality of predictions when learn-
ing using the sampling methods, to each other and
to the results of exact computations. Learning curves
for airline for § = 0.1 are shown in Figure i) and
plots for 8 = 1,10 are given in the supplement. We
observe that with enough samples both algorithms can
recover the performance of the exact algorithm. We
also observe in plot 1(i) that to achieve this uPS can
use 10 samples and bMC needs 100 samples. Similarly,
uPS with 1 sample is better than bMC with 10 samples.
This suggests that uPS makes better use of samples

3The plot shows the result of one run but the result
is robust. We repeated the experiment 5 times and the
learning curves look similar. We chose to show one run to
avoid clutter in the plot with error bars.

and has a potential advantage. The supplement shows
learning curves comparing uPS and bMC for count pre-
diction on two datasets. In this case even one sample
of bMC yields good results and there are no significant
differences between bMC and uPS in terms of log-loss.
Finally, learning curves for log-loss in regression given
in the supplement show that bMC can recover the re-
sults of exact gradients with > 10 samples. Overall,
uPS is unbiased and might make more efficient use of
samples. However, despite the speedup developed for
uPS, it is significantly slower in practice due to the
cost of generating the samples, and bMC provides a
better tradeoff in practice.

7 Conclusion

The paper explores the applicability and utility of DLM
in sparse GP. We make two technical contributions for
sample based estimates of gradients of log-expectation
terms: uPS provides unbiased samples and bMC is
biased but is proved to lead to convergence nonetheless.
An extensive experimental evaluation shows that DLM
for sparse GP is competitive and in some cases signifi-
cantly better than the variational approach and that
bMC provides a better time-accuracy tradeoff than uPS
in practice. While we have focused on sGP, DLM is at
least in principle generally applicable. As mentioned
above, this has already been demonstrated for the cor-
related topic model, where the hidden variable is not
1-dimensional, but where equations simplify and gradi-
ents can be efficiently estimated through sampling. We
believe that variants of the methods in this paper will
enable applicability in probabilistic matrix factoriza-
tion, GPLVM (through its reparameterized objective),
and the variational auto-encoder and we leave these for
future work. Extending the analysis of bMC to provide
finite time bounds is another important direction for
future work.
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