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Abstract

We develop several new algorithms for learning
Markov Decision Processes in an infinite-horizon
average-reward setting with linear function ap-
proximation. Using the optimism principle and
assuming that the MDP has a linear structure, we
first propose a computationally inefficient algo-
rithm with optimal Õ(

√
T ) regret and another

computationally efficient variant with Õ(T
3
4 ) re-

gret, where T is the number of interactions. Next,
taking inspiration from adversarial linear bandits,
we develop yet another efficient algorithm with
Õ(
√
T ) regret under a different set of assump-

tions, improving the best existing result by Hao
et al. (2021) with Õ(T

2
3 ) regret. Moreover, we

draw a connection between this algorithm and
the Natural Policy Gradient algorithm proposed
by Kakade (2002), and show that our analysis
improves the sample complexity bound recently
given by Agarwal et al. (2020).

1 Introduction

Reinforcement learning with value function approximation
has gained significant empirical success in many applica-
tions. However, the theoretical understanding of these meth-
ods is still quite limited. Recently, some progress has been
made for Markov Decision Processes (MDPs) with a tran-
sition kernel and a reward function that are both linear in a
fixed state-action feature representation (or more generally
with a value function that is linear in such a feature represen-
tation). For example, Jin et al. (2020) develop an optimistic
variant of the Least-squares Value Iteration (LSVI) algo-
rithm (Bradtke and Barto, 1996; Osband et al., 2016) for the
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finite-horizon episodic setting with regret Õ(
√
d3T ), where

d is the dimension of the features and T is the number of
interactions. Importantly, the bound has no dependence on
the number of states or actions.

However, the understanding of function approximation for
the infinite-horizon average-reward setting, even under the
aforementioned linear conditions, remains underexplored.
Compared to the finite-horizon setting, the infinite-horizon
model is often a better fit for real-world problems such as
server operation optimization or stock market decision mak-
ing which last for a long time or essentially never end. On
the other hand, compared to the discounted-reward model,
maximizing the long-term average reward also has its ad-
vantage in the sense that the transient behavior of the learner
does not really matter for the latter case. Indeed, the infinite-
horizon average-reward setting for the tabular case (that
is, no function approximation) is a heavily-studied topic
in the literature. Several recent works start to investigate
function approximation for this setting, albeit under strong
assumptions (Abbasi-Yadkori et al., 2019a,b; Hao et al.,
2021).

Motivated by this fact, in this work we significantly ex-
pand the understanding of learning MDPs in the infinite-
horizon average-reward setting with linear function approx-
imation. We develop three new algorithms, each with
different pros and cons. Our first two algorithms prov-
ably ensure low regret for MDPs with linear transition
and reward, which are the first for this setting to the best
of our knowledge. More specifically, the first algorithm
Fixed-point OPtimization with Optimism (FOPO) is based
on the principle of “optimism in the face of uncertainty”
applied in a novel way. FOPO aims to find a weight vector
(parametrizing the estimated value function) that maximizes
the average reward under a fixed-point constraint akin to the
LSVI update involving the observed data and an optimistic
term. The constraint is non-convex and we do not know of
a way to efficiently solve it. FOPO also relies on a lazy
update schedule similar to (Abbasi-Yadkori et al., 2011) for
stochastic linear bandits, which is only for the purpose of
saving computation in their work but critical for our regret
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Table 1: Summary of our results and comparisons to prior work. Our first two algorithms are the first results for infinite-
horizon average-reward MDPs under Assumptions 1 and 2, while our third algorithm improves over the best existing
results in a setting with a different set of assumptions. These two set of assumptions are incomparable, in the sense that
Assumption 1 is weaker than Assumptions 3 and 5, while Assumption 2 is stronger than Assumption 4.

Algorithm Regret
Assumptions

Explorability Structure

FOPO (Algorithm 1) Õ(
√
T ) Bellman optimality equation

(Assumption 1)
linear MDP

(Assumption 2)OLSVI.FH (Algorithm 2) Õ(T
3
4 )

MDP-EXP2 (Algorithm 3) Õ(
√
T ) uniform mixing

(Assumption 3)
uniformly excited features

(Assumption 5)

linear bias function
(Assumption 4)Politex (Abbasi-Yadkori et al., 2019a) Õ(T

3
4 )

AAPI (Hao et al., 2021) Õ(T
2
3 )

guarantee. We prove that FOPO enjoys Õ(
√
d3T ) regret

with high probability, which is optimal in T . (Section 2)

Our second algorithm OLSVI.FH addresses the computa-
tional inefficiency issue of FOPO with the price of having
larger regret. Specifically, it combines two ideas: 1) solving
an infinite-horizon problem via an artificially constructed
finite-horizon problem, which is new as far as we know, and
2) the optimistic LSVI algorithm of Jin et al. (2020) for
the finite-horizon setting. OLSVI.FH can be implemented
efficiently and is shown to achieve Õ((dT )

3
4 ) regret. (Sec-

tion 3)

Our third algorithm MDP-EXP2 takes a very different ap-
proach and is inspired by another algorithm called MDP-
OOMD from Wei et al. (2020). MDP-OOMD runs a partic-
ular adversarial multi-armed bandit algorithm for each state
to obtain Õ(

√
T ) regret (ignoring dependence on other pa-

rameters) for the tabular case under an ergodic assumption.
We generalize the idea and apply a particular adversarial
linear bandit algorithm known as EXP2 (Dani et al., 2008;
Bubeck et al., 2012) for each state (only conceptually — the
algorithm can still be implemented efficiently). Under the
same set of assumptions made in Hao et al. (2021) (which
does not necessarily require linear transition and reward),
we improve their regret bound from Õ(T

2
3 ) to Õ(

√
T ). In

Appendix F, we also describe the connection of this algo-
rithm with the Natural Policy Gradient algorithm proposed
by Kakade (2002), whose sample complexity bound is re-
cently formalized by Agarwal et al. (2020). We argue that
under the setting considered in Section 4, their analysis
translates to a sub-optimal regret bound of Õ(T

3
4 ), and

that our improvement over theirs comes from the way we
construct the gradient estimates.

We summarize our results and the comparisons to previous
work in Table 1.

Related work. For the tabular case with finite state and
action space in the infinite-horizon average-reward setting,
the works (Bartlett and Tewari, 2009; Jaksch et al., 2010)
are among the first to develop algorithms with provable
sublinear regret. Over the years, numerous improvements
have been proposed, see for example (Ortner, 2020; Fruit
et al., 2018; Talebi and Maillard, 2018; Fruit et al., 2020;
Zhang and Ji, 2019; Wei et al., 2020). In particular, the
recent work of Wei et al. (2020) develops two model-free
algorithms for this problem. We refer the reader to (Wei
et al., 2020, Table 1) for comparisons of existing algorithms.
As mentioned, our algorithm MDP-EXP2 is inspired by
the MDP-OOMD algorithm of Wei et al. (2020). Also
note that their Optimistic Q-learning algorithm reduces an
infinite-horizon average-reward problem to a discounted-
reward problem. For technical reasons, we are not able to
generalize this idea to the linear function approximation
setting (see Section 3.2). Instead, our OLSVI.FH reduces
the problem to a finite-horizon version, which is new to the
best of our knowledge and might be of independent interest.

The work of Chen et al. (2018) considers learning in infinite-
horizon average-reward MDPs with linear function approx-
imation, under the assumption that the learner has access
to a sampling oracle from which the learner can sample
states and actions under any given distribution. The assump-
tions they make for the MDP is similar to the ones in our
Section 4, and the sample complexity bound they obtain is
Õ
(
1/ε2

)
. However, since the oracle assumption is rather

strong, it is not clear how to extend their algorithm to the
online setting.

The works of Abbasi-Yadkori et al. (2019a,b); Hao et al.
(2021) are among the first to consider the infinite-horizon
average-reward setting with function approximation and
provable regret guarantees in the online setting. Their re-
sults all depend on some uniformly mixing and uniformly
excited feature conditions. As mentioned, under the same
assumption, our MDP-EXP2 algorithm with Õ(

√
T ) regret
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improves the best existing result by Hao et al. (2021) with
Õ(T

2
3 ) regret. Moreover, our other two algorithms ensure

low regret for linear MDPs without these extra assumptions,
which do not appear before.

Provable function approximation has gained growing re-
search interest in other settings as well (finite-horizon or
discounted-reward). See recent works (Liu et al., 2019;
Wang et al., 2019; Yang and Wang, 2020; Jin et al., 2020;
Zanette et al., 2020; Dong et al., 2020; Wang et al., 2020)
for example. In particular, our FOPO algorithm shares
some similarity with the algorithm of Zanette et al. (2020),
which also relies on solving an optimization problem under
a constraint akin to LSVI, with no efficient implementation.

Adversarial linear bandit is also known as bandit linear op-
timization. The EXP2 algorithm (Bubeck et al., 2012), on
top of which our MDP-EXP2 algorithm is built, is also
known as Geometric Hedge (Dani et al., 2008) or Com-
Band (Cesa-Bianchi and Lugosi, 2012) in the literature. A
concurrent work by Neu and Olkhovskaya (2020) proposes
an algorithm called MDP-LINEXP3 for the linear function
approximation setting that is also based on the adversarial
linear bandit framework. However, their result is incompa-
rable to ours because they focus on finite-horizon MDPs
with adversarial reward, and they assume that the learner
has access to a sampling oracle.

2 Preliminaries

We consider infinite-horizon average-reward Markov De-
cision Processes (MDPs) described by (X ,A, r, p) where
X is a Borel state space with possibly infinite number
of elements, A is a finite action set, r : X × A →
[−1, 1] is the (unknown) reward function, and p(·|x, a)
is the (unknown) transition kernel induced by x, a, sat-
isfying

∫
X p(dx

′|x, a) = 1 (following integral notation
from Hernández-Lerma (2012)).

The learning protocol is as follows. A learner interacts with
the MDP through T steps, starting from an arbitrary initial
state x1 ∈ X . At each step t, the learner decides an action
at, and then observes the reward r(xt, at) as well as the
next state xt+1 which is a sample drawn from p(·|xt, at).
The goal of the learner is to be competitive against any
fixed stationary policy. Specifically, a stationary policy
is a mapping π : X → ∆A with π(a|x) specifying the
probability of selecting action a at state x. The long-term
average reward of a stationary policy π starting from state
x ∈ X is naturally defined as:

Jπ(x) , lim inf
T→∞

1

T
E

[
T∑
t=1

r(xt, at)
∣∣∣ x1 = x, ∀t ≥ 1,

at ∼ π(·|xt), xt+1 ∼ p(·|xt, at)

]
.

The performance measure of the learner, known as regret, is
then defined as RegT := maxπ

∑T
t=1(Jπ(x1)− r(xt, at)),

which is the difference between the total rewards of the best
stationary policy and that of the learner.

However, in contrast to the finite-horizon episodic setting
where ensuring sublinear regret is always possible, it is
known that in our setting a necessary condition is that the
optimal policy has a long-term average reward that is inde-
pendent of the initial state (Bartlett and Tewari, 2009). To
this end, throughout the paper we only consider a broad sub-
class of MDPs where a certain form of Bellman optimality
equation holds (Hernández-Lerma, 2012):
Assumption 1 (Bellman optimality equation). There exist
J∗ ∈ R and bounded measurable functions v∗ : X → R
and q∗ : X ×A → R such that the following holds for all
x ∈ X and a ∈ A:

J∗ + q∗(x, a) = r(x, a) + Ex′∼p(·|x,a)[v
∗(x′)],

v∗(x) = max
a∈A

q∗(x, a).
(1)

Indeed, under this assumption, the claim is that a pol-
icy π∗ that deterministically selects an action from
argmaxa q

∗(x, a) at each state x is the optimal policy, with
Jπ
∗
(x) = J∗ for all x. To see this, note that for any policy

π, using the Bellman optimality equation we have

Jπ(x) = lim inf
T→∞

1

T
E

[
T∑
t=1

(
J∗ +

∑
a∈A

q∗(xt, a) · π(a|xt)

− v∗(xt+1)

)]

≤ lim inf
T→∞

1

T
E

[
T∑
t=1

(J∗ + v∗(xt)− v∗(xt+1))

]
= J∗,

with equality attained by π∗, proving the claim. Conse-
quently, under Assumption 1 we simply write the regret as
RegT :=

∑T
t=1(J∗ − r(xt, at)).

All existing works on regret minimization for infinite-
horizon average-reward MDPs make this assumption, either
explicitly or through even stronger assumptions which im-
ply this one. In the tabular case with a finite state space,
weakly communicating MDPs is the broadest class to study
regret minimization in the literature, and is known to sat-
isfy Assumption 1 (see (Puterman, 2014)). More generally,
Assumption 1 holds under many other common conditions;
see (Hernández-Lerma, 2012, Section 3.3).

Note that v∗(x) and q∗(x, a) quantify the relative advan-
tage of starting with x and starting with (x, a) respectively
and then acting optimally in the MDP. Therefore, v∗ is
sometimes called the state bias function and q∗ is called the
state-action bias function.

For a bounded function v : X → R, we define its span as
sp(v) , supx,x′∈X |v(x)−v(x′)|. Notice that if (v∗, q∗) is
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a solution of Eq. (1), then a translated version (v∗−c, q∗−c)
for any constant c is also a solution. In the remaining of the
paper, we let (v∗, q∗) be an arbitrary solution pair of Eq. (1)
with a small span sp(v∗) in the sense that sp(v∗) ≤ 2 sp(v′)
for any other solution (v′, q′). We also assume without loss
of generality |v∗(x)| ≤ 1

2 sp(v∗) for any x because we can
perform the above translation and center the values of v∗

around zero. Similarly to previous works (e.g. (Wei et al.,
2020)), sp(v∗) is assumed to be known to the learner.

3 Optimism-based Algorithms

In this section, we present two optimism-based algorithms
with sublinear regret, under only one extra assumption that
the MDP is linear (also known as low-rank MDPs). We
emphasize that earlier works for linear MDPs in the finite-
horizon average-reward setting all require extra strong as-
sumptions (Abbasi-Yadkori et al., 2019a,b; Hao et al., 2021).

Specifically, a linear MDP has a transition kernel and a
reward function both linear in some state-action feature
representation, formally summarized as:

Assumption 2 (Linear MDP). There exist a known d-
dimensional feature mapping Φ : X ×A → Rd, d unknown
measures µ = (µ1, µ2, . . . , µd) over X , and an unknown
vector θ ∈ Rd such that for all x, x′ ∈ X and a ∈ A,

p(x′ | x, a) = Φ(x, a)>µ(x′), r(x, a) = Φ(x, a)>θ.

Without loss of generality, we further assume that for all
x ∈ X and a ∈ A, ‖Φ(x, a)‖ ≤

√
2, the first coordi-

nate of Φ(x, a) is fixed to 1, and that ‖µ(X )‖ ≤
√
d,

‖θ‖ ≤
√
d, where we use µ(X ) to denote the vector

(µ1(X ), . . . , µd(X )) and µi(X ) ,
∫
X dµi(x) is the total

measure of X under µi. (All norms are 2-norm.)

In (Jin et al., 2020), the same assumption is made except for
a different rescaling: ‖Φ(x, a)‖ ≤ 1, ‖µ(X )‖ ≤

√
d, and

‖θ‖ ≤
√
d. The reason that this is without loss of generality

is not justified in (Jin et al., 2020), and for completeness we
prove this in Appendix A. With this scaling, clearly one can
augment the feature Φ(x, a) with a constant coordinate of
value 1 and augment µ(x) and θ with a constant coordinate
of value 0, such that the linear structure is preserved while
the scaling specified in Assumption 2 holds.

Under Assumption 2, one can show that the state-action bias
function q∗ is in fact also linear in the features.

Lemma 1. Under Assumption 1 and Assumption 2, there
exists a fixed weight vector w∗ ∈ Rd such that q∗(x, a) =
Φ(x, a)>w∗ for all x ∈ X and a ∈ A, and furthermore,
‖w∗‖ ≤ (2 + sp(v∗))

√
d.

Based on this lemma, a natural idea emerges: at time t,
build an estimator wt of w∗ using observed data, then act
according to the estimated long-term reward of each action
given by Φ(xt, a)>wt. While the idea is intuitive, how to

Algorithm 1 Fixed-point OPtimization with Optimism
(FOPO)
Parameters: 0 < δ < 1, λ = 1, β = 20(2 +
sp(v∗))d

√
log(T/δ)

Initialize: Λ1 = λI where I ∈ Rd×d is the identity matrix
for t = 1, . . . , T do

if t = 1 or det(Λt) ≥ 2 det(Λst−1
) then

Set st = t B st records the most recent update
Let wt be the solution of the optimization problem:

max
wt,bt∈Rd,Jt∈R

Jt

s.t. wt = Λ−1
t

t−1∑
τ=1

(
Φ(xτ , aτ )(r(xτ , aτ ) (2)

− Jt + vt(xτ+1)) + bt

)
qt(x, a) = Φ(x, a)>wt, vt(x) = max

a
qt(x, a)

‖bt‖Λt ≤ β, ‖wt‖ ≤ (2 + sp(v∗))
√
d

else (wt, Jt, bt, vt, qt, st)

= (wt−1, Jt−1, bt−1, vt−1, qt−1, st−1)

Play at = argmaxa qt(xt, a)
Observe r(xt, at) and xt+1

Update Λt+1 = Λt + Φ(xt, at)Φ(xt, at)
>

construct the estimator and, perhaps more importantly, how
to incorporate the optimism principle well known to be
important for learning with partial information, are highly
non-trivial. In the next two subsections, we describe two
different ways of doing so, leading to our two algorithms
FOPO and OLSVI.FH.

3.1 Fixed-point OPtimization with Optimism
(FOPO)

We present our first algorithm FOPO which is computation-
ally inefficient but achieves regret Õ(sp(v∗)

√
d3T ). This

is optimal in T since even in the tabular case O(
√
T ) is

unimprovable (Jaksch et al., 2010). See Algorithm 1 for the
complete pseudocode.

As mentioned, the key part lies in how the estimator wt
is constructed. In Algorithm 1, this is done by solving
an optimization problem over certain constraints. To un-
derstand the first constraint Eq. (2), recall that q∗(x, a) =
Φ(x, a)>w∗ satisfies the Bellman optimality equation:

Φ(x, a)>w∗ = r(x, a)− J∗ +

∫
X
v∗(x′)p(dx′ | x, a)

= r(x, a)− J∗ +

∫
X

(
max
a′

Φ(x′, a′)>w∗
)
p(dx′ | x, a).

While p and r are unknown, we do observe samples
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x1, . . . , xt−1 and r(x1, a1), . . . , r(xt−1, at−1). If for a mo-
ment we assume J∗ was known, then it is natural to try to
find wt such that ∀τ = 1, . . . , t− 1,

Φ(xτ , aτ )>wt ≈ r(xτ , aτ )− J∗ + max
a′

Φ(xτ+1, a
′)>wt.

(3)

In common variants of Least-squares Value Iteration (LSVI)
update, the wt on the right hand side of Eq. (3) would be
replaced with another already computed weight vector w′t
that is either from the last iteration (i.e, wt−1) or from the
next layer in the case of episodic MDPs. Then solving a
least-squares problem with regularization λ‖wt‖2 gives a
natural estimate of wt:

Λ−1
t

t−1∑
τ=1

Φ(xτ , aτ )
(
r(xτ , aτ )− J∗ + max

a′
Φ(xτ+1, a

′)>w′t

)
where Λt = λI+

∑
τ<t Φ(xτ , aτ )Φ(xτ , aτ )> is the empir-

ical covariance matrix. Based on this formula, what we pro-
pose in Algorithm 1 are the following three modifications.
First, instead of using an already computed weightw′t, we di-
rectly set it back to wt (and thus maxa′ Φ(xτ+1, a

′)>w′t =
vt(xτ+1)), making the formula a fixed-point equation now.
Second, to incorporate uncertainty, we introduce a slack
variable bt with a bounded quadratic norm ‖bt‖Λt ,√
b>t Λtbt ≤ β (for a parameter β) that controls the amount

of uncertainty. Last, to deal with the fact that J∗ is un-
known, we replace it with a variable Jt (arriving at Eq. (2)
finally), and apply the well-known principle of optimism
in the face of uncertainty — we maximize the long-term
average reward Jt (over wt, bt and Jt) under the aforemen-
tioned constraints and also ‖wt‖ ≤ (2 + sp(v∗))

√
d in light

of Lemma 1.

With the vector wt and the corresponding bias function qt,
the algorithm simply plays at = argmaxa qt(xt, a) greed-
ily. Note that wt is only updated when the determinant of
Λt doubles compared to that of Λst−1 where st−1 is the time
step with the most recent update before time t. This can
happen at most O(d log T ) times. Similar ideas are used in
e.g., (Abbasi-Yadkori et al., 2011) for stochastic linear ban-
dits. However, while they use this lazy update only to save
computation, here we use it to make sure that wt does not
change too often, which is critical for our regret analysis.

We point out that the closest existing algorithm we are aware
of is the one from a recent work (Zanette et al., 2020) for
the finite-horizon setting. Just like theirs, our algorithm
also does not admit an efficient implementation due to the
complicated nature of the optimization problem. However,
it can be shown that the constraint set is non-empty with
(wt, bt, Jt) = (w∗, b, J∗) for some b being a feasible so-
lution (with high probability). This fact also immediately
implies that Jt is indeed an optimistic estimator of J∗ in the
following sense:

Algorithm 2 OLSVI.FH

Parameters: 0 < δ < 1, λ = 1, β = 40dH
√

log(T/δ),

H = max

{√
sp(v∗)T 1/4

d3/4
,
(

sp(v∗)T
d2

)1/3
}

Initialize: Λ1 = λI where I ∈ Rd×d is the identity matrix
Define: xkh = xt and akh = at, for t = (k − 1)H + h

1 for k = 1, . . . , T/H do
2 Define V kH+1(x) = 0 for all x.
3 for h = H, . . . , 1 do
4 Compute

wkh = Λ−1
k

k−1∑
k′=1

H∑
h′=1

Φ(xk
′

h′ , a
k′

h′)
(
r(xk

′

h′ , a
k′

h′)

+ V kh+1(xk
′

h′+1)
)

5 Define

Q̂kh(x, a) = wkh · Φ(x, a) + β
√

Φ(x, a)>Λ−1
k Φ(x, a)

Qkh(x, a) = min
{
Q̂kh(x, a), H

}
V kh (x) = max

a
Qkh(x, a)

6 for h = 1, . . . ,H do
7 Play akh = argmaxaQ

k
h(xkh, a)

8 Observe xkh and r(xkh, a
k
h)

9 Update Λk+1 = Λk +
∑H
h=1 Φ(xkh, a

k
h)Φ(xkh, a

k
h)>

Lemma 2. With probability at least 1 − δ, Algorithm 1
ensures Jt ≥ J∗ for all t.

With the help of this lemma, we prove the following regret
bound of FOPO with optimal (in T ) rate.

Theorem 3. Under Assumptions 1 and 2, FOPO guaran-
tees with probability at least 1− 3δ:

RegT = O
(

sp(v∗) log(T/δ)
√
d3T

)
.

3.2 Finite-Horizon Optimistic Least-Square Value
Iteration (OLSVI.FH)

Next, we present another optimism-based algorithm which
can be implemented efficiently, albeit with a suboptimal
regret guarantee. The high-level idea is still based on LSVI.
However, since we do not know how to efficiently solve a
fixed-point problem as in Algorithm 1, we “open the loop”
by solving a finite-horizon problem instead. More specifi-
cally, we divide the T rounds into T/H episodes each withH
rounds, and run a finite-horizon optimistic LSVI algorithm
over the episodes as in (Jin et al., 2020).
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The resulted algorithm is shown in Algorithm 2. For sim-
plicity, we replace the time index t with a combination of an
episode index k and a step index h within the episode. This
gives the relation t = (k − 1)H + h, and (xt, at) is written
as (xkh, a

k
h). At the beginning of each episode k, the learner

computes a set of Q-function parameters wk1 , . . . , w
k
H by

backward calculation using all historical data (Line 3 to
Line 5). Note that Line 4 is now simply an assignment
step (as opposed to a fixed-point problem) since V kh+1 is
computed already when in step h. In Line 5, we introduce
optimism by incorporating a bonus term β‖Φ(x, a)‖Λ−1

k

into the definition of Q̂kh(x, a), and hence Qkh(x, a). Then
in step h of episode k, the learner simply follows the greedy
choice suggested by Qkh(xkh, ·) (Line 7).

Note that Algorithm 2 is slightly different from the version
in (Jin et al., 2020): they maintain a different covariance
matrix Λkh separately for each step h, but we only maintain
a single Λk for all h. Similarly, their wkh is computed using
only data related to step h from all previous episodes, while
ours is computed using all previous data. This is because
in our problem, the steps within an episode share the same
transition and reward functions, and consequently they can
be learned jointly, which eventually reduces the sample
complexity.

Clearly, this reduction ensures that the learner has low re-
gret against the best policy for the finite-horizon problem
that we create. However, since our original problem is
about average-reward over infinite horizon, we need to ar-
gue that the best finite-horizon policy also performs well
under the infinite-horizon criteria. Indeed, we show that
the sub-optimality gap of the best finite-horizon policy is
bounded by some quantity governed by sp(v∗)/H , which is
intuitive since the larger H is, the smaller the gap becomes
(see Lemma 13).

In our analysis, for a fixed episode we define π =
(π1, . . . , πH) as the finite-horizon policy (i.e., a length-H se-
quence of policies), where each πh is a mapping X → ∆A.
For any such finite-horizon policy π, we define Qπh(x, a)
and V πh (x) as the value functions for the finite-horizon
problem we create, which satisfy: V πH+1(x) = 0 and for
h = H, . . . , 1,

Qπh(x, a) = r(x, a) + Ex′∼p(·|x,a)[V
π
h+1(x′)],

V πh (x) = Ea∼πh(·|x)Q
π
h(x, a).

(4)

The analysis of the algorithm relies on the following key
lemma, which shows that Qkh(x, a) upper bounds Qπh(x, a)
for any π.

Lemma 4. With probability at least 1 − δ, Algorithm 2
ensures for any finite-horizon policy π that ∀x, a, k, h.

0 ≤ Qkh(x, a)−Qπh(x, a)

≤ Ex′∼p(·|x,a)

[
V kh+1(x′)− V πh+1(x′)

]
+ 2β‖Φ(x, a)‖Λ−1

k
.

With the help of Lemma 4, we prove the final regret bound
of OLSVI.FH stated in the next theorem (proof deferred to
the appendix).

Theorem 5. Under Assumptions 1 and 2, OLSVI.FH guar-
antees with probability at least 1− 3δ:

RegT = Õ
(√

sp(v∗)(dT )
3
4 + (sp(v∗)dT )

2
3

)
.

Note that although our bound is suboptimal, OLSVI.FH
is the first efficient algorithm with sublinear regret for this
setting under only Assumptions 1 and 2.

4 The MDP-EXP2 Algorithm

There are two disadvantages of the optimism-based algo-
rithms introduced in the last section. First, they require the
transition kernel and reward function to be both linear in
the feature (Assumption 2), which is restrictive and might
not hold especially when d is small. Second, even for the
polynomial-time algorithm OLSVI.FH, it is still computa-
tionally intensive because in Line 4 of the algorithm, V kh+1

is applied to all previous states, and every evaluation of
V kh+1 requires computing ‖Φ(x, a)‖Λk . Since this is done
for every k, the total computational cost of the algorithm
is super-linear in T . In fact, all existing optimism-based
algorithms with linear function approximation suffer the
same issue Yang and Wang (2020); Jin et al. (2020); Zanette
et al. (2020).

To this end, we propose yet another algorithm based on
very different ideas. It is computationally less intensive
and it enjoys Õ(

√
T ) regret, albeit under a different (and

non-comparable) set of assumptions compared to those in
Section 3. Note that these are the same assumptions made
in (Abbasi-Yadkori et al., 2019a; Hao et al., 2021). Below,
we start with stating these assumptions, followed by the
description of our algorithm.

The first assumption we make is that the MDP is uniformly
mixing.

Assumption 3 (Uniform Mixing). There exists a constant
tmix ≥ 1 such that for any policy π, and any distributions
ν1, ν2 ∈ ∆X over the state space,

‖Pπν1 − Pπν2‖TV ≤ e
−1/tmix‖ν1 − ν2‖TV,

where (Pπν)(x′) =
∫
X
∑
a∈A π(a|x)p(x′|x, a)dν(x) and

‖ · ‖TV is the total variation.

Under this uniform mixing assumption, we are able to de-
fine the stationary state distribution under a policy π as
νπ = (Pπ)

∞
ν1 for an arbitrary initial distribution ν1. Also,

now we not only have the Bellman optimality equation (1)
(that is, Assumption 3 implies Assumption 1), but also a
Bellman equation for every policy π, as shown in the fol-
lowing lemma.
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Lemma 6. Suppose Assumption 3 holds. For any π, its long-
term average reward Jπ(x) is independent of the initial
state x, thus denoted as Jπ. Also, the following Bellman
equation holds:

Jπ + qπ(x, a) = r(x, a) + Ex′∼p(·|x,a)[v
π(x′)],

vπ(x) =
∑
a∈A

π(a|x)qπ(x, a)

for some measurable functions vπ : X → [−4tmix, 4tmix]
and qπ : X ×A → [−6tmix, 6tmix] with

∫
X v

π(x)dνπ(x) =
0.

On the other hand, with this assumption (stronger than As-
sumption 1), we can replace Assumption 2 (linear MDP)
with the following weaker one that only requires the bias
function qπ to be linear.
Assumption 4 (Linear bias function). There exists a known
d-dimensional feature mapping Φ : X ×A → Rd such that
for every policy π, qπ(x, a) can be written as Φ(x, a)>wπ

for some weight vector wπ ∈ Rd. Again, without loss of
generality (justified in Appendix A), we assume that for all
x, a, ‖Φ(x, a)‖ ≤

√
2 holds, the first coordinate of Φ(x, a)

is fixed to 1, and for all π, ‖wπ‖ ≤ 6tmix
√
d.

In Lemma 14 in the appendix, we show that this is indeed
weaker than the linear MDP assumption. Note that there are
indeed practical examples where Assumption 4 holds but
Assumption 2 does not (see the queueing network example
of (De Farias and Van Roy, 2003)).

The last assumption we make is uniformly excited features,
which intuitively guarantees that every policy is explorative
in the feature space.
Assumption 5 (Uniformly excited features). There exists
σ > 0 such that for any π,

λmin

(∫
X

(∑
a

π(a|x)Φ(x, a)Φ(x, a)>

)
dνπ(x)

)
≥ σ,

where λmin denotes the smallest eigenvalue.

This assumption is needed due to the nature of our algorithm
that only performs local search of the parameters. It can
potentially be weakened if we combine our algorithm with
the idea of Abbasi-Yadkori et al. (2019b) (details omitted).

4.1 Algorithm and guarantees

We are now ready to present our MDP-EXP2 algorithm,
shown in Algorithm 3. It extends the idea of running an
adversarial bandit algorithm at each state from the tabular
case Neu et al. (2013); Wei et al. (2020) to the continuous
state case, by using an adversarial linear bandit algorithm
EXP2 Bubeck et al. (2012).

Specifically, MDP-EXP2 proceeds in epochs of equal length
B = Õ(dtmix/σ). In each epoch k, the algorithm executes

Algorithm 3 MDP-EXP2
Parameter: N = 8tmix log T , B = 32N log(dT )σ−1, η =

min
{√

1/(Ttmix), σ/(24N)
}

.

1 for k = 1, . . . , T/B do B k indexes an epoch
2 Define policy πk such that for every x ∈ X :

πk(a|x) ∝ exp

η k−1∑
j=1

Φ(x, a)>wj


3 Execute πk in the entire epoch:
4 for t = (k − 1)B + 1, . . . , kB do
5 Play at ∼ πk(·|xt), observe rt(xt, at) and xt+1

6 for m = 1, . . . ,B/2N do Bm indexes a trajectory
7 Define

τk,m = (k − 1)B + 2N(m− 1) +N + 1,

the first step of the m-th trajectory
8 Compute

Rk,m =

τk,m+N−1∑
t=τk,m

r(xt, at),

the total reward of the m-th trajectory

9 Compute

Mk =

B
2N∑
m=1

∑
a

πk(a|xτk,m)Φ(xτk,m , a)Φ(xτk,m , a)>,

10 if λmin(Mk) ≥ Bσ
24N then

Set wk = M−1
k

∑ B
2N
m=1 Φ(xτk,m , aτk,m)Rk,m

else
Set wk = 0

a fixed policy πk (explained later), and collects B
2N disjoint

trajectories, each of length N = Õ(tmix). Between every
two consecutive trajectories, there is a window of length
N in which the algorithm does not collect any samples, so
that the correlation of samples from different trajectories is
reduced. See Figure 1 in the appendix for an illustration.

In the analysis, we show that the expected total reward
of a trajectory is roughly qπ(xτ , aτ ) +NJπ (Lemma 15),
where π is the policy used to collect that trajectory and τ
is the first step of the trajectory. By Assumption 4 we have
qπ(xτ , aτ ) + NJπ = Φ(xτ , aτ )> (wπ +NJπe1). This
observation allows us to draw a connection between this
problem and adversarial linear bandits. To see this, first note
that the regret is roughly B

∑T/B
k=1 (J∗ − Jπk). By the stan-

dard value difference lemma (Kakade, 2003, Lemma 5.2.1),
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we have

T/B∑
k=1

(J∗ − Jπk) =

∫
X

T/B∑
k=1

∑
a

(π∗(a|x)− πk(a|x)) qπk(x, a)

 dνπ
∗
(x)

where according to the previous observation and the fact∑
a(π∗(a|x)− πk(a|x))NJπk = 0, the term in the paren-

theses with respect to a fixed state x can be further written as∑T/B
k=1

∑
a (π∗(a|x)− πk(a|x)) Φ(x, a)> (wπk +NJπke1).

This is exactly the regret of a standard online learning
problem over a set of actions {Φ(x, a)}a∈A with linear
reward functions parameterized by a weight vector
(wπk + NJπke1) at step k. Moreover, since we do not
observe this weight but have access to the reward of a tra-
jectory whose mean is roughly Φ(x, a)> (wπk +NJπke1)
as mentioned, we are in the so-called bandit setting. In fact,
since the weight can generally change arbitrarily over time
(because πk is changing), this is an adversarial linear bandit
problem.

With this connection in mind, the idea behind MDP-EXP2
is clear — it conceptually runs a variant of the linear bandit
algorithm EXP2 for each state. Specifically, in epoch k the
algorithm constructs an estimator wk for the reward vector
wπk+NJπke1. The construction mostly follows the idea of
EXP2, with the only difference being the way of controlling
the variance — in the original EXP2, a particular exploration
scheme is enforced, while in our case, we average multiple
trajectories as done in Line 10 making use of the uniformly
excited feature assumption (to make sure that ‖wk‖ is not
too large, we also set it to 0 if λmin(Mk) is too small, where
λmin denotes the minimum eigenvalue). Finally, with these
estimators, the policy for epoch k is computed by a standard
exponential weight update rule (see Line 2).

We emphasize that MDP-EXP2 does not actually need to
maintain an instance of EXP2 for each state, but instead only
needs to maintain the estimators wk and calculate π(·|xt)
on the fly for each xt, which is even more efficient than
optimism-based algorithms. It also enjoys a favorable regret
guarantee of order Õ(

√
T ), as shown below. Once again,

the best existing result under the same set of assumptions is
Õ(T 2/3) from (Hao et al., 2021).

Theorem 7. Under Assumptions 3, 4, 5, MDP-EXP2 en-
sures E[RegT ] = Õ

(
1
σ

√
t3mixT

)
.

Note that while the bound in Theorem 7 seemingly does
not depend on d, the dependence is in fact implicit because
1
σ = Ω(d) always holds by the definition of σ (see Remark 1
in the appendix). We provide a proof for this fact along with
the proof of Theorem 7 in the appendix.

Unknown tmix and σ. To decide the epoch length and the
trajectory length, MDP-EXP2 requires the prior knowledge
of tmix and σ. However, if such knowledge is not available,
we can still get a slightly worsened asymptotic regret bound
of Õ(T 1/2+ξ), with an additional constant regret of C1/ξ

for some constant C that is related to tmix and σ. The idea
is to slowly increase epoch length and trajectory length with
time, and make sure that they exceed the required amount
in the long run. The details are provided in Appendix E.

Comparison to POLITEX and AAPI. Our algorithm
MDP-EXP2 is closely related to the POLITEX algorithm
of (Abbasi-Yadkori et al., 2019a) and its improved ver-
sion AAPI (Hao et al., 2021). The key difference is the
way we construct the estimator wk, which at a high level
provides a better bias-variance trade-off. More concretely,
our construction is almost unbiased (see Lemma 16), but
with a larger variance, while the construction for POLI-
TEX/AAPI has a larger bias. Because of this large bias,
POLITEX/AAPI uses a much longer epoch to ensure that
the error of wk is small (i.e., using Θ(1/ε2) samples to
construct wk to ensure that wk’s error is O(ε)); this results
in less frequent update of the policy. In contrasts, MDP-
EXP2 only uses a constant (in terms of tmix and σ) samples
to construct wk, and update policies more often. In short,
although the wk of MDP-EXP2 is noisier, it allows faster
updates of the policies and the noise of wk is amortized over
epochs. This finally leads to a better regret bound compared
to POLITEX/AAPI.

Connections to Natural Policy Gradient. Finally, we re-
mark that although MDP-EXP2 is based on an linear bandit
algorithm EXP2, it is related to the (in fact much earlier)
reinforcement learning algorithm Natural Policy Gradient
(NPG) Kakade (2002) under softmax parameterization. The
connection between softmax-parameterized NPG and the
exponential weight update was formalized in a recent work
by Agarwal et al. (2020). In Appendix F, we first restate
the connection. Then we compare the implementation de-
tails of MDP-EXP2 and the NPG algorithm in Agarwal
et al. (2020), showing that MDP-EXP2 improves the sam-
ple complexity bound of Agarwal et al. (2020) under the
considered setting.

5 Conclusions and Open Problems

In this work, we provide three new algorithms for learning
infinite-horizon average-reward MDPs with linear function
approximation, significantly extending and improving pre-
vious works. One key open question is how to achieve the
optimal Õ(

√
T ) regret efficiently under the linear MDP as-

sumption. In Appendix F, we also discuss another open
question related to weakening Assumption 5 while main-
taining a similar regret bound.
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A Auxiliary Lemmas Related to Assumption 2 and Assumption 4

In this section, we provide justification for the scaling assumption made in Assumption 2 and Assumption 4, showing that
they are indeed without loss of generality as long as one transforms and normalizes the features in some way beforehand.

Lemma 8. Let Φ = {Φ(x, a) : x ∈ X , a ∈ A} ⊂ Rd be a feature set with rank d. Then there exists an invertible linear
transformation v → Av with A ∈ Rd×d such that for any function F : X ×A → R defined by

F (x, a) = Φ(x, a)>z,

for some z ∈ Rd, we have ‖AΦ(x, a)‖ ≤ 1 and ‖A−1z‖ ≤
√
dFmax where Fmax , supx,a |F (x, a)|.

This lemma implies that if we use the transformed feature Φ′(x, a) = AΦ(x, a) with ‖Φ′(x, a)‖ ≤ 1, then any function
F (x, a) = Φ(x, a)>z can be equivalently written as F (x, a) = Φ′(x, a)>z′ with z′ = A−1z and ‖z′‖ ≤

√
dFmax.

Therefore, taking z to be µ(X ) or θ for Assumption 2, or wπ for Assumption 4, with the corresponding F (x, a) being∫
X p(x

′|x, a)dx′, r(x, a), and qπ(x, a), and Fmax being 1, 1, and 6tmix (Lemma 6) respectively, justifies the scaling stated
in these assumptions.

Notice that the transformation A only depends on the feature set Φ, but not F or z. Thus we can perform this transformation
as long as we know the feature map. This is similar to a standard preprocessing step of feature normalizing in machine
learning.

Proof of Lemma 8. Define −Φ = {−Φ(x, a) : x ∈ X , a ∈ A} and K(Φ) = Φ ∪ −Φ. We first argue that for any bounded
feature set Φ ⊂ Rd, there exists an invertible linear transformation v → Av with A ∈ Rd×d such that the minimum volume
enclosing ellipsoid (MVEE) of the transformed feature set K(AΦ) where AΦ , {AΦ(x, a) : x ∈ X , a ∈ A} is the unit
sphere. This can be seen by the following: notice that K(Φ) is always symmetric around the origin, and so is its MVEE.
Suppose that the MVEE of K(Φ) is {u ∈ Rd : u>Bu = 1} for some invertible B (otherwise Φ is not full-rank). Then if we
pick A = B

1
2 , the MVEE of K(AΦ) will be the unit sphere.

Now consider this new feature Φ′(x, a) , AΦ(x, a) with the MVEE of K(Φ′) being the unit sphere (which implies
‖Φ′(x, a)‖ ≤ 1). Defining z′ = A−1z, we have Φ′(x, a)>z′ = Φ(x, a)>z = F (x, a). Below, we show that ‖z′‖ ≤√
dFmax.

By Lemma 9 below, there exists a subsetM = {u1, . . . , um} ⊆ K(Φ′) that lie on the unit sphere, and non-negative weights
c1, . . . , cm, such that

m∑
i=1

ciuiu
>
i = Id.

Taking trace on both sides, we get
∑m
i=1 ci = d.

Note that we have F (x, a) = Φ′(x, a)>z′ for all x, a. Specially, applying this to the elements inM, and using the fact that
|F (x, a)| ≤ Fmax, we get

dF 2
max =

m∑
i=1

ciF
2
max ≥

m∑
i=1

ci(u
>
i z
′)2 = z′>

(
m∑
i=1

ciuiu
>
i

)
z′ = ‖z′‖2,

which implies ‖z′‖ ≤
√
dFmax and finishes the proof.

Lemma 9. ((Hazan and Karnin, 2016, Theorem 6), Ball et al. (1997)) Let K be a symmetric set such that its MVEE is the
unit sphere. Then there exist m ≤ d(d+ 1)/2− 1 contact points of K and the sphere u1, . . . um and non-negative weights
c1, . . . , cm such that

∑
i ciui = 0 and

∑
i ciuiu

>
i = Id.

B Auxiliary Lemmas for Self-normalized Processes

In this section, we provide some useful lemmas related to the concentration of self-normalized processes. The first two are
taken directly from (Jin et al., 2020, Appendix D.2).
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Lemma 10 (Concentration of Self-Normalized Processes). Let {εt}∞t=1 be a real-valued stochastic process with correspond-
ing filtration {Ft}∞t=0. Let εt|Ft−1 be zero-mean and σ-subgaussian, that is, E[εt|Ft−1] = 0 and E[eλεt |Ft−1] ≤ eλ2σ2/2

for all λ ∈ R.

Let {φt}∞t=0 be an Rd-valued stochastic process where φt ∈ Ft−1. Assume that Λ1 is a d× d positive definite matrix, and
let Λt = Λ1 +

∑t−1
s=1 φsφ

>
s . Then for any δ > 0, with probability at least 1− δ, we have for all t > 0,∥∥∥∥∥

t−1∑
s=1

φsεs

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

[
det(Λt)

1/2 det(Λ1)−1/2

δ

]
.

Lemma 11. Let {xt}∞t=1 be a stochastic process on state space X with corresponding filtration {Ft}∞t=0, {φt}∞t=0 be an
Rd-valued stochastic process where φt ∈ Ft−1 and ‖φt‖ ≤ 1, Λt = λI +

∑t−1
s=1 φsφ

>
s , and V ⊆ RX be an arbitrary set

of functions defined on X , with Nε being its ε-covering number with respect to dist(v, v′) = supx |v(x)− v(x′)| for some
fixed ε > 0. Then for any δ > 0, with probability at least 1− δ, for all t > 0 and any v ∈ V so that supx |v(x)| ≤ H , we
have ∥∥∥∥∥

t−1∑
s=1

φs

(
v(xs)− E[v(xs)|Ft−1]

)∥∥∥∥∥
2

Λ−1
t

≤ 4H2

[
d

2
log

(
t+ λ

λ

)
+ log

Nε
δ

]
+

8t2ε2

λ
.

Lemma 12. Let V be a class of mappings from X to R parametrized by α = (α1, α2, . . . , αP ) ∈ RP with αi ∈ [−B,B]
for all i. Suppose that for any v ∈ V (parameterized by α) and v′ ∈ V (parameterized by α′), the following holds:

sup
x∈X
|v(x)− v′(x)| ≤ L‖α− α′‖1.

Let Nε be be the ε-covering number of V with respect to the distance dist(v, v′) = supx∈X |v(x)− v(x′)|. Then

logNε ≤ P log

(
2BLP

ε

)
.

Proof. If α and α′ are such that |αi − α′i| ≤ ε
LP for all i, then we have

dist(v, v′) = sup
x∈X
|v(x)− v′(x)| ≤ L×

P∑
i=1

|αi − α′i| ≤ ε.

Therefore, the following set constitutes an ε-cover for V:{
α ∈ RP : αi =

kε

LP
for some k ∈ Z

}
∩ [−B,B]P

The number of elements in this sets is upper bounded by
(

2BLP
ε

)P
.

C Omitted Analysis in Section 3

Proof of Lemma 1. By the two assumptions, we have (with e1 = (1, 0, . . . , 0))

q∗(x, a) = r(x, a)− J∗ + Ex′∼p(·|x,a)[v
∗(x′)]

= Φ(x, a)>θ − J∗Φ(x, a)>e1 + Φ(x, a)>
∫
X
v∗(x′)dµ(x′)

= Φ(x, a)>
(
θ − J∗e1 +

∫
X
v∗(x′)dµ(x′)

)
.

Therefore, we can define w∗ = θ − J∗e1 +
∫
X v
∗(x′)dµ(x′), proving the first claim. Furthermore,

‖w∗‖ ≤ ‖θ‖+ 1 + sup
x′∈X

|v∗(x′)| × ‖µ(X )‖ ≤
√
d+ 1 + 1

2 sp(v∗)×
√
d ≤ (2 + sp(v∗))

√
d,

which proves the second claim.
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C.1 Omitted Analysis in Section 3.1

Proof of Lemma 2. It suffices to show that with probability at least 1− δ, (w∗, b, J∗) for some b is a feasible solution of the
optimization problem (since Jt is the optimal solution). To show this, first note that

w∗ = Λ−1
t

t−1∑
τ=1

Φ(xτ , aτ )Φ(xτ , aτ )w∗ + λΛ−1
t w∗ (definition of Λt)

= Λ−1
t

t−1∑
τ=1

Φ(xτ , aτ )
(
r(xτ , aτ )− J∗ + Ex′∼p(·|xτ ,aτ )v

∗(x′)
)

+ λΛ−1
t w∗

(q∗(xτ , aτ ) = Φ(xτ , aτ )w∗ and Eq. (1))

= Λ−1
t

t−1∑
τ=1

Φ(xτ , aτ ) (r(xτ , aτ )− J∗ + v∗(xτ+1)) + λΛ−1
t w∗ + ε∗t ,

where

ε∗t = Λ−1
t

t−1∑
τ=1

Φ(xτ , aτ )
(
Ex′∼p(·|xτ ,aτ )v

∗(x′)− v∗(xτ+1)
)
.

Using Lemma 10 with ετ = Ex′∼p(·|xτ ,aτ )v
∗(x′)− v∗(xτ+1) and φτ = Φ(xτ , aτ ), we have with probability at least 1− δ

(note that given the past ετ is zero-mean and in the range [− sp(v∗), sp(v∗)] thus sp(v∗)-subgaussian),

‖ε∗t ‖Λt =

∥∥∥∥∥
t−1∑
τ=1

φτετ

∥∥∥∥∥
Λ−1
t

≤
√

2 sp(v∗)

√
log

det(Λt)1/2/ det(Λ1)1/2

δ

≤
√

2 sp(v∗)

√
log

(1 + 2T
λd )d/2

δ
≤ β

2
,

where we use the fact

det(Λt) ≤
(

TR (Λt)

d

)d
=

(
λd+

∑t−1
τ=1 ‖φτ‖2

d

)d
≤
(
λd+ 2T

d

)d

and the definition of β. Also, λ‖Λ−1
t w∗‖Λt = λ‖w∗‖Λ−1

t
≤
√
λ‖w∗‖ ≤ (2 + sp(v∗))

√
λd ≤ β

2 (Lemma 1). Define
b = λΛ−1

t w∗ + ε∗t , we have thus proven that ‖b‖Λt ≤ β holds with probability at least 1− δ. which proves that (w∗, b, J∗)
is a solution of the optimization problem, finishing the proof.

Proof of Theorem 3. Without loss of generality, we assume sp(v∗) ≤
√
T , d ≤

√
T , and T ≥ 16 (otherwise the bound is

vacuous). Fix t and let s = st. Define

εs = Λ−1
s

s−1∑
τ=1

Φ(xτ , aτ )
(
vs(xτ+1)− Ex′∼p(·|xτ ,aτ )vs(x

′)
)
.

Using the identity

w∗ = Λ−1
s

s−1∑
τ=1

Φ(xτ , aτ )Φ(xτ , aτ )>w∗ + λΛ−1
s w∗

= Λ−1
s

s−1∑
τ=1

Φ(xτ , aτ )
(
r(xτ , aτ )− J∗ + Ex′∼p(·|xτ ,aτ )v

∗(x′)
)

+ λΛ−1
s w∗,
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and the definition of ws, we have

ws − w∗

= Λ−1
s

s−1∑
τ=1

Φ(xτ , aτ ) (r(xτ , aτ )− Js + vs(xτ+1)) + bs

− Λ−1
s

s−1∑
τ=1

Φ(xτ , aτ )
(
r(xτ , aτ )− J∗ + Ex′∼p(·|xτ ,aτ )v

∗(x′)
)
− λΛ−1

s w∗

= Λ−1
s

s−1∑
τ=1

Φ(xτ , aτ )
(
J∗ − Js + Ex′∼p(·|xτ ,aτ )[vs(x

′)− v∗(x′)]
)

+ εs + bs − λΛ−1
s w∗

= Λ−1
s

s−1∑
τ=1

Φ(xτ , aτ )Φ(xτ , aτ )>
(
J∗e1 − Jse1 +

∫
X

(vs(x
′)− v∗(x′)) dµ(x′)

)
+ εs + bs − λΛ−1

s w∗

= J∗e1 − Jse1 +

∫
X

(vs(x
′)− v∗(x′)) dµ(x′) + εs + bs

− λΛ−1
s

(
J∗e1 − Jse1 +

∫
X

(vs(x
′)− v∗(x′)) dµ(x′)

)
− λΛ−1

s w∗.

Therefore,

qs(xt, at)− q∗(xt, at) = Φ(xt, at)
>(ws − w∗)

≤ (J∗ − Js) + Ex′∼p(·|xt,at)[vs(x
′)− v∗(x′)] + Φ(xt, at)

>(εs + bs + λΛ−1
s us),

where us , −
(
J∗e1 − Jse1 +

∫
X (vs(x

′)− v∗(x′)) dµ(x′)
)
− w∗.

Next, under the event J∗ ≤ Js which holds with probability at least 1− δ (Lemma 2), we continue with

qs(xt, at)− q∗(xt, at) (5)

≤ Ex′∼p(·|xt,at)[vs(x
′)− v∗(x′)] + Φ(xt, at)

>(εs + bs + λΛ−1
s us)

≤ Ex′∼p(·|xt,at)[vs(x
′)− v∗(x′)] + ‖Φ(xt, at)‖Λ−1

s
‖εs + bs + λΛ−1

s us‖Λs
≤ Ex′∼p(·|xt,at)[vs(x

′)− v∗(x′)] + 2‖Φ(xt, at)‖Λ−1
t
‖εs + bs + λΛ−1

s us‖Λs , (6)

where the second inequality uses Hölder’s inequality and the last one uses the fact Λs � Λt � 2Λs according to the lazy
update schedule of the algorithm.

By the algorithm, ‖bs‖Λs ≤ β. To bound ‖εs‖Λs , we use Lemma 11 and Lemma 12: Define ετ = vs(xτ+1) −
Ex′∼p(·|xτ ,aτ )vs(x

′) and φτ = 1√
2
Φ(xτ , aτ ). With Lemma 11 and the fact |vs(x)| ≤

√
2‖ws‖ ≤ (2 + sp(v∗))

√
2d,

we have that with probability at least 1− δ, for all s:

‖εs‖Λs =
√

2

∥∥∥∥∥
s−1∑
τ=1

φτετ

∥∥∥∥∥
Λ−1
s

≤ 4(2 + sp(v∗))
√
d

√
d

2
log

s+ λ

λ
+ log

Nε
δ

+ 4

√
s2ε2

λ
,

where ε = 1
T and Nε is the ε-cover for the function class of vs, which can be bounded with the help of Lemma 12 (with

α = ws, P = d, B = (2 + sp(v∗))
√
d, and L =

√
2) by

logNε ≤ d log
2(2 + sp(v∗))

√
d×
√

2d

T−2
≤ 7d log T

(using the conditions stated at the beginning of the proof). Therefore, we have

‖εs‖Λs ≤ 4(2 + sp(v∗))
√
d
√

8d log T + log(1/δ) + 4 = O(β), (7)

for all s with probability at least 1− δ. Next, we bound ‖λΛ−1
s us‖Λs as:

‖λΛ−1
s us‖Λs = λ‖us‖Λ−1

s
≤
√
λ‖us‖ ≤ O (1 + (2 + sp(v∗))d) = O(β), (8)
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where in the second inequality we use the condition ‖µ(X )‖ ≤
√
d in Assumption 2 to bound

‖
∫
X (vs(x

′)− v∗(x′)) dµ(x′)‖ as supx∈X |vs(x) − v∗(x)|‖µ(X )‖ = O((2 + sp(v∗))d). Put together, the above shows
‖εs + bs + λΛ−1

s us‖Λs = O(β).

Continuing with Eq. (6) and summing over t, we have that with probability at least 1− 2δ,

T∑
t=1

(qst(xt, at)− q∗(xt, at)) ≤
T∑
t=1

Ex′∼p(·|xt,at) [vst(x
′)− v∗(x′)] +O

(
β

T∑
t=1

‖Φ(xt, at)‖Λ−1
t

)

=

T∑
t=1

Ex′∼p(·|xt,at) [vst(x
′)− v∗(x′)] +O

β√T
√√√√ T∑

t=1

‖Φ(xt, at)‖2Λ−1
t

 (Cauchy-Schwarz inequality)

=

T∑
t=1

Ex′∼p(·|xt,at) [vst(x
′)− v∗(x′)] +O

(
β
√
dT log T

)
,

where the last equality is by (Jin et al., 2020, Lemma D.2) with the facts that det(Λ1) = λd and det(ΛT+1) ≤(
1
d trace(ΛT+1)

)d ≤ (λ+ 2T )d. Rearranging the last inequality we get

T∑
t=1

(
Ex′∼p(·|xt,at)[v

∗(x′)]− q∗(xt, at)
)

≤
T∑
t=1

(
Ex′∼p(·|xt,at)[vst(x

′)]− qst(xt, at)
)

+O
(
β
√
dT log T

)
=

T∑
t=1

(
Ex′∼p(·|xt,at)[vst(x

′)]− vst(xt)
)

+O
(
β
√
dT log T

)

where the last line is by the choice of at. Next, notice that every time the algorithm updates (i.e. st 6= st−1), it
holds that det(Λt) = det(Λst) ≥ 2 det(Λst−1). Since det(ΛT+1)/ det(Λ1) ≤

(
λ+2T
λ

)d
, this cannot happen more than

log2

(
λ+2T
λ

)d
= O (d log T ) times. Using this fact and the range of vt, we continue with

T∑
t=1

(
Ex′∼p(·|xt,at)[v

∗(x′)]− q∗(xt, at)
)

≤
T∑
t=1

(
Ex′∼p(·|xt,at)[vst+1

(x′)]− vst(xt)
)

+O
(
β
√
dT log T + βd log T

)
=

T∑
t=1

(
Ex′∼p(·|xt,at)[vst+1(x′)]− vst+1(xt+1)

)
+O

(
β
√
dT log T + βd log T

)
= O

(
β
√
dT log T + βd log T

)
, (9)

where the last step holds with probability at least 1− δ by Azuma’s inequality. Finally, note that the regret can be written as

RegT =
T∑
t=1

(J∗ − r(xt, at)) =
T∑
t=1

(
Ex′∼p(·|xt,at)[v

∗(x′)]− q∗(xt, at)
)

= O
(
β
√
dT log T + βd log T

)
.

by the Bellman optimality equation, which finishes the proof (combining all the high probability statements with a union
bound, the last bound holds with probability at least 1− 3δ).
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C.2 Omitted Analysis in Section 3.2

Proof of Lemma 4. By Assumption 2 and the Bellman equation for the finite-horizon problem (Eq. (4)), we have that for
any finite-horizon policy π and any h < H ,

Qπh(x, a) = r(x, a) + Ex′∼p(·|x,a)

[
V πh+1(x′)

]
= Φ(x, a)>θ + Φ(x, a)>

∫
X
V πh+1(x′)dµ(x′)

= Φ(x, a)>
(
θ +

∫
X
V πh+1(x′)dµ(x′)

)
.

Define wπh = θ +
∫
X V

π
h+1(x′)dµ(x′). Then we have Qπh(x, a) = Φ(x, a)>wπh with ‖wπh‖ ≤ ‖θ‖+ (H − h)‖µ(X )‖ ≤√

d+
√
d(H − h) ≤

√
dH .

We now rewrite wkh − wπh as follow. For simplicity, we denote x ∼ p(·|xk′h′ , ak
′

h′) as x ∼ (k′, h′), Φ(xk
′

h′ , a
k′

h′) as Φk
′

h′ , and
r(xk

′

h′ , a
k′

h′) as rk
′

h′

wkh − wπh

= Λ−1
k

k−1∑
k′=1

H∑
h′=1

Φk
′

h′

[
rk
′

h′ + V kh+1(xk
′

h′+1)
]
− Λ−1

k

(
λI +

k−1∑
k′=1

H∑
h′=1

Φk
′

h′Φ
k′

h′
>
)
wπh

= Λ−1
k

k−1∑
k′=1

H∑
h′=1

Φk
′

h′

[
rk
′

h′ + V kh+1(xk
′

h′+1)
]

− Λ−1
k

k−1∑
k′=1

H∑
h′=1

Φk
′

h′

[
rk
′

h′ + Ex′∼(k′,h′)[V
π
h+1(x′)]

]
− λΛ−1

k wπh

(using Qπh(x, a) = Φ(x, a)>wπh and the Bellman equation)

= Λ−1
k

k−1∑
k′=1

H∑
h′=1

Φk
′

h′

[
V kh+1(xk

′

h′+1)− Ex′∼(k′,h′)V
π
h+1(x′)

]
− λΛ−1

k wπh

= Λ−1
k

k−1∑
k′=1

H∑
h′=1

Φk
′

h′
[
Ex′∼(k′,h′)V

k
h+1(x′)− Ex′∼(k′,h′)V

π
h+1(x′)

]
+ εkh − λΛ−1

k wπh

(define εkh = Λ−1
k

∑k−1
k′=1

∑H
h′=1 Φk

′

h′

[
V kh+1(xk

′

h′+1)− Ex′∼(k′,h′)

[
V kh+1(x′)

]]
)

= Λ−1
k

k−1∑
k′=1

H∑
h′=1

Φk
′

h′Φ
k′

h′
>
[∫
X

(V kh+1(x′)− V πh+1(x′))dµ(x′)

]
+ εkh − λΛ−1

k wπh

=
(
I − λΛ−1

k

) [∫
X

(V kh+1(x′)− V πh+1(x′))dµ(x′)

]
+ εkh − λΛ−1

k wπh

=

∫
X

(V kh+1(x′)− V πh+1(x′))dµ(x′) + εkh − λΛ−1
k

[∫
X

(V kh+1(x′)− V πh+1(x′))dµ(x′)

]
− λΛ−1

k wπh .
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Therefore,

Q̂kh(x, a)−Qπh(x, a)

= Φ(x, a)>(wkh − wπh) + β
√

Φ(x, a)>Λ−1
k Φ(x, a)

= Φ(x, a)>
∫
X

(V kh+1(x′)− V πh+1(x′))dµ(x′) + Φ(x, a)>εkh + β‖Φ(x, a)‖Λ−1
k

− λΦ(x, a)>Λ−1
k

[∫
X

(V kh+1(x′)− V πh+1(x′))dµ(x′)

]
− λΦ(x, a)>Λ−1

k wπh

= Ex′∼p(·|x,a)

[
V kh+1(x′)− V πh+1(x′)

]
+ Φ(x, a)>εkh︸ ︷︷ ︸

term1

+β‖Φ(x, a)‖Λ−1
k

−λΦ(x, a)>Λ−1
k

[∫
X

(V kh+1(x′)− V πh+1(x′))dµ(x′)

]
︸ ︷︷ ︸

term2

−λΦ(x, a)>Λ−1
k wπh︸ ︷︷ ︸

term3

. (10)

Below we bound the manitudes of term1, term2, term3 respectively. For term1, we use Lemma 11 and Lemma 12: define
εk
′

h′ = V kh+1(xk
′

h′+1)− Ex′∼(k′,h′)

[
V kh+1(x′)

]
, φk

′

h′ = 1√
2
Φk
′

h′ . By Lemma 11, we have

‖εkh‖Λk =
√

2

∥∥∥∥∥Λ−1
k

k−1∑
k′=1

H∑
h′=1

φk
′

h′ε
k′

h′

∥∥∥∥∥
Λk

=
√

2

∥∥∥∥∥
k−1∑
k′=1

H∑
h′=1

φk
′

h′ε
k′

h′

∥∥∥∥∥
Λ−1
k

≤ 2
√

2H

√
d

2
log

T + λ

λ
+ log

Nε
δ

+
√

2×
√

8t2ε2

λ
, (11)

for all k and h with probability at least 1− δ, where Nε is the ε-cover of the function class that V kh+1(·) lies in. Notice that
all t, V kh+1(·) can be expressed as the following:

V kh+1(x) = min

{
max
a

w>Φ(x, a) + β
√

Φ(x, a)>ΓΦ(x, a), H

}

for some positive definite Γ ∈ Rd×d with 1 = 1
λ ≥ λmax(Γ) ≥ λmin(Γ) ≥ 1

λ+2T = 1
1+2T and some w ∈ Rd with

‖w‖ ≤ λmax(Γ)× T × supx,a,x′ (‖Φ(x, a)‖H) ≤
√

2TH . Therefore, we can write the class of functions that V kh+1(·) lies
in as follows:

V =

{
V (x) = min

{
max
a

w>Φ(x, a) + β
√

Φ(x, a)>ΓΦ(x, a), H

}
:

w ∈ Rd : ‖w‖ ≤
√

2TH, Γ ∈ Rd×d :
1

1 + 2T
≤ λmin(Γ) ≤ λmax(Γ) ≤ 1

}
.

Now we apply Lemma 12 to V , with the following choices of parameters: α = (w,Γ), P = d2 + d, ε = 1
T , B =

√
2TH ,

and L = β
√

2(1 + 2T ) which is given by the following calculation: for any ∆w = εei,

1

|ε|
∣∣(w + ∆w)>Φ(x, a)− w>Φ(x, a)

∣∣ = |e>i Φ(x, a)| ≤ ‖Φ(x, a)‖ ≤
√

2,
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and for any ∆Γ = εeie
>
j ,

1

|ε|

∣∣∣∣β√Φ(x, a)>(Γ + ∆Γ)Φ(x, a)− β
√

Φ(x, a)>ΓΦ(x, a)

∣∣∣∣
≤ β

∣∣Φ(x, a)>eie
>
j Φ(x, a)

∣∣√
Φ(x, a)>ΓΦ(x, a)

(
√
u+ v −

√
u ≤ |v|√

u
)

≤ β
Φ(x, a)>

(
1
2eie

>
i + 1

2eje
>
j

)
Φ(x, a)√

Φ(x, a)>ΓΦ(x, a)

≤ β Φ(x, a)>Φ(x, a)√
Φ(x, a)>ΓΦ(x, a)

≤
√

2β

√
1

λmin(Γ)
≤ β

√
2(1 + 2T ).

Lemma 12 then implies:

logNε ≤ (d2 + d) log
2×
√

2TH × β
√

2(1 + 2T )× (d2 + d)

T−1
≤ 20d2 log T,

where in the last step we use the definition of β and also assume without loss of generality that sp(v∗) ≤
√
T , d ≤

√
T , and

T ≥ 32 (since otherwise the regret bound is vacuous). Then by Eq. (11) we have with probability 1− δ, for all k and h,

‖εkh‖Λk ≤ 2
√

2H

√
d

2
log

T + 1

1
+ log

1

δ
+ 20d2 log T + 4 ≤ 20dH

√
log(T/δ) =

β

2
,

and therefore,

|term1| ≤ ‖Φ(x, a)‖Λ−1
k
‖εkh‖Λk ≤

β

2
‖Φ(x, a)‖Λ−1

k
.

Furthermore,

|term2| ≤ ‖Φ(x, a)‖Λ−1
k

∥∥∥∥λ ∫
X

(V kh+1(x′)− V πh+1(x′))dµ(x′)

∥∥∥∥
Λ−1
k

(Cauchy-Schwarz inequality)

≤ ‖Φ(x, a)‖Λ−1
k

∥∥∥∥√λ∫
X

(V kh+1(x′)− V πh+1(x′))dµ(x′)

∥∥∥∥ (λmin(Λk) ≥ λ)

≤
√
λ‖Φ(x, a)‖Λ−1

k
×H
√
d (‖µ(X )‖ ≤

√
d by Assumption 2)

≤ β

4
‖Φ(x, a)‖Λ−1

k
, (using λ = 1)

and

|term3| ≤ ‖Φ(x, a)‖Λ−1
k
‖λwπh‖Λ−1

k
(Cauchy-Schwarz inequality)

≤ ‖Φ(x, a)‖Λ−1
k

∥∥∥√λwπh∥∥∥ (λmin(Λk) ≥ λ)

≤ β

4
‖Φ(x, a)‖Λ−1

k
. (‖wπh‖ ≤

√
dH and λ = 1)

Therefore, |term1|+ |term2|+ |term3| ≤ β‖Φ(x, a)‖Λ−1
k

for all k and h with probability at least 1− δ. Then by Eq. (10),
we have

Q̂kh(x, a)−Qπh(x, a) ≤ Ex′∼p(·|x,a)[V
k
h+1(x′)− V πh+1(x′)] + 2β‖Φ(x, a)‖Λ−1

k
,

proving one inequality in the lemma statement (since Qkh(x, a) ≤ Q̂kh(x, a)). To prove the other inequality, note that Eq.
(10) together with |term1|+ |term2|+ |term3| ≤ β‖Φ(x, a)‖Λ−1

k
also implies

Q̂kh(x, a)−Qπh(x, a) ≥ Ex′∼p(·|x,a)[V
k
h+1(x′)− V πh+1(x′)]. (12)
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Now we fix k and use induction on h to prove Qkh(x, a) ≥ Qπh(x, a). The base case h = H is clear due to Eq. (12) and
the facts V kH+1(x) = V πH+1(x) = 0 and QkH(x, a) − QπH(x, a) = min{Q̂kH(x, a), H} − QπH(x, a) ≥ 0. Next assume
Qkh+1(x, a) ≥ Qπh+1(x, a) for all x and a. Then V kh+1(x) = maxaQ

k
h+1(x, a) ≥ maxaQ

π
h+1(x, a) ≥ V πh+1(x). Using Eq.

(12) we have Q̂kh(x, a)−Qπh(x, a) ≥ 0, which again implies Qkh(x, a) = min{Q̂kh(x, a), H} ≥ Qπh(x, a). This finishes the
induction and proves the other inequality in the lemma statement.

Proof of Theorem 5. Let πk = (πk1 , . . . , π
k
H) be the finite-horizon policy that our algorithm executes for episode k, that

is, πkh(a|x) = 1[a = argmaxa′ Q
k
h(x, a′)] (breaking ties arbitrarily). Also let π̄∗ be the optimal finite-horizon policy with

value functions Q∗h(x, a) = maxπ Q
π
h(x, a) and V ∗h (x) = maxaQ

∗
h(x, a). We first decompose the regret as

RegT =

T∑
t=1

(J∗ − r(xt, at))

=

T/H∑
k=1

(
HJ∗ − V ∗1 (xk1)

)
︸ ︷︷ ︸

term4

+

T/H∑
k=1

(
V ∗1 (xk1)− V πk1 (xk1)

)
︸ ︷︷ ︸

term5

+

T/H∑
k=1

(
V πk1 (xk1)−

H∑
h=1

r(xkh, a
k
h)

)
︸ ︷︷ ︸

term6

(13)

In Lemma 13 (stated after this proof), we connect the optimal reward of the the infinite-horizon setting and the finite-horizon
setting and show that term4 ≤ T sp(v∗)

H .

Notice that conditioned on the history before episode k, V πk1 (xk1) is the expectation of
∑H
h=1 r(x

k
h, a

k
h). Therefore, term6

is a martingale different sequence, which can be upper bounded by O
(
H
√

T
H log(1/δ)

)
= O

(√
HT log(1/δ)

)
with

probabiltiy at least 1− δ (via Azuma’s inequality).

Finally, we deal with term5. Below we assume that the high-probability event in Lemma 4 hold. Then for all k, h:

Qkh(xkh, a
k
h)−Qπkh (xkh, a

k
h) ≤ Ex′∼(k,h)[V

k
h+1(x′)− V πkh+1(x′)] + 2β‖Φ(xkh, a

k
h)‖Λ−1

k

= V kh+1(xkh+1)− V πkh+1(xkh+1) + 2β‖Φ(xkh, a
k
h)‖Λ−1

k
+ ekh

= Qkh+1(xkh+1, a
k
h+1)−Qπkh+1(xkh+1, a

k
h+1) + 2β‖Φ(xkh, a

k
h)‖Λ−1

k
+ ekh

where in the first equality we define

ekh = Ex′∼(k,h)[V
k
h+1(x′)− V πkh+1(x′)]−

(
V kh+1(xkh+1)− V πkh+1(xkh+1)

)
,

which has zero mean, and in the second equality we use the facts V kh+1(xkh+1) = Qkh+1(xkh+1, a
k
h+1) and V πkh+1(xkh+1) =

Qπkh+1(xkh+1, a
k
h+1). Repeating the same argument and using V kH+1(·) = V πkH+1(·) = 0, we arrive at

Qk1(xk1 , a
k
1)−Qπk1 (xk1 , a

k
1) ≤

H∑
h=1

(
2β‖Φ(xkh, a

k
h)‖Λ−1

k
+ ekh

)
.

Further using that V ∗1 (xk1) = maxaQ
∗
1(xk1 , a) ≤ maxaQ

k
1(xk1 , a) = Qk1(xk1 , a

k
1) (the inequality is by Lemma 4) and that

V πk1 (xk1) = Qπk1 (xk1 , a
k
1), we have shown

term5 ≤
T/H∑
k=1

H∑
h=1

(
β‖Φ(xkh, a

k
h)‖Λ−1

k
+ ekh

)
.

The term
∑T/H
k=1

∑H
h=1 e

k
h is again the sum of a martingale difference sequence with each term’s magnitude bounded by

2H , and therefore is bounded by O
(
H
√
T log(1/δ)

)
with probability at least 1 − δ using Azuma’s inequality. For the

term
∑T/H
k=1

∑H
h=1 β‖Φ(xkh, a

k
h)‖Λ−1

k
, we first decompose it into two parts:

∑
k:det(Λk+1)≤2 det(Λk)

H∑
h=1

β‖Φ(xkh, a
k
h)‖Λ−1

k
+

∑
k:det(Λk+1)>2 det(Λk)

H∑
h=1

β‖Φ(xkh, a
k
h)‖Λ−1

k
.
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By (Abbasi-Yadkori et al., 2011, Lemma 12), det(Λk+1) ≤ 2 det(Λk) implies Λk+1 � 2Λk and thus Λ−1
k � 2Λ−1

k+1.
Therefore, the first part is upper bounded by

√
2
∑
k,h β‖Φ(xkh, a

k
h)‖Λ−1

k+1
≤ β

√
2T
√∑

k,h ‖Φ(xkh, a
k
h)‖2

Λ−1
k+1

, by

Cauchy-Schwarz inequality. Further invoking (Jin et al., 2020, Lemma D.2), we upper bound the last term by

O
(
β
√
T
√

log
det(ΛT/H+1)

det(Λ1)

)
= O

(
β
√
T

√
log
(
λ+2T
λ

)d)
= O

(
β
√
dT log T

)
. For the second part, notice that since the

event det(Λk+1) > 2 det(Λk) cannot happen for more than O
(

log
det(ΛT/H+1)

det(Λ1)

)
= O (d log T ) times, this part is upper

bounded by O (βdH log T ).

To conclude, we have shown that term5 = O
(
β
√
dT log T + βdH log T +H

√
T log(1/δ)

)
holds with probability at

least 1− 2δ. Combining all the bounds with Eq. (13), we have

RegT =

T∑
t=1

(J∗ − r(xt, at)) = O
(
T sp(v∗)

H
+ β

√
dT log T + βdH log T +H

√
T log(1/δ)

)
= Õ

(
T sp(v∗)

H
+ d3/2H

√
T + d2H2

)
(plug in the value of β)

with probability at least 1 − 3δ. Picking the optimal H (the one specified in Algorithm 2), we get that RegT =

Õ
(√

sp(v∗)(dT )
3
4 + (sp(v∗)dT )

2
3

)
.

Lemma 13. For any x, |HJ∗ − V ∗1 (x)| ≤ sp(v∗).

Proof. Let π∗ be the optimal policy of the infinite-horizon setting, and (π1, . . . , πH) be the optimal policy of the finite-
horizon setting. Without loss generality assume that both of them are deterministic policy. By the Bellman equation and the
optimality of π∗, we have

v∗(x) = max
a

(
r(x, a)− J∗ + Ex′∼p(·|x,a)v

∗(x)
)

(14)

= r(x, π∗(x))− J∗ + Ex′∼p(·|x,π∗(x))v
∗(x). (15)

For any x, consider a state sequence x1 = x, x2, . . . , xH generated by π∗. By the suboptimality of π∗ in the finite-horizon
setting,

V ∗1 (x) ≥ E

[
H∑
h=1

r(xh, π
∗(xh))

∣∣∣∣ x1 = x, π∗

]

= E

[
H∑
h=1

(
J∗ + v∗(xh)− Ex′∼p(·|xh,π∗(xh))[v

∗(x′)]
) ∣∣∣∣ x1 = x, π∗

]
(by Eq. (15))

= E

[
H∑
h=1

(J∗ + v∗(xh)− v∗(xh+1))

∣∣∣∣ x1 = x, π∗

]
= HJ∗ + E

[
v∗(x1)− v∗(xH+1)

∣∣ x1 = x, π∗
]

≥ HJ∗ − sp(v∗).

Next, consider a state x1 = x, x2, . . . , xH generated by (π1, . . . , πH):

V ∗1 (x) = E

[
H∑
h=1

r(xh, πh(xh))

∣∣∣∣ x1 = x, {πi}Hi=1

]

≤ E

[
H∑
t=1

(
J∗ + v∗(xt)− Ex′∼p(·|xh,πh(xh))[v

∗(x′)]
) ∣∣∣∣ x1 = x, {πi}Hi=1

]
(by Eq. (14))

= E

[
H∑
t=1

(J∗ + v∗(xh)− v∗(xh+1))

∣∣∣∣ x1 = x, {πi}Hi=1

]
= HJ∗ + E

[
v∗(x1)− v∗(xH+1)

∣∣ x1 = x, {πi}Hi=1

]
≤ HJ∗ + sp(v∗).



Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain

Combining the two directions finishes the proof.

D Omitted Analysis in Section 4

𝑅𝑘,1 𝑅𝑘,2 𝑅𝑘,3 𝑅𝑘,4

𝜏𝑘,1 𝜏𝑘,2 𝜏𝑘,3 𝜏𝑘,4

𝑁 steps

Figure 1: An illustration for the data collection process of MDP-EXP2. In the figure, we show how the algorithm collects 4
trajectories of length N (the red intervals) in an epoch with length B = 8N .

Figure 1 is an illustration of the data collection scheme of MDP-EXP2. Below, we first provide the proof for Lemma 6.

Proof of Lemma 6. Denote E[·|x1 = x, at ∼ π(·|xt), xt+1 ∼ p(·|xt, at) for all t ≥ 1] by E[·|x1 = x, π]. For any two
initial states u, u′ ∈ X , let δu and δu′ be the Dirac measures with respect to u and u′. Writing Pπ as P for simplicity, we
have for any time t,

|E [r(xt, at) | x1 = u, π]− E [r(xt, at) | x1 = u′, π]|

=

∣∣∣∣∣
∫
X

∑
a∈A

π(a|x)r(x, a)dPt−1δu(x)−
∫
X

∑
a∈A

π(a|x)r(x, a)dPt−1δu′(x)

∣∣∣∣∣
≤ 2‖Pt−1δu − Pt−1δu′‖TV

≤ 2e
− t−1
tmix ‖δu − δu′‖TV (Assumption 3)

≤ 2e
− t−1
tmix . (16)

Therefore, by the definition of Jπ(u) in Section 2, we have

|Jπ(u)− Jπ(u′)| ≤ lim
T→∞

2

T

T∑
t=1

e
− t−1
tmix = 0,

proving that Jπ(u) is a fixed value independent of the initial state u and can thus be denoted as Jπ .

Next, define the following two quantities:

vπT (x) = E

[
T∑
t=1

(r(xt, at)− Jπ)
∣∣∣ x1 = x, π

]
,

qπT (x, a) = E

[
T∑
t=1

(r(xt, at)− Jπ)
∣∣∣ (x1, a1) = (x, a), xt ∼ p(·|xt−1, at−1), at ∼ π(·|xt) for t ≥ 2

]
.

(17)

We will show that vπ(x) , limT→∞ vπT (x) and qπ(x, a) , limT→∞ qπT (x, a) satisfy the conditions stated in Lemma 6.
First we argue that they do exist. Note that Jπ can be written as

∫
X
∑
a r(x, a)π(a|x)dνπ(x) where νπ is the stationary
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distribution under π. Therefore, for any T , we have∣∣∣E [r(xT+1, aT+1)− Jπ
∣∣∣ x1 = x, π

]∣∣∣
=

∣∣∣∣∣
∫
X

∑
a∈A

π(a|x′)r(x′, a)dPT δx(x′)−
∫
X

∑
a∈A

π(a|x)r(x, a)dνπ(x)

∣∣∣∣∣
≤ 2‖PT δx − νπ‖TV

= 2‖PT δx − PT νπ‖TV (by the definition of νπ)

≤ 2e
− T
tmix ‖δx − νπ‖TV (by Assumption 3)

≤ 2e
− T
tmix , (18)

and thus
|vπT (x)− vπT+1(x)| =

∣∣∣E [r(xT+1, aT+1)− Jπ
∣∣∣ x1 = x, π

]∣∣∣ ≤ 2e
− T
tmix ,

which goes to zero and implies that vπ(x) = limT→∞ vπT (x) exists. On the other hand, by the definition we have

qπT (x, a) = r(x, a)− Jπ + Ex′∼p(·|x,a)v
π
T−1(x′),

and taking the limit on both sides shows that qπ(x, a) = limT→∞ qπT (x, a) exists and satisfies the Bellman equation in the
lemma statement:

qπ(x, a) = r(x, a)− Jπ + Ex′∼p(·|x,a)v
π(x′).

Finally, Eq. (18) also shows that

|vπT (x)| ≤ 2

T∑
t=1

e
− t−1
tmix ≤ 2

1− e−
1
tmix

≤ 2

1−
(

1− 1
2tmix

) = 4tmix, (using e−x ≤ 1− 1
2x for x ∈ [0, 1] and tmix ≥ 1)

and thus the range of vπ is [−4tmix, 4tmix] while the range of qπ is [−6tmix, 6tmix] since |qπ(x, a)| ≤ |r(x, a)| + |Jπ| +
supx′ |vπ(x′)| ≤ 2 + 4tmix ≤ 6tmix. The last statement

∫
X v

π(x)dνπ(x) = 0 in the lemma is also clear since∫
X v

π
T (x)dνπ(x) = 0 for all T by the equality Jπ =

∫
X
∑
a r(x, a)π(a|x)dνπ(x) and the fact that x1, . . . , xT all have

marginal distribution νπ when x1 = x is drawn from νπ .

In Section 4, we mention that Assumption 4 is weaker than Assumption 2 when Assumption 3 holds. Below we provide a
proof for this statement.

Lemma 14. Under Assumption 3, Assumption 2 implies Assumption 4.

Proof. Since Assumption 3 holds, by Lemma 6, we have

qπ(x, a) = r(x, a)− Jπ + Ex′∼p(·|x,a)v
π(x′)

= Φ(x, a)>θ − JπΦ(x, a)>e1 + Φ(x, a)>
∫
X
vπ(x′)dµ(x′) (Assumption 2)

= Φ(x, a)>
(
θ − Jπe1 +

∫
X
vπ(x′)dµ(x′)

)
.

Taking wπ to be θ − Jπe1 +
∫
X v

π(x′)dµ(x′) and noting that ‖wπ‖ ≤ ‖θ‖+ 1 + (maxx∈X v
π(x))‖µ(X )‖ ≤

√
d+ 1 +

4tmix
√
d ≤ 6tmix

√
d finishes the proof.

D.1 Proof of Theorem 7

To prove Theorem 7, we first show a couple of useful lemmas.
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Lemma 15. Let k be any number in {1, 2, . . . , TB } and m be any number in {1, 2, . . . , B2N }. Let E[· | τk,m] denote the
expectation conditioned on (xτk,m , aτk,m) and all history before time τk,m (recall the definitions of τk,m and Rk,m in
Algorithm 3). Then we have

∣∣E[Rk,m | τk,m]−
(
qπk(xτk,m , aτk,m) +NJπk

)∣∣ ≤ 1

T 7
.

Proof. Recalling the definition of qπkN in Eq. (17), we have

E[Rk,m | τk,m]

= E

[
N∑
t=1

r(xt, at)
∣∣∣ (x1, a1) = (xτk,m , aτk,m), xt ∼ p(·|xt−1, at−1), at ∼ πk(·|xt) for t ≥ 2

]
= qπkN (xτk,m , aτk,m) +NJπk . (19)

Then we bound the difference between qπN (x, a) and qπ(x, a) (which is limN→∞ qπN (x, a) as shown in the proof of
Lemma 6) for any π, x, a:

|qπN (x, a)− qπ(x, a)|

=

∣∣∣∣∣E
[ ∞∑
t=N+1

(r(xt, at)− Jπ)
∣∣∣ (x1, a1) = (x, a), xt ∼ p(·|xt−1, at−1), at ∼ πk(·|xt) for t ≥ 2

]∣∣∣∣∣
≤ 2

∞∑
t=N+1

e
− t−1
tmix ≤ 2e

− N
tmix

1− e−
1
tmix

≤ 4tmixe
− N
tmix . (Eq. (18))

Recall that N = 8tmix log T , and without loss of generality we assum tmix ≤ T/4 (otherwise the regret bound is vacuous).
Thus we can bound the last expression by 4tmix

T 8 ≤ 1
T 7 . Combining this with Eq. (19) finishes the proof.

Lemma 16. Let Ek[·] denote the expectation conditioned on all history before epoch k. Then

‖Ek[wk]− (wπk +NJπke1)‖ ≤ 1

T 2
.
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Proof. Let Ik = 1[λmin(Mk) ≥ Bσ
24N ]. We proceed as follows:

Ek[wk] = Ek

IkM−1
k

B
2N∑
m=1

Φ(xτk,m , aτk,m)Rk,m

 (definition of wk)

= Ek

IkM−1
k

B
2N∑
m=1

Φ(xτk,m , aτk,m)Ek[Rk,m|xτk,m , aτk,m ]


(taking expectation for Rk,m conditioned on (xτk,m , aτk,m))

= Ek

IkM−1
k

B
2N∑
m=1

Φ(xτk,m , aτk,m)
(
qπk(xτk,m , aτk,m) +NJπk

)
+ Ek

IkM−1
k

B
2N∑
m=1

Φ(xτk,m , aτk,m)εk(xτk,m , aτk,m)


(define εk(xτk,m , aτk,m) = Ek[Rk,m|xτk,m , aτk,m ]−

(
qπk(xτk,m , aτk,m) +NJπk

)
)

= Ek

IkM−1
k

B
2N∑
m=1

Φ(xτk,m , aτk,m)Φ(xτk,m , aτk,m)> (wπk +NJπke1)


+ Ek

IkM−1
k

B
2N∑
m=1

Φ(xτk,m , aτk,m)εk(xτk,m , aτk,m)

 (by Assumption 4)

= Ek

IkM−1
k

B
2N∑
m=1

∑
a

πk(a|xτk,m)Φ(xτk,m , a)Φ(xτk,m , a)> (wπk +NJπke1)


+ Ek

IkM−1
k

B
2N∑
m=1

∑
a

πk(a|xτk,m)Φ(xτk,m , a)εk(xτk,m , a)


(taking expectation for aτk,m conditioned on xτk,m )

= Ek [Ik (wπk +NJπke1)] + ε (define ε = Ek
[
IkM

−1
k

∑ B
2N
m=1

∑
a πk(a|xτk,m)Φ(xτk,m , a)εk(xτk,m , a)

]
)

= wπk +NJπke1 − Ek [(1− Ik)(wπk +NJπke1)] + ε.

By Lemma 15, we have |εk(xτk,m , aτk,m)| ≤ 1/T 7 and thus

‖ε‖ ≤ Ek

 B
2N∑
m=1

∥∥∥∥∥IkM−1
k

∑
a

πk(a|xτk,m)Φ(xτk,m , a)εk(xτk,m , aτk,m)

∥∥∥∥∥


= Ek

 B
2N∑
m=1

∥∥∥∥∥IkM−1
k

∑
a

πk(a|xτk,m)Φ(xτk,m , a)Φ(xτk,m , a)>e1εk(xτk,m , aτk,m)

∥∥∥∥∥


= Ek

 B
2N∑
m=1

∥∥Ike1εk(xτk,m , aτk,m)
∥∥ ≤ Ek

 B
2N∑
m=1

1

T 7

 ≤ 1

T 6
.

On the other hand, we also have

‖Ek [(1− Ik)(wπk +NJπke1)]‖ ≤ Ek [(1− Ik)] (6tmix
√
d+N) ≤ 6tmix

√
d+N

T 3
.

where the last step is by Lemma 17 (stated after this proof). Finally, combining everything proves

‖Ek[wk]− (wπk +NJπke1)‖ ≤ 1

T 6
+

6tmix
√
d+N

T 3
≤ 1

T 2
,

where we assume 6tmix
√
d+N = 6tmix

√
d+ 8tmix log T is at most T2 (otherwise the regret bound is vacuous).
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Lemma 17. For any k ∈ {1, . . . , T/B}, conditioning on the history before epoch k, we have with probability at least
1− 1

T 3 , λmin(Mk) ≥ Bσ
24N .

Proof. We consider a fixed k. Notice that since N is larger than tmix, the state distribution at τk,m conditioned on all
trajectories collected before (which all happen before τk,m − N ) would be close to the stationary distribution νπk . For
the purpose of analysis, we consider an imaginary world where all history before epoch k remains the same as the real
world, but in epoch k, at time t = τk,m, ∀m = 1, 2, . . ., the state distribution is reset according to the stationary distribution,
i.e., xτk,m ∼ νπk ; for other rounds, it follows the state transition driven by πk, the same as the real world. we denote the
expectation (given the history before epoch k) in the imaginary world as E′k[·].

Fro simplicity, define ym = xτk,m , zm = {aτk,m , Rk,m} and m∗ = B
2N . Note that Mk is a function of {ym}m

∗

m=1 and
that (yi−1, zi−1)→ yi → zi form a Markov chain. Therefore, by writing Mk = Mk (y1, . . . , ym∗), and considering any
function f of Mk, we have

Ek[f(Mk)] =

∫
f (Mk (y1, . . . , ym∗)) dq(y1)dq(z1|y1)dq(y2|y1, z1)dq(z2|y2) · · ·

dq(ym∗ |ym∗−1, zm∗−1)dq(zm∗ |ym∗)

and

E′k[f(Mk)] =

∫
f (Mk (y1, . . . , ym∗)) dq′(y1)dq(z1|y1)dq′(y2)dq(z2|y2) · · · dq′(ym∗)dq(zm∗ |ym∗)

where q and q′ denote the probability measure in the real and the imaginary worlds respectively (conditioned on the history
before epoch k). Note that by our construction, in the imaginary world yi is independent of (y1, z1, . . . , yi−1, zi−1), while
zi|yi follows the same distribution as in the real world. By the uniform-mixing assumption, we have that

‖q′(ym)− q(ym|ym−1, zm−1)‖TV ≤ e−
N
tmix ≤ 1

T 8
,

implying that

|Ek[f(Mk)]− E′k[f(Mk)]| ≤ 2

T 8
× B

2N
× fmax ≤

fmax

T 7
, (20)

where fmax is the maximum magnitude of f(·). Picking f(M) = 1
[
λmin(M) ≤ Bσ

24N

]
(with fmax = 1 clearly), we have

shown that

Prk

[
λmin (Mk) ≤ Bσ

24N

]
≤ Pr′k

[
λmin (Mk) ≤ Bσ

24N

]
+

1

T 7
.

It remains to bound Pr′k
[
λmin (Mk) ≤ Bσ

24N

]
. Notice that

E′k[Mk] =
B

2N
×
∫
X

∑
a

πk(a|x)Φ(x, a)Φ(x, a)>dνπk(x) � B

2N
× σI

by Assumption 5. Using standard matrix concentration results (specifically, Lemma 18 with δ = 11
12 , n = B

2N = 16
σ log(dT ),

Xm =
∑
a πk(a|xτk,m)Φ(xτk,m , a)Φ(xτk,m , a)>, R = 2, and r = Bσ

2N = 16 log(dT )), we get

Pr′k

[
λmin (Mk) ≤ 1

12
× Bσ

2N

]
≤ d · exp

(
−121

144
× 16 log(dT )× 1

4

)
≤ d · exp (−3.3 log(dT )) ≤ 1

T 3.3
.

In other words, we have shown

Prk

[
λmin (Mk) ≤ Bσ

24N

]
≤ 1

T 3.3
+

1

T 7
≤ 1

T 3
,

which completes the proof.
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Lemma 18. (Theorem 2 in Harvey) Let X1, . . . , Xn be independent, random, symmetric, real matrices of size d× d with
0 � Xm � RI for all m. Suppose rI � E[

∑n
m=1Xm] for some r > 0. Then for all δ ∈ [0, 1], one has

Pr

[
λmin

(
n∑

m=1

Xm

)
≤ (1− δ)r

]
≤ d · e−δ

2r/(2R).

Lemma 19. With η ≤ σ
24N , MDP-EXP2 guarantees for all x:

E

T/B∑
k=1

∑
a

(π∗(a|x)− πk(a|x)) qπk(x, a)

 ≤ O( ln |A|
η

+ η
TN2

Bσ

)
.

Proof. Note that by the definition of wk we have

|w>k Φ(x, a)| ≤
√

2η‖wt‖ ≤
√

2η × 24N

Bσ
× B

2N
×
√

2N =
24N

σ
, (21)

and thus η|w>k Φ(x, a)| ≤ 1 by our choice of η. Therefore, using the standard regret bound of exponential weight (see e.g.,
(Bubeck et al., 2012, Theorem 1)), we have

T/B∑
k=1

∑
a

(π∗(a|x)− πk(a|x))
(
w>k Φ(x, a)

)
≤ O

 ln |A|
η

+ η

T/B∑
k=1

∑
a

πk(a|x)
(
w>k Φ(x, a)

)2 . (22)

Taking expectation, the left-hand side becomes

E

T/B∑
k=1

∑
a

(π∗(a|x)− πk(a|x))
(
w>k Φ(x, a)

)
= E

T/B∑
k=1

∑
a

(π∗(a|x)− πk(a|x)) ((wπk +NJπke1) · Φ(x, a))

−O(1) (Lemma 16)

= E

T/B∑
k=1

∑
a

(π∗(a|x)− πk(a|x)) (wπk>Φ(x, a) +NJπk)

−O(1)

= E

T/B∑
k=1

∑
a

(π∗(a|x)− πk(a|x))wπk>Φ(x, a)

−O(1)

= E

T/B∑
k=1

∑
a

(π∗(a|x)− πk(a|x)) qπk(x, a)

−O(1). (Assumption 4)

To bound the expectation of the right-hand side of Eq. (22), we focus on the key term Ek
[∑

a πk(a|x)(w>k Φ(x, a))2
]

(Ek
denotes the expectation conditioned on the history before epoch k) and use the same argument as done in the proof of
Lemma 17 via the help of an imaginary word where everything is the same as the real world except that the first state of each
trajectory xτk,m for m = 1, 2, . . . , B/2N is reset according to the stationary distribution νπk (E′k denotes the conditional
expectation in this imaginary world). By the exact same argument (cf. Eq. (20)), we have

Ek

[∑
a

πk(a|x)(w>k Φ(x, a))2

]
≤ E′k

[∑
a

πk(a|x)(w>k Φ(x, a))2

]
+

B

T 8N
×
(

24N

σ

)2

where we use the range of (w>k Φ(x, a))2 derived earlier in Eq. (21). It remains to bound E′k
[∑

a πk(a|x)(w>k Φ(x, a))2
]
,
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which we proceed as follows with Ik = 1[λmin(Mk) ≥ Bσ
24N ]:

E′k

[∑
a

πk(a|x)(w>k Φ(x, a))2

]

= E′k

∑
a

πk(a|x)

Φ(x, a)>M−1
k

B
2N∑
m=1

Φ(xτk,m , aτk,m)Rk,m

2

Ik


≤ N2E′k

∑
a

πk(a|x)

Φ(x, a)>M−1
k

B
2N∑
m=1

Φ(xτk,m , aτk,m)

2

Ik

 (Rk,m ≤ N )

= N2E′k

∑
a

πk(a|x)Φ(x, a)>M−1
k

 B
2N∑
m=1

Φ(xτk,m , aτk,m)

 B
2N∑
m=1

Φ(xτk,m , aτk,m)

>M−1
k Φ(x, a)Ik


≤ BN

2
E′k

∑
a

πk(a|x)Φ(x, a)>M−1
k

 B
2N∑
m=1

Φ(xτk,m , aτk,m)Φ(xτk,m , aτk,m)>

M−1
k Φ(x, a)Ik


(Cauchy-Schwarz inequality)

=
BN

2
E′k

∑
a

πk(a|x)Φ(x, a)>M−1
k

 B
2N∑
m=1

∑
a′

πk(a′|xτk,m)Φ(xτk,m , a
′)Φ(xτk,m , a

′)>

M−1
k Φ(x, a)Ik


=
BN

2
E′k

[∑
a

πk(a|x)Φ(x, a)>M−1
k Φ(x, a)Ik

]

≤ O
(
BN × N

Bσ

)
(definition of Ik)

= O
(
N2

σ

)
.

Combining everything shows

E

T/B∑
k=1

∑
a

(π∗(a|x)− πk(a|x)) qπk(x, a)

 ≤ O( ln |A|
η

+ η
T

B

(
N2

σ
+
NB

T 8σ

))

≤ O
(

ln |A|
η

+ η
TN2

Bσ

)
,

which finishes the proof.

We are now ready to prove Theorem 7.

Proof of Theorem 7. First, decompose the regret as:

RegT = E

[
T∑
t=1

(J∗ − r(xt, at))

]

= E

T/B∑
k=1

B(J∗ − Jπk)

+ E

T/B∑
k=1

kB∑
t=(k−1)B+1

(Jπk − r(xt, at))

 .
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For the first term above, we apply the value difference lemma (see e.g., (Wei et al., 2020, Lemma 15)):

E

T/B∑
k=1

B(J∗ − Jπk)


= E

T/B∑
k=1

B

∫
X

∑
a

(π∗(a|x)− πk(a|x))qπk(x, a)dνπ
∗
(x)


= O

(
B ln |A|

η
+ η

TN2

σ

)
. (by Lemma 19)

For the second term, we first consider a specific k:

Ek

 kB∑
t=(k−1)B+1

(Jπk − r(xt, at))


= Ek

 kB∑
t=(k−1)B+1

(Ex′∼p(·|xt,at)[v
πk(x′)]− qπk(xt, at))

 (Bellman equation)

= Ek

 kB∑
t=(k−1)B+1

(vπk(xt+1)− vπk(xt))


= vπk(xkB+1)− vπk(x(k−1)B+1).

Therefore,

E

T/B∑
k=1

kB∑
t=(k−1)B+1

(Jπk − r(xt, at))


≤ E

T/B∑
k=1

(
vπk(xkB+1)− vπk(x(k−1)B+1)

)
≤ E

T/B∑
k=2

(
vπk−1(x(k−1)B+1)− vπk(x(k−1)B+1)

)+O(tmix). (23)

We bound the last summation using the fact that πk and πk−1 are close. Indeed, by the update rule of the algorithm, we have

πk(a|x)− πk−1(a|x) =
πk−1(a|x)eηΦ(x,a)>wk−1∑
b∈A πk−1(b|x)eηΦ(x,b)>wk−1

− πk−1(a|x)

≤ πk−1(a|x)eηΦ(x,a)>wk−1∑
b∈A πk−1(b|x)

e−minb ηΦ(x,b)>wk−1 − πk−1(a|x)

≤ πk−1(a|x)
(
e2ηmaxb |Φ(x,b)>wk−1| − 1

)
.

Recall that in the proof of Lemma 19, we have shown ηmaxb |Φ(x, b)>wk−1| ≤ 1 as long as η ≤ σ/(24N). Combining
with the fact e2x ≤ 1 + 8x for x ∈ [0, 1] we have(

e2ηmaxb |Φ(x,b)>wk−1| − 1
)
≤ 8ηmax

b
|Φ(x, b)>wk−1| = O

(
η × N

σ

)
,

where the last step is by Eq. (21). This shows

πk(a|x)− πk−1(a|x) ≤ O
(
ηN

σ
πk−1(a|x)

)
.
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Similarly, we can show πk−1(a|x)− πk(a|x) = O
(
ηN
σ πk−1(a|x)

)
as well. By the same argument of (Wei et al., 2020,

Lemma 7) (summarized in Lemma 20 for completeness), this implies:

|vπk(x)− vπk−1(x)| ≤ O
(
η
N3

σ
+

1

T 2

)
.

for all x. Continuing from Eq. (23), we arrive at

E

T/B∑
k=1

kB∑
t=(k−1)B+1

(Jπk − r(xt, at))

 = O
(
η
T

B

N3

σ
+ tmix

)
.

Combining everything, we have shown

RegT = O
(
B ln |A|

η
+ η

TN2

σ
+ η

TN3

Bσ
+ tmix

)
= Õ

(
tmix

ση
+ η

T t2mix

σ

)
(definition of N and B)

= Õ
(

1

σ

√
t3mixT

)
, (by the choice of η specified in Algorithm 3)

which finishes the proof.

Lemma 20. If π′ and π satisfy |π′(a|x)− π(a|x)| ≤ O (βπ(a|x)) for all x, a and some β > 0, and N ≥ 4tmix log T , then
|vπ′(x)− vπ(x)| ≤ O(ηβN2 + 1

T 2 ).

Proof. See the proof of (Wei et al., 2020, Lemma 7).

Remark 1. Notice that by the definition of σ,

σ ≤ λmin

(∫
X

(∑
a

π(a|x)Φ(x, a)Φ(x, a)>

)
dνπ(x)

)

≤ 1

d
trace

[∫
X

(∑
a

π(a|x)Φ(x, a)Φ(x, a)>

)
dνπ(x)

]

≤ 1

d

∫
X

(∑
a

π(a|x)‖Φ(x, a)‖2
)

dνπ(x) (trace[Φ(x, a)Φ(x, a)>] = ‖Φ(x, a)‖2)

≤ 2

d
, (‖Φ(x, a)‖2 ≤ 2 by Assumption 2)

which implies 1
σ ≥

d
2 . Therefore, the regret bound in Theorem 7 has an implicit Ω(d) dependence.

E MDP-EXP2 with unknown tmix and σ

To execute MDP-EXP2 when tmix and σ are unknown, we propose to use doubling trick on T , and letN = T 0.4ξ ,B = T 0.8ξ

for some 0 < ξ < 1. More precisely, consider the following algorithm.

Algorithm 4
for i = 0, 1, 2, . . . do

W ← 64 · 2i
Execute Algorithm 3 for W steps, with parameters N = W 0.4ξ, B = W 0.8ξ, η =

√
1/(NW ), and the condition in

Line 10 replaced by λmin(Mk) ≥ 4
3 log(dW ).
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To get a regret bound for this algorithm, we focus on a time interval that corresponds to a specific i. Note that as long
as N ≥ 8tmix logW and B ≥ 32N log(dW )σ−1 (i.e., when the values of N and B are larger than the required values as
specified in Algorithm 3), we can redo the analysis of Lemma 19 and Theorem 7 (details omitted), and get

Regi = Õ
(
B ln |A|

η
+ ηWBN +N

)
.

as the regret for this interval. With the choice of η, we get Regi = Õ
(
B
√
NW

)
= Õ

(
W

1
2 +ξ
)

, where W = 64 · 2i.

On the other hand, notice that the condition N = W 0.4ξ ≥ 8tmix logW holds except for a constant number of steps (the
constant depends on ξ and tmix). Similarly, the conditionB ≥ 32N log(dW )σ−1 holds as long asW 0.4ξ ≥ 32 log(dW )σ−1,
which also holds except for a constant number of steps (the constant depends on ξ and σ).

Overall, we get an asymptotic regret bound of Õ
(
T

1
2 +ξ
)

except for a constant number of steps. The choice of ξ trades the
asymptotic performance with the constant regret term.

F Connection between Natural Policy Gradient and MDP-EXP2

The connection between the exponential weight algorithm Freund and Schapire (1995) and the classic natural policy gradient
(NPG) algorithm Kakade (2002) under softmax parameterization has been discussed in Agarwal et al. (2020). Further
connections between exponential weight algorithms and several relative-entropy-regularized policy optimization algorithms
(e.g., TRPO Schulman et al. (2015), A3C Mnih et al. (2016), PPO Schulman et al. (2017)) are also drawn in Neu et al.
(2017). In this section, we review these connection, and argue that because of the different way of constructing the policy
gradient estimator, our MDP-EXP2 is actually more sample efficient than the version of NPG discussed in Agarwal et al.
(2020) under the setting considered in Section 4.

F.1 Equivalence between NPG with softmax parameterization and exponential weight updates

We first restates (Agarwal et al., 2020, Lemma 5.1), which shows that NPG with softmax parameterization is equivalent to
exponential weight updates:

Lemma 21 (Lemma 5.1 of Agarwal et al. (2020)). Let πθ(a|x) =
exp(Φ(x,a)>θ)∑
b exp(Φ(x,b)>θ)

. Also, let νθ be the stationary distribution
under policy πθ, and Aπ(x, a) be the advantage function under policy π defined as Aπ(x, a) = qπ(x, a)− vπ(x). Then the
update

θnew = θ + ηF †θ gθ

with

Fθ = Ex∼νπθEa∼πθ(·|x)

[
∇θ log πθ(a|x)∇θ log πθ(a|x)>

]
gθ = Ex∼νπθEa∼πθ(·|x) [∇θ log πθ(a|x)Aπθ (x, a)]

implies:

πθnew(a|x) =
πθ(a|x) exp (ηAπθ (x, a))

Zθ(x)

where Zθ(x) is a normalization factor that ensures
∑
a πθnew(a|x) = 1.

To see this connection, notice that the update direction w = F †θ gθ is the solution of

min
w∈Rd

Ex∼νπθEa∼πθ(·|x)

[∥∥w>∇θ log πθ(a|x)−Aπθ (x, a)
∥∥2
]
, (24)

and also by definition πθnew(a|x) =
exp(Φ(x,a)>θnew)∑
b exp(Φ(x,b)>θnew)

∝ πθ(a|x) exp
(
ηΦ(x, a)>F †θ gθ

)
= πθ(a|x) exp

(
ηΦ(x, a)>w

)
∝

πθ(a|x) exp
(
η∇θ log πθ(a|x)>w

)
. Therefore, if w achieves a value of zero in Eq. (24), we will have πθnew(a|x) ∝

πθ(a|x) exp (ηAπθ (x, a)). The proof of Agarwal et al. (2020) handles the general case where Eq. (24) is not necessarily
zero. Notice that πθ(a|x) exp (ηAπθ (x, a)) is further proportional to πθ(a|x) exp (ηqπθ (x, a)), which is consistent with the
intuition of our algorithm explained in Section 4.
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F.2 Comparison between the NPG in Agarwal et al. (2020) and MDP-EXP2

While the general formulations of the NPG in Agarwal et al. (2020) and MDP-EXP2 are of the same form as shown by
Lemma 21 (apart from superficial differences, e.g., the average-reward setting versus the discounted setting), they use
different ways to construct an estimator of Aπθ (x, a) (or qπθ (x, a)) when the learner does not have access to their true
values and has to estimate them from sampling. We argue that under the setting considered in Section 4, our algorithm and
analysis achieve the near-optimal regret of order Õ(

√
T ) while theirs only obtains sub-optimal regret.

In MDP-EXP2, we construct a nearly unbiased estimator of w satisfying qπθ (x, a) +NJπθ = w>Φ(x, a) (which exists
under Assumption 4), and feed it to the exponential weight algorithm. The way we do it is similar to how EXP2 constructs
the reward estimators for adversarial linear bandits. In MDP-EXP2, to construct each estimator (denoted as wk there),
the learner collects B

2N = Õ( 1
σ ) trajectories, with σ defined in Assumption 5, and then aggregate them through a form of

importance weighting introduced by M−1
k . With this construction, w>k Φ(x, a) has negligible bias (by Lemma 16) compared

to w>Φ(x, a), while having variance upper bounded by a constant related to 1
σ (see the proof of Lemma 19).

On the other hand, the estimator used in Agarwal et al. (2020) is an approximate solution of Eq. (24). Under the same
assumptions of Assumption 4 and Assumption 5, they use stochastic gradient descent to solve Eq. (24), and obtain an
estimator ŵ that makes ŵ>∇θ logθ(a|x) ε-close to w>∇θ logθ(a|x). To obtain such ŵ, they need to sample O

(
1
ε2

)
trajectories.

Comparing the two approaches, we see that to obtain a single estimator ŵ for the update direction w = F †θ gθ in Lemma 21,
MDP-EXP2 algorithm calculates a nearly unbiased one with relatively high variance using a constant number of trajectories,
while the NPG in Agarwal et al. (2020) calculates an ε-accurate one with low variance using O

(
1
ε2

)
trajectories. The

advantage of the former is that each estimator is cheaper to get, and the effect of high variance can be amortized over
iterations. As shown in Theorem 7, MDP-EXP2 achieves Õ(

√
T ) regret bound. On the other hand, to get an ε-optimal

policy, Agarwal et al. (2020) needs to use O
(

1
ε2

)
trajectories per iteration of policy update, and perform O

(
1
ε2

)
iterations

of policy updates, leading to a total sample complexity bound of O
(

1
ε4

)
. This translates to a regret bound of O(T

3
4 ) in

our setting at best. In fact, since the algorithms by Abbasi-Yadkori et al. (2019a) and Hao et al. (2021) are also based on
exponential weight, they also can be regarded as variants of NPG. However, the estimators they construct suffer the same
issue described above, and can only get O(T

3
4 ) or O(T

2
3 ) regret.

We remark that the version of NPG by Agarwal et al. (2020) can also learn the optimal policy with a worse sample complexity
O
(

1
ε6

)
under a weaker assumption compared to Assumption 5 (which replaces 1

σ with the relative condition number κ
defined in their Section 6.3). It is not clear how our approach can extend to this setting and obtain improved sample
complexity. We leave this as a future direction.
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