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A Batch Decisions

We describe how our algorithm can be extended to
the setting where the decision-maker makes decisions
about batches of individuals jointly rather than one
individual at a time. For instance, a bank might de-
cide on a portfolio of loans to target at once rather
than decide independently for each individual. The
challenge is ensuring decisions are fair not just across
di↵erent batches of individuals, but also across indi-
viduals within a batch, since these decisions may be
correlated.

In this setting, the state space becomes S
0 = S

k =
(Z ⇥ S̃)k, where there are k individuals and S is
the state space of individual i. The action space is
A

0 = A
k = {0, 1}k—i.e., a binary decision for each

individual. Then, the state-action distribution is � 2
R|S0|⇥|A0|, with a component �s,a = �(s1,...,sk),(a1,...,ak)

for each state s = (s1, ..., sk) 2 S
0 and action a =

(a1, ..., ak) 2 A
0. The policy ⇡ can simultaneously

make decisions for all k individuals. We let the individ-
ual rewards for individual i be ⇢

i 2 R|S0|⇥|A0|. Then,
the natural generalization of our fairness constraint is
that decisions should be fair on average across both
the initial state distribution and across individuals in
a single batch. For instance, demographic parity says
that
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This constraint can be encoded in our linear program
in Algorithm 1 by replacing the second constraint with
the following (the objective and first constraint remain
the same, except with S replaced by S

0 and A replaced
by A

0):
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and where pi,z is a normalizing constant similar to pz

in the original constraint. Intuitively, this constraint is
the same as the original one except that we marginalize
over all other individuals (i.e., the sums over sj for
j 6= i), and then we average over individuals i as in

our fairness constraint. This constraint can similarly
be incorporated into Algorithm 2. Finally, while this
MDP has number of states exponential in the number
of individuals k, this blowup is inevitable since the
policy is allowed to make complex decisions based on
the states of all individuals.

B Proof of Theorem 2.5

For the first claim, consider the MDP M . The states
are s0, s1, s2, s3, s4 2 S̃ ⇥ Z, where:

s0 = (0,maj)

s1 = (1,maj)

s2 = (0,min)

s3 = (1,min)

s4 = (2,min).

The actions are A = {0, 1}. The transitions are

Ps0,a,s1 = 1

Ps1,a,s1 = 1

Ps2,a,s3 = I[a = 0]

Ps2,a,s4 = I[a = 1]

Ps3,s3 = 1

Ps4,s4 = 1

for all a 2 A. The initial distribution is

Ds0 = Ds2 =
1

2
Ds1 = Ds3 = Ds4 = 0.

The discount factor is � = 1
2 . The individual rewards

are

⇢s0,a = 0

⇢s1,a = 1

⇢s2,a = 0

⇢s3,a = 0

⇢s4,a = 2,

for all a 2 A. Let ⇡ : S ! A be a deterministic policy.
It is clear that the only value of ⇡ that matters is ⇡(s2).
Conditioned on z = maj, regardless of ⇡, the expected
cumulative individual reward is

E
(s,a)⇠⇤(⇡)

maj
[⇢s,a] =

✓
1� 1

2

◆ 1X

t=1

1

2t

=
1

2
.

Conditioned on z = min, if ⇡(s2) = 0, then

E
(s,a)⇠⇤(⇡)

min
[⇢s,a] =

(
0 if ⇡(s2) = 0

1 if ⇡(s2) = 1.



Algorithms for Fairness in Sequential Decision Making

Thus, for ✏ <
1
2 , it is impossible for the demographic

parity constraint to be satisfied.

However, consider the stochastic policy

⇡s2,0 = ⇡s2,1 =
1

2
.

Then,

E
(s,a)⇠⇤(⇡)

min
[⇢s,a] =

1

2
,

so this policy satisfies the demographic parity con-
straint.

For the second claim, consider the same MDP, except
where

⇢s4,a = 0

for all a 2 A. Then, it is clear that

E
(s,a)⇠⇤(⇡)

min
[⇢s,a] = 0

regardless of ⇡. Thus, for ✏ <
1
2 , the demographic

parity constraint cannot be satisfied—i.e., ⇧DP,✏ = ?.

C Proof of Theorem 3.1

Our proof proceeds in three steps. First, we show that
any feasible point of the LP in Algorithm 1 is the state-
action distribution ⇤(⇡) for some policy ⇡ 2 ⇧DP.
Second, we show that conversely, for any fair policy
⇡ 2 ⇧DP, the state-action distribution ⇤(⇡) is a fea-
sible point of the LP. Finally, we combine these two
results to prove the theorem.

Step 1. Let ⇡ 2 ⇧DP be any policy satisfying demo-
graphic parity. Then, we claim that the state-action
distribution ⇤(⇡) is a feasible point of the LP in Algo-
rithm 1.

First, we show that ⇤(⇡) satisfies the first constraint
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for each s
0 2 S.

To this end, note that by induction,

D
(⇡,t) = (P (⇡))tD,

so

D
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#
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Multiplying each side of (9) by I � �P
(⇡) (where I is

the |S|⇥ |S| identity matrix), we have
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Note that these algebraic manipulations are valid since
the eigenvalues of �P (⇡) are bounded in norm by � <

1, so all sums converge absolutely. Rearranging this
equality gives
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that follow from the definition of ⇤(⇡). Therefore, ⇤(⇡)

satisfies the first constraint.

Next, we show that ⇤(⇡) satisfies the second constraint,
which says that

���� p
�1
maj

X

s̃2S̃

X

a2A

�(maj,s̃),a⇢(maj,s̃),a (11)

� p
�1
min

X

s̃2S̃

X

a2A

�(min,s̃),a⇢(min,s̃),a

����  ✏.

In particular, note that

D
(⇡)
z = D

(⇡) | 9s̃ 2 S̃ . s = (zs̃),

since the value of z for s equals the value of z for the
initial state s0 ⇠ D. Furthermore, the probability of
sampling s ⇠ D

(⇡) | 9s̃ 2 S̃ . s = (z, s̃) is

D
(⇡)
s I[9s̃ 2 S̃ . s = (z, s̃)]

pz
.
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Together with the definition of ⇤(⇡)
z , we have

(⇤(⇡)
z )s,a = (D(⇡)

z )s⇡s,a

=
D
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s I[9s̃ 2 S̃ . s = (z, s̃)]

pz
· ⇡s,a

=
⇤(⇡)
s,a I[9s̃ 2 S̃ . s = (z, s̃)]
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.

Therefore, we have
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By assumption, ⇡ satisfies the demographic parity con-
straint, which says exactly that (12) satisfies (11).
Thus, ⇤(⇡) satisfies the second constraint.

Therefore, ⇤(⇡) is a feasible point of the LP, as claimed.

Step 2. Let � 2 R|S|⇥|A| be a feasible point of the
LP in Algorithm 1, and let

⇡s,a =
�s,aP

a02A �s,a0

be the corresponding policy returned by Algorithm 1.
Then, we claim that � = ⇤(⇡), that ⇡ 2 ⇧DP, and that
the value of the objective for � equals R(⇡).

To see the first claim, let d 2 R|S| be defined by

ds =
X

a2A

�s,a.

We show thatD(⇡) = d. To this end, note that because
� satisfies the first constraint in the LP, we have
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Together with the equality
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,

we have
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= (1� �)Ds0 + �(P (⇡)
d)s0 .

Thus,

d = (1� �)D + �P
(⇡)

d. (13)

We note that I��P
(⇡) is invertible—in particular, the

eigenvalues of �P (⇡) have norms bounded by �, so the
eigenvalues of I � �P

(⇡) have norms bounded below
by 1 � �; therefore, the eigenvalues of I � �P

(⇡) are
nonzero, so it is invertible. As a consequence, we can
solve for d in (13) to get

d = (1� �)(I � �P
(⇡))�1

D.

Finally, from (10) in Step 1 of this proof, we estab-
lished that D(⇡) similarly satisfies

D
(⇡) = (1� �)D + �P

(⇡)
D

(⇡)
.

As before, since I � �P
(⇡) is invertible, we have

D
(⇡) = (1� �)(I � �P

(⇡))�1
D = d.

Thus,

�s,a = ds⇡s,a = Ds⇡s,a = ⇤(⇡)
s,a ,

so the first claim follows.

To see the second claim, note that since � is feasible, it
must satisfy the second constraint of the LP. As shown
in the first step of this proof, (11) is equivalent to the
demographic parity constraint. Thus, ⇡ 2 ⇧DP, as
claimed.

To see the third claim, note that

R
(⇡) = (1� �)E(s,a)⇠⇤(⇡) [Rs,a]

= (1� �)
X

s2S

X

a2A

⇤(⇡)
s,aRs,a.

In other words, the value of the objective of the LP
for the point � is equal to R

(⇡), as claimed.

Step 3. Finally, we use the results from the previous
two steps to prove the theorem statement. First, let ⇡⇤

be the solution to (1). By the claim shown in the first
step, ⇤(⇡⇤) is a feasible point of the LP in Algorithm 1.
Furthermore, by the claim shown in the second step,
the value of the objective for � = ⇤(⇡⇤) is R(⇡⇤).

Next, let �0 be the solution to the LP in Algorithm 1.
By the claim shown in the second step, (i) �0 = ⇤(⇡0),
where ⇡0 is the policy returned by Algorithm 1, (ii)
⇡0 2 ⇧DP, and (iii) the value of the objective for �0 is
R

(⇡0).

It follows that R
(⇡⇤)  R

(⇡0), since ⇡0 maximizes the
objective of the LP over feasible points (and ⇤(⇡⇤) is
feasible). Since ⇡0 2 ⇧DP, it follows that ⇡0 is also
a solution to (1). Thus, we have proven the theorem
statement.
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D Proof of Theorem 4.2

Our proof proceeds in three steps. First, we bound the
error |⇢̃(⇡)�⇢

(⇡)| due to truncation. Second, we bound
the estimation error |⇢̂(⇡) � ⇢̃

(⇡)|. Third, we combine
steps 1 and 2 to prove Theorem 4.2.

Step 1. Note that for any policy ⇡ and any z 2 Z,
we have
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Step 2. For each z 2 Z, let ⇢̂
(⇡)
z be an estimate of

⇢̃
(⇡)
z using m sampled rollouts ⇣(1), ..., ⇣(m). First, note

that

|⇢̂(⇡)z |  ⇢max
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is bounded, so we can apply Hoe↵ding’s inequality (see
Lemma F.1) to get
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Since Z = {maj,min}, by a union bound,
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4
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with probability at least 1� �.

Step 3. Now, we can prove Theorem 4.2. First, note
that with probability 1� �,
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for all z 2 Z. Thus,
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which implies that ⇡ 2 ⇧DP,✏. Thus, the theorem
follows.

E Proof of Theorem 5.1

We prove the following lemma; Theorem 5.1 follows by
choosing ✏

0 = N
�1/3.

Lemma E.1. Let ✏, ✏
0
, � 2 R+ be given. Assume that

Rmax be an upper bound on R (i.e., kRk1 = Rmax)

and on ⇢. Let ✏̃ = min{✏, ✏0}, and let

N0 =
128T 4 · |S|2 ·R2

max · log(2|S|2|A|/�)
�2
0✏̃

2
.

Let M̂ = (S,A,D, P̂ , R, T ), and ⇡̂ be the optimal policy

for M̂ in ⇧̂DP,✏/2 (i.e., the set of policies satisfying de-

mographic parity for M̂). Let M = (S,A,D, P,R, T ),
and ⇡

⇤
be optimal for M in ⇧DP,✏/4. Then, ⇡̂ 2 ⇧DP,✏,

and R
(⇡⇤) �R

(⇡̂)  ✏
0
, where R

(⇡)
is defined for M .

Our proof proceeds in three steps. First, we prove
that for any ✏0, �0, we can choose N0 su�ciently large
so that

kP � P̂k1  ✏0

with probability at least 1� �0. Second, we prove that
assuming kP � P̂k1  ✏0, then for any policy ⇡, we
have

|R(⇡) � R̂
(⇡)|  T

2 · |S| ·Rmax · ✏0,

where R
(⇡) (resp., R̂

(⇡)) is the expected cumulative
distribution assuming the transitions are P (resp., P̂ ),
and similarly for the agent rewards ⇢. Third, we use
the first two steps to prove the lemma statement.

Step 1. Given ✏0, �0 2 R+, we claim that for

N0 =
2 log(2|S|2|A|/�0)

�2
0✏

2
0

,

then our estimate P̂ satisfies

kP̂ � Pk1  ✏0

with probability at least 1� �0.

Let Is,a be the random variable indicating whether our
algorithm observes a tuple (s, a, s0) (for some s

0 2 S)
on a single episode, and let Is,a,i be samples of Is,a
for each of the N0 exploratory episodes taken by our
algorithm. Let

µ
(I)
s,a = E[Is,a]

µ̂
(I)
s,a =

1

N0

N0X

i=1

Is,a,i.

Then, by Hoe↵ding’s inequality (see Lemma F.1), we
have

Pr
h
|µ̂(I)

s,a � µ
(I)
s,a| � ✏

i
 2e�2N0✏

2

. (14)
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By assumption, we have

µ
(I)
s,a = ⇤(⇡0)

s,a � �0,

so using ✏ = �0/2 in (14), we have

µ̂
(I)
s,a � µ

(I)
s,a

2
� �0

2
(15)

with probability at least

1� 2e�N0(µ
(I)
s,a)

2/2 � 1� 2e�N0�
2
0/2.

Taking a union bound over s 2 S and a 2 A, we have
(15) holds for every s 2 S and a 2 A with probability
at least

1� 2|S| · |A| · e�N0�
2
0/2. (16)

In this event, we have at least N0�0
2 observations

(s, a, s0) (for some s
0 2 S) for every s 2 S and a 2 A.

Now, for an observation (s, a, s00), let Js,a,s0 be the
random variable indication whether s

0 = s
00. With-

out loss of generality, we assume that we have exactly
N1 = N0�0

2 samples Js,a,s0,j of Js,a,s0 for each s 2 S

and a 2 A. Let

µ
(J)
s,a,s0 = E[Js,a,s0 ]

µ̂
(J)
s,a,s0 =

1

N1

N1X

j=1

Js,a,s0,j .

Then, by Hoe↵ding’s inequality (see Lemma F.1), we
have

Pr
h
|µ̂(J)

s,a,s0 � µs,a,s0 | � ✏

i
 2e�2N1✏

2

. (17)

Note that by definition, µ(J)
s,a,s0 = Ps,a,s0 and µ̂

(J)
s,a,s0 =

P̂s,a,s0 . Thus, taking ✏ = ✏0 in (17), we have

|Ps,a,s0 � P̂s,a,s0 |  ✏0 (18)

with probability at least

1� 2e�2N1✏
2
0 .

Taking a union bound over all s, s0 2 S and a 2 A, we
have (18) for all s, s0 2 S and a 2 A with probability
at least

1� 2|S|2|A| · e�2N1✏
2
0 . (19)

In other words, in this event, we have kP � P̂k1  ✏0.

Taking a union bound over (16) and (19), we have

kP � P̂k1  ✏0

with probability at least

1� 2|S|2|A| · e�2N1✏
2
0 � 2|S| · |A| · e�N0�

2
0/2

= 1� 2|S|2|A| · e�N0�0✏
2
0 � 2|S| · |A| · e�N0�

2
0/2

� 1� 2|S|2|A| · e�N0�
2
0✏

2
0/2

= �0,

as claimed.

Step 2. We claim that assuming

kP � P̂k1  ✏0,

then for any policy ⇡, we have

|R(⇡) � R̂
(⇡)|  T

2 · |S| ·Rmax · ✏0,

where R
(⇡) is the expected cumulative reward for

⇡ in the MDP M = (S,A,D, P,R, T ) and R̂
(⇡) is

the expected cumulative reward for ⇡ in the MDP
M̂ = (S,A,D, P̂ , R, T ). Note that we have replaced
the discount factor � with the time horizon T . In ad-
dition, for all z 2 Z, we have

|⇢(⇡)z � ⇢̂
(⇡)
z |  T · |S| ·Rmax · ✏0,

where

⇢
(⇡)
z = E

(s,a)⇠⇤(⇡)
z

[⇢s,a],

is the expected cumulative agent reward for the MDP

M , and ⇢̂
(⇡)
z is the expected cumulative agent reward

for the MDP M̂ . We only prove the claim for |R(⇡) �
R̂

(⇡)|; the claim for |⇢(⇡)z � ⇢̂
(⇡)
z | follows using the same

argument.

Let W 2 R|S| be

Ws = h⇡s,·, Rs,·i =
X

a2A

⇡s,aRs,a.

Then, we have

R
(⇡) = hR,⇤(⇡)i

=
X

s2S

X

a2A

D
(⇡)
s ⇡s,aRs,a

= hD(⇡)
,W i.

Now, note that

D
(⇡,t) = (P (⇡))D,

so we have

D
(⇡) =

1

T

T�1X

t=0

D
(⇡,t)

=
1

T

"
T�1X

t=0

(P (⇡))tD

#
.
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Thus,

R
(⇡) =

T�1X

t=0

D
(P (⇡))tD,W

E
.

Similarly,

R̂
(⇡) =

T�1X

t=0

D
(P̂ (⇡))tD,W

E
.

It follows that

R
(⇡) � R̂

(⇡) =
T�1X

t=0

D
(P (⇡))tD � (P̂ (⇡))tD,W

E
.

Thus,

|R(⇡) � R̂
(⇡)|


T�1X

t=0

k(P (⇡))tD � (P̂ (⇡))tDk1 · kWk1


T�1X

t=1

✏0 · T · kDk1 · kWk1, (20)

where the first line follows from Hölder’s inequality,
and the second line follows from properties of the ma-
trix norm, from the fact that

k(P (⇡))t � (P̂ (⇡))tk1

= kP (⇡) � P̂
(⇡)k1 ·

t�1X

s=0

kP (⇡)ks1 · kP̂ (⇡)kt�s�1
1

 ✏0 · T,

and using the fact that the summand is zero for t = 0
since (P (⇡))0 = (P̂ (⇡))0 = I. Note that

kDk1  1 (21)

Furthermore,

|Ws| = |h⇡s,·, Rs,·i|  k⇡s,·k1 · kRs,·k1
 kRs,·k1
 Rmax,

where the first inequality follows from Hölder’s in-
equality and the second inequality follows since ⇡s,·
is a discrete probability distribution. Therefore,

kWk1 =
X

s2S

|Ws|  |S| ·Rmax. (22)

Plugging (21) and (22) into (20) gives

|R(⇡) � R̂
(⇡)|  T

2 · |S| ·Rmax · ✏0.

Step 3. Now, we prove the theorem. Let ⇡̂ be the
optimal policy for M̂ (i.e., transitions P̂ ) satisfying
⇡̂ 2 ⇧̂DP,✏/2. Similarly, let ⇡

⇤ be the optimal policy
for M (i.e., transitions P ) satisfying ⇡

⇤ 2 ⇧DP,✏/4. We
apply the second step with

✏0 =
✏̃

8T 2 · |S| ·Rmax

�0 = �.

Then, by the first step, for all z, z0 2 Z, we have

⇢
(⇡̂)
z � ⇢

(⇡̂)
z0

 (⇢(⇡̂)z � ⇢̂
(⇡̂)
z ) + (⇢̂(⇡̂)z � ⇢̂

(⇡̂)
z0 ) + +(⇢(⇡̂)z0 � ⇢̂

(⇡̂)
z0 )

 T
2 · |S| ·Rmax · ✏0 +

✏

2
+ T

2 · |S| ·Rmax · ✏0

 ✏,

where the inequality on the third line follows because
⇡̂ 2 ⇧̂DP,✏/2, and the inequality on the last line follows
since ✏̃  ✏. Thus, we guarantee that ⇡̂ 2 ⇧DP,✏.

Next, note that similarly, for all z, z0 2 Z, we have

⇢̂
(⇡⇤)
z � ⇢̂

(⇡⇤)
z0  ✏

2
,

so ⇡
⇤ 2 ⇧̂DP,✏/2. As a consequence, we have

R
(⇡⇤) �R

(⇡̂)

= (R(⇡⇤) � R̂
(⇡⇤)) + (R̂(⇡⇤) � R̂

(⇡̂)) + (R̂(⇡̂) �R
(⇡̂))

 T
2 · |S| ·Rmax · ✏0 + 0 + T

2 · |S| ·Rmax · ✏0
 ✏

0
,

where the inequality on the third line follows because
⇡̂ maximizes R̂(⇡) over ⇡ 2 ⇧̂DP,✏/2 and ⇡

⇤ 2 ⇧̂DP,✏/2,
and the inequality on the last line follows since ✏̃  ✏

0.

Thus, the lemma statement follows.

F Technical Lemmas

Lemma F.1. (Hoe↵ding’s inequality) Let X ⇠ pX be

a random variable with domain [a, b] ✓ R and mean

µX , and let µ̂X = n
�1

Pn
i=1 Xi be an estimate of µX

a using n i.i.d. samples Xi ⇠ pX . Then, we have

Pr [|µ̂X � µX | � ✏]  2 exp

✓
� 2n✏2

(b� a)2

◆
, (23)

where the probability is taken over the randomness in

the i.i.d. samples X1, ..., Xn ⇠ pX .

Proof. See Wainwright (2019) for a proof.
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Figure 2: Demographic parity (a) objective value, (b) constraint value for our algorithm (black) and the optimistic
baseline (red). (c) Regret of our reinforcement learning algorithm.

G Experimental Details & Additional
Results

Parameters. We use the following parameters for our
loan MDP:

I = 0.17318629

pZ = 0.29294318

↵maj = 0.65338681

�maj = 0.20783559

↵min = 0.48824268

�min = 0.48346869

� = 0.01

⌧ = 0.1

✏ = 0.1

T = 50

Tmaj = 10

Tmin = 7.

Additional results for Algorithm 2. We addition-
ally study how Algorithm 2 varies with the fairness
constraint threshold ✏. In Figure 2 (a,b), we show the
objective value achieved and the fairness constraint
value achieved by our algorithm and the optimistic al-
gorithm for the demographic parity constraint. While
the objective values achieved are very similar, the op-
timistic algorithm does not always satisfy the fairness
constraint. In particular, for ✏ = 0.025, its constraint
value is 0.052 (exceeds ✏ by 108%), and for ✏ = 0.05,
it is 0.079 (exceeds ✏ by 59%). Intuitively, there are
multiple policies that achieve the same objective value,
but the optimistic algorithm sometimes fails to find the
ones that are fair. In contrast, our algorithm always
satisfies the fairness constraint.

Results for Algorithm 1. We have evaluated Algo-
rithm 1 on a modified version of our loan MDP where
↵ and � are discretized and thresholded to make the
state space finite. For this MDP, we have compared

Algorithm 1 to solving an unconstrained MDP—i.e.,
without the demographic parity fairness constraint.
We use ✏ = 0.01. Our results are as follows: (i)
for Algorithm 1, the cumulative expected reward is
0.68 and the fairness constraint value is 0.01, and (ii)
for the unconstrained algorithm, the cumulative ex-
pected reward is 0.69 and the fairness constraint value
is 0.26. In other words, for a small reduction in re-
ward, our algorithm substantially improves fairness.
The remaining baselines cannot be implemented using
the approach in Algorithm 1.

Results for reinforcement learning. We have run
our reinforcement learning algorithm in conjunction
with the We run the algorithm for N = 1000 episodes
total. In particular, we explore for 100 episodes using
a conservative policy ⇡0 that ignores the state; then,
we use the estimated transitions to learn the optimal
policy ⇡̂ and use ⇡̂ for the remaining 900 episodes.
Since our model is parameterized by ↵ and �, we es-
timate these quantities instead of directly estimating
the transitions. We show the regret compared to the
optimal policy in Figure 2 (c), averaged over 5 iter-
ations. As can be seen, the regret quickly increases
while using ⇡0, and then becomes almost flat when us-
ing ⇡̂. We note that our algorithm satisfies the fairness
constraint across all episodes and iterations.


