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Abstract

It has recently been shown that if feedback
e↵ects of decisions are ignored, then impos-
ing fairness constraints such as demographic
parity or equality of opportunity can actually
exacerbate unfairness. We propose to address
this challenge by modeling feedback e↵ects as
Markov decision processes (MDPs). First, we
propose analogs of fairness properties for the
MDP setting. Second, we propose algorithms
for learning fair decision-making policies for
MDPs. Finally, we demonstrate the need to
account for dynamical e↵ects using simula-
tions on a loan applicant MDP.

1 Introduction

Machine learning has the potential to substantially im-
prove performance in tasks such as legal and financial
decision-making. However, biases in the data can be
reflected in a decision-making policy trained on that
data (Dwork et al., 2012), which can result in deci-
sions that unfairly discriminate against minorities. For
example, consider the problem of deciding whether
to give loans to applicants (Hardt et al., 2016). If
minorities are historically given loans less frequently,
then there may be less data on how reliably they re-
pay loans. Thus, a learned policy may unfairly label
minorities as higher risk and deny them loans.

So far, work on fairness has largely focused on su-
pervised learning. However, näıvely imposing fairness
constraints while ignoring even one-step feedback ef-
fects can actually harm minorities (Liu et al., 2018;
Creager et al., 2019; D’Amour et al., 2020). Thus, we
must extend existing definitions of fairness to account
for the feedback e↵ects of the decisions being made on
population members. For example, denying loans to
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individuals may have consequences on their financial
security that need to be taken into account.

This paper proposes algorithms for learning fair
decision-making policies that account for feedback ef-
fects of decisions. We model these e↵ects as the dy-
namics of a Markov decision process (MDP), and ex-
tend existing fairness definitions to decision-making
policies for a known MDP. We distinguish the qual-
ity of outcomes for the decision-maker (e.g., the bank)
from the quality of the outcomes for individuals (e.g.,
a loan applicant). Then, fairness properties are con-
straints on the average quality of outcomes for individ-
uals in di↵erent subpopulations (e.g., majorities and
minorities are o↵ered loans at the same frequency),
whereas the reward measures the quality of outcomes
for the decision-maker (e.g., the bank’s profit). The
key challenge is that learning with a fairness constraint
is much more challenging in the MDP setting due to
the inherent non-convexity. Building on work on con-
strained MDPs (Altman, 1999; Wen and Topcu, 2018),
we propose novel algorithms for learning policies that
satisfy fairness constraints. In particular, we propose
two algorithms. First, we propose a model-based al-
gorithm based that has optimality guarantees, but is
limited to MDPs with finite state and action spaces
and satisfies a separability assumption saying that the
sensitive attribute does not change over time. Second,
we propose a model-free algorithm that is very general,
but may not find the optimal policy.

We compare to two baselines that ignore dynamics: (i)
an algorithm that optimistically pretends actions do
not a↵ect the state distribution (i.e., supervised learn-
ing), and (ii) an algorithm that conservatively assumes
the state distribution can change adversarially on each
step. In a simulation study on a loan applicant MDP
based on (Hardt et al., 2016), we show that compared
to our algorithm, the optimistic algorithm learns un-
fair policies, and the conservative algorithm learns fair
but poorly performing policies. Our results demon-
strate the importance of accounting for dynamics.1

Related work. For supervised learning, there have

1
Our code is at: https://github.com/wmgithub/fairness.
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been several definitions of fairness, including demo-
graphic parity (i.e., members of the majority and min-
iority subpopulations have equal outcomes on aver-
age) (Calders et al., 2009), equality of opportunity
(i.e., qualified members have equal outcomes on av-
erage) (Hardt et al., 2016), individual fairness (Dwork
et al., 2012), and causal fairness (i.e., protected at-
tributes should not influence outcomes) (Kusner et al.,
2017; Kilbertus et al., 2017; Nabi and Shpitser, 2018).
The appropriate definition depends on the application.

There has been recent interest in fairness for sequen-
tial decision making. For instance, Liu et al. (2018)
has studied one-step feedback e↵ects, Creager et al.
(2019) studies the impact of dynamics on fairness via
simulations, and (D’Amour et al., 2020) proposes tools
from causal inference to study fairness with dynamics.
However, none of these approaches propose learning al-
gorithms. For instance, the model in Liu et al. (2018)
is highly stylized (e.g., they only consider a single time
step) since their goal is to demonstrate the necessity of
accounting for sequential decisions rather than study
the general problem of algorithms for ensuring fairness
in sequential decision-making.

In the case of unknown dynamics, there has been work
in the bandit setting (Joseph et al., 2016; Hashimoto
et al., 2018) and the MDP setting (Jabbari et al., 2017;
Elzayn et al., 2019). However, they focus on fairness
constraints for which the optimal policy is always fair,
so solving for the optimal fair policy is trivial once the
dynamics are known. In contrast, we are interested in
the setting where fairness constraint is nontrivial even
when the dynamics are known. There has been recent
work studying fairness constraints (Bechavod et al.,
2019; Kilbertus et al., 2019) in the setting of selec-
tive labels (Lakkaraju et al., 2017); however, there is
no state in their setting. In addition, Awasthi et al.
(2020) study how fairness definitions can be updated
over time based on feedback; in their model, individu-
als do not recur across time steps as they do in ours.

There has been work on constrained MDPs (Altman,
1999; Achiam et al., 2017; Wen and Topcu, 2018).
However, these approaches focus on constraints that
bound some state-dependent cost function; in con-
trast, fairness constraints say that statistics of di↵erent
groups must be equalized in some way.

2 Fairness Constraints for MDPs

Preliminaries. A Markov decision process (MDP)

is a tuple M = (S,A,D, P,R, �), where S = [n] =
{1, ..., n} are the states, A = [m] are the actions,
D 2 R|S| is the initial state distribution (i.e., Ds is the
probability of starting in state s), P 2 R|S|⇥|A|⇥|S| are
the transitions (i.e., Ps,a,s0 is the probability of tran-

sitioning from s to s
0 taking action a), R 2 R|S|⇥|A|

are the rewards (i.e., Rs,a is the reward obtained tak-
ing action a in state s), and � 2 R is the discount
factor. Let ⇡ 2 R|S|⇥|A| be a stochastic policy (i.e.,
⇡s,a is the probability of taking action a in state s).
The induced transtions are P

(⇡) 2 R|S|⇥|S|, where

P
(⇡)
s,s0 =

P
a2A ⇡s,aPs,a,s0 . The time-discounted state

distribution is

D
(⇡) = (1� �)

1X

t=0

�
t
D

(⇡,t)

where

D
(⇡,t) =

(
D if t = 0

P
(⇡)

D
(⇡,t�1) otherwise,

and the time-discounted state-action distribution is
⇤ 2 R|S|⇥|A|, where ⇤(⇡)

s,a = D
(⇡)
s ⇡s,a. Note thatP

a ⇡s,a = 1 and
P

s D
(⇡)
s = 1, so

P
s,a ⇤s,a = 1. The

cumulative expected reward is

R
(⇡) = (1� �)

1X

t=0

�
thR,⇤(⇡,t)i = E(s,a)⇠⇤(⇡) [Rs,a],

where hX,Y i =
P

s2S

P
a2A Xs,aYs,a; we include a

normalizing constant of 1 � � to simplify notation,
which does not a↵ect the reinforcement learning prob-
lem since R

(⇡) is scaled equally for di↵erent poli-
cies. Given policy class ⇧, the optimal policy is
⇡
⇤ = argmax⇡2⇧ R

(⇡).

Fairness. Consider a population of individuals (e.g.,
loan applicants) interacting with a decision-maker
(e.g., a bank). States S encode an individual’s fea-
tures (e.g., probability of repaying), actions A are in-
terventions (e.g., loan o↵er), and transitions P encode
state changes (e.g., changes in ability to repay). The
decision-maker rewards are not always aligned with
individual rewards, so we use rewards R to indicate
quality of outcomes for the decision-maker (e.g., the
bank’s profit), and individual rewards ⇢ 2 R|S|⇥|A| to
indicate quality of outcomes for an individual (e.g.,
whether a loan is o↵ered). The cumulative expected
individual rewards is ⇢(⇡) = E(s,a)⇠⇤(⇡) [⇢s,a].

Our goal is to learn the optimal policy for the decision-
maker under a fairness constraint on the individual re-
wards. In particular, we want to ensure that ⇡ does
not favor the majority subpopulation over the minor-

ity subpopulation. The specific fairness constraint that
should be used depends on the problem domain. We
show how two constraints from the supervised learn-
ing setting can be extended to the MDP setting; as we
discuss below, our results are more general.

First, we have the following extension of demographic
parity to the MDP setting:
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Definition 2.1. Let ✏ 2 R+, M be an MDP with
states S = Z ⇥ S̃, where Z = {maj,min}, and ⇢ 2
R|S|⇥|A| be the individual rewards. For z 2 Z, let

⇤(⇡)
z = ⇤(⇡) | 9s̃ 2 S̃ . s0 = (z, s̃)

be the time-discounted state-action distribution con-
ditioned on starting from an initial state s0 in subpop-
ulation z—i.e., s0 has the form s0 = (z, s̃0) for some
s̃0 2 S̃. More precisely,

(⇤(⇡)
z )s,a = (D(⇡)

z )s⇡s,a (8s 2 S, a 2 A)

(D(⇡)
z )s = (1� �)

1X

t=0

(�P (⇡))tDz (8s 2 S)

(Dz)s0 = ⌫
�1 ·Ds0 · I[9s̃ 2 S̃ . s0 = (z, s̃)] (8s0 2 S),

where ⌫ is a normalizing constant. Furthermore, let
⇢
(⇡) conditioned on starting in subpopulation z is

⇢
(⇡)
z = E

(s,a)⇠⇤(⇡)
z

[⇢s,a]. Then, we say a policy ⇡ satis-

fies ✏ demographic parity if |⇢(⇡)maj � ⇢
(⇡)
min|  ✏.

For an individual (s̃, z) 2 S, z encodes whether they
are from the majority (z = maj) or minority (z = min)
subpopulation and s̃ encodes their non-sensitive char-
acteristics (e.g., probability of repaying a loan); demo-
graphic parity says the cumulative expected individual
rewards are equal for the majority and minority sub-
populations. Next, we have the following analog of
equal opportunity (Hardt et al., 2016):

Definition 2.2. Let ✏ 2 R+, let M be an MDP with
states S = Z⇥Y ⇥ S̃, where Z = {maj,min} and Y =
{qual, unqual}, and let ⇢ 2 R|S|⇥|A| be the individual
rewards. For each z 2 Z, let

⇢
(⇡)
z = E

(s,a)⇠⇤(⇡)
z

[⇢s,a]

⇤(⇡)
z = ⇤(⇡) | 9s̃ 2 S̃ . s0 = (z, qual, s̃).

A policy ⇡ is ✏ equal opportunity if |⇢(⇡)maj � ⇢
(⇡)
min|  ✏.

This property is similar to demographic parity, but

where ⇤(⇡)
z is restricted to the qualified subpopulation

(i.e., y = qual). In other words, this property says
that cumulative expected individual rewards are equal
on average for qualified members of the majority and
minority subpopulations.

Remark 2.3. In general, our algorithms apply
to any fairness constraint that two subpopulations
should have equal expected outcomes—i.e., for any

Smaj, Smin ✓ S, letting ⇢
(⇡)
z = E

(s,a)⇠⇤(⇡)
z

[⇢s,a] and

⇤(⇡)
z = ⇤(⇡) | I[s0 2 Sz], the constraint |⇢(⇡)maj�⇢

(⇡)
min| 

✏. They also extend to one-sided inequalities and to
multiple majority and minority subpopulations. They
also extend to batch decisions; see Appendix A.

We focus on demographic parity when describing our
algorithms, but our results are general. Letting ⇧DP,✏

be the class of policies satisfying demographic parity,
our goal is to compute the optimal policy

⇡
⇤
DP = argmax

⇡2⇧DP,✏

R
(⇡)

. (1)

We primarily focus is on settings where the MDP is
known, which includes settings where the decision-
maker learns about individuals via their interactions
(see example below), but not ones where they learn
across individuals. We describe a basic extension to
unknown MDPs in Section 5.

Example. We describe an MDP Mloan that models
individuals applying for loans. We assume each indi-
vidual has a true probability p of repaying their loan.
On step t, the bank has an estimate of the distribution
of p (e.g., a credit score); we assume this distribution
is a Beta distribution—i.e., pt ⇠ Beta(↵t,�t). Thus,
the states of our MDP (↵t,�t). 2 The actions are to
o↵er (a = 1) or deny (a = 0) a loan. If the bank o↵ers
a loan, the transitions are

(↵t+1,�t+1) =

(
(↵t + 1,�t) with probability pt

(↵t,�t + 1) with probability 1� pt.

If the bank denies the loan, the transitions are
(↵t+1,�t+1) = (↵t,�t). However, since we are inter-
ested in detrimental e↵ects of the bank’s decisions, we
assume this decision reduces the applicant’s ability to
pay for future loans—i.e., (↵t+1,�t+1) = (↵t,�t + ⌧),
where ⌧ 2 R+ is a hyperparameter. We assume the
initial state distribution is z ⇠ Bernoulli(pZ) and
(↵,�) ⇠ p0(↵,� | z) for some pZ 2 [0, 1] and some
distribution p0—i.e., the initial distribution over the
parameters ↵,� depends on the whether the applicant
is from the majority or minority subpopulation. Note
that p0 can additionally be conditioned individual co-
variates if available. Now, the bank’s rewards are

E�[�I � (1� �)P ]� �

p
Var�[�I � (1� �)P ], (2)

where P is the principal (without loss of generality, we
let P = 1), I is interest, � indicates whether the loan is
repaid, and � 2 R+. The first term is expected profit
and the second term is to risk aversion. We assume
the goal of the bank is to maximize (2).

The individual rewards are I[a = 1], where I is the
indicator function—i.e., the reward is 1 if the loan is
o↵ered and 0 if it is denied. Then, demographic parity
says that loans should be given to majority and mi-
nority members with equal frequency (within an ✏ tol-
erance), and equal opportunity says that loans should

2
Technically, our MDP is the belief MDP of the

POMDP where the state p is unobserved.



Algorithms for Fairness in Sequential Decision Making

be given to qualified majority and minority members
at equal rates (we assume an applicant is qualified if
their true probability of repaying satisfies p � p0 for
some p0 2 [0, 1]).

Separable MDPs. We focus primarily on MDPs
where the fairness attribute is constant.

Definition 2.4. An MDP with states S = Z ⇥ S̃

is separable if the transitions satisfy P(z,s̃),a,(z0,s̃0) =

�z,z0 P̃s̃,a,s̃0 , where �z,z0 = I[z = z
0] and P̃ 2

R|S̃|⇥|A|⇥|S̃| is a transition matrix.

That is, the transitions do not a↵ect z, so the sensitive
attribute z 2 Z does not change over time. This prop-
erty is satisfied by many sensitive attributes (e.g., race
and gender). Fairnes properties may not make sense
when the sensitive attribute can change.

Existence and determinism. Unconstrained MDPs
always have a deterministic optimal policy (Sutton and
Barto, 2018); however, with a fairness constraint, this
result may not hold:

Theorem 2.5. There exists ✏ > 0 and an MDP M

such that ⇧DP,✏ = ?. There exists ✏ > 0 and an MDP

M such that ⇡
⇤
in (1) is not deterministic.

We give a proof in Appendix B. For the following
special case, we can prove existence of fair policies:

Definition 2.6. We say ⇢ is state-independent if for
some ⇢̃ 2 R|A|, we have ⇢s,a = ⇢̃a for all s 2 S.

Intuitively, this property captures settings where the
decision-maker uses the state to choose actions (e.g.,
ability to repay), but the outcomes for the individ-
uals only depend on whether the preferred action is
taken (e.g., a loan o↵er). Our exampleMloan has state-
independent individual rewards.

Theorem 2.7. If the individual rewards are state-

independent, then (1) has a solution.

Proof. Any policy ⇡ such that ⇡s,a = ⇡̃a for all s 2 S

and some ⇡̃ 2 R|A|, satisfies ⇡ 2 ⇧DP.

Comparison to supervised learning. Our fairness
definitions are natural generalizations of their coun-
terparts for supervised learning. For example, in the
supervised learning setting, demographic parity says
that majority and minority members should, on av-
erage, be given positive outcomes at equal rates. Our
extension to MDPs says that this property should hold
on average across time—more precisely, averaged over
t ⇠ Geometric(�), where � is the discount factor.

Conversely, our constraint reduces to the supervised
learning constraint setting when the state distribution
is constant over time—i.e., D(⇡,t) = D is independent

of t and ⇡. To see this claim, note that a constant
state distribution implies that D(⇡) = D, so the state-

action distribution is simply ⇤(⇡)
s,a = Ds⇡s,a, and our

MDP demographic parity constraint reduces to
��Es⇠Dmaj,a⇠⇡s [⇢s,a]� Es⇠Dmin,a⇠⇡s [⇢s,a]

��  ✏.

In other words, the policy ⇡ should equalize the ex-
pected individual rewards for the majority and mi-
nority subpopulations on the initial (constant) state
distribution. Finally, assuming the individual rewards
are ⇢s,a = 1 for a positive outcome and ⇢s,a = 0 oth-
erwise, then our constraint is equivalently

��Ps⇠Dmaj,a⇠⇡s [ŷ = 1]� Ps⇠Dmin,a⇠⇡s [ŷ = 1]
��  ✏,

where ŷ = ⇢s,a is the outcome, which is demographic
parity for supervised learning (Hardt et al., 2016).

Additionally, we introduce individual rewards ⇢, which
may di↵er from the decision maker rewards R. This
distinction also appears in the supervised learning set-
ting if the loss function for the decision maker (used
in the learning objective) di↵ers from the loss function
of the individual (used in the fairness constraint). For
example, R may di↵er from ⇢ if the decision maker is
risk-averse; then, the decision maker may o↵er too few
loans to minorities if there is less historical information
available for minorities. We believe this distinction is
particularly important to explicitly model in the MDP
setting, since dynamical e↵ects can magnify the nega-
tive consequences of unfair decision making.

Importance of dynamics. Dynamics are important
when current decisions do not immediately cause un-
fairness, but can a↵ect the state distribution in a way
that leads to unfair outcomes in the future. In our loan
applicant example, there are two e↵ects of decisions on
the state distribution. First, there is a direct e↵ect—
e.g., denying loans can cause adverse outcomes on an
applicant’s financial situation. In Mloan, this e↵ect is
captured by the update �t+1 = �t + ⌧ when a = 0—
i.e., the applicant’s probability of repaying future loans
decreases when they are denied a loan.

The second e↵ect is indirect, and is related to the
selective labels problem in sequential decision mak-
ing (Lakkaraju et al., 2017; Bechavod et al., 2019).
In particular, the bank only observes outcomes if they
o↵er the applicant a loan. A key concern is that less
historical information is available for minorities, lead-
ing to higher variance estimates of their ability to re-
pay a loan. Thus, a risk-averse decision maker might
conservatively deny loans to minorities, even if their
expected rate of repaying loans is equal to that of
majority members. The equal opportunity constraint
forces the decision maker to give exploratory loans to
avoid unfairly denying loans to an applicant for whom
little data is available.
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Algorithm 1 Algorithm for finite state, separable MDPs.

procedure LearnFairPolicy(Separable MDP M)
Compute the solution �

⇤ to the linear program

argmax
�2R|S|⇥|A|

(1� �)�1
X

s2S

X

a2A

�s,aRs,a

subj. to
X

a2A

�s0,a = (1� �)Ds0 + �

X

s2S

X

a2A

�s,aPs,a,s0 (8s0 2 S)

���� p
�1
maj

X

s̃2S̃

X

a2A

�(maj,s̃),a⇢(maj,s̃),a � p
�1
min

X

s̃2S̃

X

a2A

�(min,s̃),a⇢(min,s̃),a

����  ✏

return ⇡
⇤, where ⇡

⇤
s,a =

�
⇤
s,aP

a02A �⇤
s,a0

end procedure

3 Algorithm for Finite-State MDPs

We describe an algorithm for solving (1), which has
strong theoretical guarantees (i.e., it solves (1) exactly
in polynomial time). On the other hand, it makes
strong assumptions—i.e., that M has finite state and
action spaces. In Section 4, we describe a model-free
algorithm that applies very generally (e.g., to contin-
uous state and action spaces, or even non-separable
MDPs), but lacks performance guarantees.

Our approach is based on the dual of the standard
LP formulation of value iteration (Altman, 1999; Sut-
ton and Barto, 2018). In particular, the objective and
first set of constraints of the LP in Algorithm 1 form
the dual. The last set of constraints in the LP in Al-
gorithm 1 encodes demographic parity. These con-
straints exploit the separable structure of the underly-
ing MDP. In particular, the component z of an initial
state s = (z, s̃) does not change over time, so the value
of z for s equals the value of z for the initial state

s0 ⇠ D. Thus, randomly sampling a state s ⇠ D
(⇡)
z is

equivalent to randomly sampling

s ⇠ D
(⇡) | 9s̃ 2 S̃ . s = (z, s̃).

Expanding the conditional probability, the probability

of sampling s ⇠ D
(⇡)
z is

D
(⇡)
s I[9s̃ 2 S̃ . s = (z, s̃)]

pz
, where pz =

X

s̃2S̃

D(z,s̃).

It follows that

⇢
(⇡)
z = E

(s,a)⇠⇤(⇡)
z

[⇢s,a] = p
�1
z

X

s̃2S̃

X

a2A

�(z,s̃),a⇢s,a. (3)

The last set of constraints in the LP in Algorithm 1
uses (3) to encode demographic parity.

Theorem 3.1. Algorithm 1 returns a solution ⇡
⇤
to

(1) if and only if (1) is satisfiable.

We give a proof in Appendix C. Note that Algorithm 1
runs in polynomial time.

Remark 3.2. We briefly compare our approach to al-
gorithms for solving constrained MDPs. Existing ap-
proaches are also based on the dual of the LP for solv-
ing MDPs (Altman, 1999). Indeed, in the LP we use in
Algorithm 1, the objective and the first constraint are
taken from the dual. The second constraint, which en-
codes the fairness constraint, is novel—our key insight
is that for separable MDPs, the fairness constraint can
be expressed as a linear inequality over �.

4 Algorithm for General MDPs

Next, we propose a general algorithm for solving (1).
However, in general, the planning problem may be
non-convex, so unlike Algorithm 1, this algorithm may
converge to a local optimum.

Our algorithm relies on the cross-entropy (CE)
method (Mannor et al., 2003; Hu et al., 2012), a heuris-
tic for solving optimization problems. Suppose our
policies ⇡✓ 2 ⇧ are parameterized by ✓ 2 ⇥, and let a
family F of probability distributions over ⇥ parame-
terized by V ✓ Rd. We use ✓ and ⇡✓ interchangeably,
e.g., R(✓) = R

(⇡✓). In the unconstrained setting, CE
aims to solve the following optimization problem:

v
⇤ = argmax

v2V
Ev[R

(✓)], (4)

where Ev = E✓⇠fv . In other words, it aims to compute
a distribution fv⇤ that places high probability mass on
✓ with high cumulative expected reward R

(✓). Then, it
returns a sample ✓ ⇠ fv⇤ . To solve (4), CE starts with
initial parameters v0 2 V . Then, on each iteration, it
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Algorithm 2 Algorithm for general MDPs.

1: procedure GeneralLearnFairPolicy(MDP
M , Iters r, Parameter samples n, Top n

0, Rollout
samples m, Smoothing ↵, Tolerance �)

2: ⌘̂  ~0
3: for k 2 [1, ..., r] do
4: Sample ✓

(1)
, ..., ✓

(n) ⇠ fm�1(⌘̂)

5: for i 2 [1, ..., n] do

6: R̂
(✓(i)) ⇠m,T ���� R

(✓(i))

7: ✏̂
(✓(i)) ⇠m,T ���� |⇢(✓

(i))
maj � ⇢

(✓(i))
min |

8: end for

9: Sort {✓(i)}ni=1 in increasing ✏̂
(✓(i))

10: i
0  Largest i such that ✏̂(✓

(i))  (1� �)✏
11: if n

0  i
0
then

12: Sort {✓(i)}i0i=1 in decreasing R̂
(✓(i))

13: end if

14: ⌘̂  ↵ ·
1
n

Pn0
i=1 R̂(✓(i))�(✓(i))

1
n

Pn0
i=1 R̂(✓(i))

+ (1� ↵) · ⌘̂
15: end for

16: if ✏̂
(✓̂)  ✏̃, where ✓̂ ⇠ fm�1(⌘̂) then

17: return ⇡✓̂
18: else

19: return ?
20: end if

21: end procedure

updates the current parameters vk to move “closer” to
v
⇤. More precisely, the update is

vk+1 = argmax
v2V

DKL(gk+1 k fv) (5)

gk+1(✓
0) = ↵

R
(✓0)I[R(✓0) � �k]fvk(✓

0)

Evk [R
(✓)I[R(✓) � �k]]

+ (1� ↵)fvk(✓
0)

where �k satisfies Prvk [R
(✓) � �i] = µ. Here, ↵, µ 2

(0, 1) are hyperparameters. Intuitively, the first term
of gi upweights ✓0 with large values of R(✓0) compared
to fvk , both by directly weighting the probability of ✓0

by R
(✓0), and furthermore by placing zero probability

mass on the bottom 1 � µ fraction of the ✓
0. The

second term of gk is a “smoothing” term that makes
the update incremental.

To enable e�cient optimization of (5), we assume that
F is a (natural) exponential family.

Definition 4.1. A family F of distributions over ⇥ ✓
Rd is an exponential family if, for a continuous � : ⇥!
Rd, fv(✓) = e

v>�(✓)
/Z(✓), where Z(✓) =

R
e
v>�(✓)

d✓.

We use the standard choice that F is the space of
Gaussians. If F is an exponential family, then

vk+1 = m
�1(⌘k+1) (6)

⌘k+1 = ↵
Evk [R

(✓)I[R(✓) � �k]�(✓)]

Evk [R
(✓)I[R(✓) � �k]]

+ (1� ↵)⌘k

where m(v) = Ev[�(✓)] is the moment map (Hu et al.,
2012). The CE algorithm approximates (6) by sam-
pling rollouts ⇣ = ((s0, a0), ..., (sT�1, aT�1)) accord-
ing to ⇡✓. Then, it computes the estimate R

(✓) ⇡
R̂

(✓) = 1
m

Pm
i=1 R̂(⇣(i)), where ⇣(1), ..., ⇣(m) are m sam-

pled rollouts and R̂(⇣) =
PT�1

t=0 �
t
Rst,at .

To estimate ⌘k+1, it takes n samples ✓(1), ..., ✓(n) ⇠ fv,

and computes R̂(✓(i)) for each i. Then, it ranks ✓(i) in

decreasing order of R̂(✓(i)), and discards all but the top
n
0 = dnµe. It estimates the numerator in ⌘k+1 as

Evk [R
(✓)I[R(✓) � �k]�(✓)] ⇡

1

n

n0X

i=1

R̂
(✓(i))�(✓(i)).

The denominator in ⌘k+1 is estimated similarly.

Algorithm 2 computes this estimate of the update (6)
assuming the condition on Line 16 is satisfied (as we
discuss below, the check is needed to enforce the con-
straint that ⇡ 2 ⇧DP,✏. Line 6 of Algorithm 2 com-

putes the estimates R̂
(✓(i)) for samples ✓

(i) ⇠ fvk for
i 2 [n], and Line 14 estimates ⌘k+1. On Line 6 & 7, the

notation
⇠m,T ���� means to estimate a quantity using m

sampled rollouts ⇣(1), ..., ⇣(m) each of length T .

Finally, we adapt constrained cross-entropy (CCE),
which extends CE to handle constraints (Wen and
Topcu, 2018), to handle fairness constraints. Intu-
itively, CCE prioritizes policies where the constraint
that ⇡ 2 ⇧DP,✏ is closer to holding, unless the con-
straint holds, in which case CCE prioritizes policies
with higher cumulative expected reward. In particu-
lar, Algorithm 2 imposes this constraint by checking if

✓̂ satisfies the constraint ✏̂(✓̂)  ✏ in Line 16, where ✏̂(✓̂)

is estimated from samples. Note that ✏̃ is used in place

of ✏ to enforce the constraint even though ✏̂
(✓̂) is inex-

act. The reason is that CCE relies on estimates ✏̂
(✓̂)

of ✏(✓̂). These estimates are inexact since (i) they are
estimated from samples, and (ii) they are estimated

based on a finite time horizon (whereas ✏(✓̂) is defined
for an infinite horizon). To account for this error, we
use (1 � �)✏ (where � 2 (0, 1)) in place of ✏ when
checking the constraint on Line 16 of Algorithm 2.

We provide the following for Algorithm 2 (see Ap-
pendix D for a proof).

Theorem 4.2. Assume that ⇢max is an upper bound

on ⇢ (i.e., k⇢k1 = ⇢max for all z 2 Z). Let � 2 R+

and � 2 (0, 1/2] be given, and suppose that

m � 32⇢max(1� �) log(4/�)

�✏2
T � log

4⇢max

�2✏(1� �)
.

Then, with probability at least 1 � �, we have ⇡✓̂ 2
⇧DP,✏, where ⇡✓̂ is returned by Algorithm 2.
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Figure 1: Demographic parity (a) objective value, (b) constraint value, and equal opportunity (c) objective value,
(d) constraint value, for race-blind (RB), demographic parity (DP) or equal opportunity (EO), optimistic (Opt),
and conservative (Cons).

5 Reinforcement Learning

We discuss extensions to the setting where the MDP
is initially unknown, and the goal is to ensure fair-
ness while learning these quantities. We propose an
approach to fairness when the transitions P are un-
known but the initial state distribution D is known;
reducing to the case of unknown D is standard (i.e.,
add a deterministic initial state s0 and transition to
an initial state according to D). Our goal is to ensure
that with high probability, fairness holds for all time
including during learning. We consider the episodic
case where the system is reset after a fixed number of
steps T , and take � = 1. That is, a finite sequence of
interactions is performed repeatedly—e.g., each new
loan applicant is a new episode. We assume there are
a fixed total number of episodes N , and the goal is
to perform well on average; the doubling trick can be
used to generalize to unknown or unbounded N (see
p. 99 of Lattimore and Szepesvári).

A key challenge is how to design a fair policy we can
use when the dynamics are unknown. Thus, we fo-
cus on the setting of state-independent individual re-
wards ⇢, where we can ensure such a policy exists.
In particular, we take ⇡0 to choose actions uniformly
randomly—i.e., ⇡0(s, a) = 1/|A| for all s 2 S and
a 2 A. Then, we are guaranteed that ⇡0 is fair. Fur-
thermore, we are guaranteed that ⇡0 explores all states
(assuming without loss of generality that we prune un-

reachable states)—i.e., letting D
(⇡) = 1

T

PT�1
t=0 D

(⇡,t)

and ⇤(⇡)
s,a = D

(⇡)
s ⇡s,a, where D(⇡,t) is defined as before,

then there exists �0 2 R+ such that

⇤(⇡0)
s,a � �0 > 0 (8s 2 S, a 2 A)

We use explore-then-commit (Lattimore and
Szepesvári). First, we explore using the conser-
vative policy ⇡0 for N0 episodes. Then, we estimate P
using the observed state-action-state tuples (s, a, s0)

(i.e., transition to s
0 upon taking action a in state s):

P̂s,a,s0 =
# observed tuples (s, a, s0)

# observed tuples (s, a, s00) for some s00 2 S
.

Finally, for the remaining N �N0, it uses the optimal
policy ⇡̂ computed as if P̂ is the true transition matrix.

We prove a bound on the regret

R(N) = E
"

NX

n=1

R
(⇡⇤) �R

(⇡n)

#
,

where the expectation is taken over the randomness of
the observed tuples (s, a, s0), ⇡⇤ is the optimal policy
for known P that satisfies ⇡⇤ 2 ⇧DP,✏/4, and

⇡n =

(
⇡0 if n  N0

⇡̂ otherwise

N0 =
128T 4 · |S|2 ·R2

max · log(2|S|2|A|/�)
�2
0✏̃

2
.

is the policy our algorithm uses on episode n. We show
that ⇡̂ is fair, and that given � 2 R+, ⇡n 2 ⇧DP,✏ for
every n 2 [N ] with probability at least 1� �.

Theorem 5.1. Let ✏, � 2 R+ be given. Assume that

Rmax is an upper bound on R (i.e., kRk1 = Rmax)

and on ⇢. Let M̂ = (S,A,D, P̂ , R, T ), and ⇡̂ be

the optimal policy for M̂ in ⇧̂DP,✏/2 (i.e., the set of

policies satisfying demographic parity for M̂). Let

M = (S,A,D, P,R, T ), and ⇡
⇤
be optimal for M in

⇧DP,✏/4. Then, ⇡̂ 2 ⇧DP,✏, and R(N) = O((N2/3 +
1/✏2) log(1/�)) with probability at least 1� �.

We give a proof in Appendix E. Note that there is
a gap between the fairness constraint of ⇡⇤ (which is
in ⇧DP,✏/4) and that of ⇡̂ (which is only in ⇧DP,✏)—
i.e., we can only guarantee performance compared to
a policy that satisfies a stricter level of fairness.

6 Experiments

We run simulations using our loan example from Sec-
tion 2. We estimated parameters based on FICO score
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data (Hardt et al., 2016). We consider Whites to be
majorities, and Blacks, Hispanics, and Asians to be
minorities. For the initial distribution p0, we first fit
parameters the parameters of the prior Beta(↵z,�z)
based on the data. Then, we take a fixed number of
steps Tz using action a = 1 (i.e., o↵er loan) to force
exploration. We choose Tmaj > Tmin to capture the
idea that less data is available for minorities. We also
estimate the probability pZ of being a minority from
the data. Similar to (Hardt et al., 2016), we choose I

so the bank makes a profit on the average applicant.
We manually choose �, ⌧ , Tmaj, and Tmin based on in-
tuition; see Appendix G for the values we chose. We
focus on evaluation of Algorithm 2, and give additional
experimental results in Appendix G.

Baselines that ignore dynamics. To demonstrate
the importance of accounting for dynamics, we com-
pare to two baselines that ignore dynamics when con-
straining fairness. The first optimistically pretends
that actions do not a↵ect the state distribution—i.e.,
D

(⇡,t) does not change over time. In this case, for all
t > 0, we have D

(⇡,t) = D, so D
(⇡) = D for any ⇡.

Thus, we can let

⇡
⇤ =argmax

⇡2⇧,c2R
R

(⇡) (7)

subj. to Es⇠Dz

"
X

a2A

⇡s,a⇢s,a

#
= c (8z 2 Z),

where Dz = D | 9s̃ 2 S̃ . s0 = (z, s̃). We can solve (7)
using a straightforward modification of Algorithm 2.
This captures the supervised learning setting. Com-
pared to our algorithm, this algorithm may learn a
policy that is unfair but achieves higher reward.

The second conservatively assumes D
(⇡,t) can change

arbitrarily on each step. This baseline learns a fair
policy, but it may achieve much lower reward. In this
case, we restrict to policies ⇡ that satisfy

Es⇠D0
maj

"
X

a2A

⇡s,a⇢s,a

#
= Es⇠D0

min

"
X

a2A

⇡s,a⇢s,a

#
(8)

(8D0 2 �|S|),

where D
0
z = D

0 | 9s̃ 2 S̃ . s = (z, s̃), and �n is the
standard n-simplex. Note that D

0
z is conditioned on

s = (z, s̃) (i.e., the current state has sensitive attribute
z) instead of s0 = (z, s̃) (i.e., the initial state has sen-
sitive attribute z); if M is separable, these two condi-
tions are equivalent. Finally, note that D0

z is undefined
if the conditional has zero probability according to D

0;
we implicitly omit such D

0 from (8).

The di�culty with (8) is the universal quantification
over D

0 2 �|S|. For state-independent individual re-
wards, the conservative assumption is in fact equiv-

alent to optimizing over state-independent policies—
i.e., those of the form ⇡s,a = ⇡̃a, where ⇡̃ 2 R|A|. Thus,
we can apply a modified version of Algorithm 2 where
we only learn state-independent policies.

Results for Algorithm 2. We ran Algorithm 2 to
learn fair policies for both the demographic parity and
equal opportunity constraints, using ✏ = 0.1. For each
constraint, we also use our optimistic and conservative
baselines. We also consider a race-blind algorithm that
is unconstrained but where ⇡ ignores the sensitive at-
tribute z 2 Z. The optimal policy is race-blind—the
state is a su�cient statistic, so it captures all informa-
tion needed to determine whether to o↵er a loan.

For demographic parity, Figure 1 (a) shows the re-
ward achieved for the bank, and (b) shows the value
of the fairness constraint—i.e., the smallest value of ✏
for which ⇡ 2 ⇧DP,✏. As expected, race-blind achieves
the highest reward (10.43), followed by the optimistic
algorithm (10.41), and then Algorithm 2 (10.40). Fi-
nally, the conservative algorithm performs substan-
tially worse than the others (10.00). However, race-
blind achieves a very poor constraint value (0.42),
as does the optimistic algorithm (0.14), which per-
forms performs 43% worse than Algorithm 2 (0.10).
The conservative algorithm achieves constraint value
0. For equal opportunity, Figure 1 (c) shows the bank
reward, and (d) shows the value of the constraint.
The bank’s rewards are essentially the same for the
race-blind algorithm, optimistic algorithm, and Algo-
rithm 2 (10.43), but is substantially worse for the con-
servative algorithm (10.00). As with demographic par-
ity, the constraint value for race-blind (0.37) is sub-
stantially worse than the others, but in this case opti-
mistic (0.11) is fairly close to Algorithm 2 (0.10). The
conservative algorithm achieves constraint value 0.

Discussion. Our results show that imposing demo-
graphic parity slightly reduces the bank’s reward, but
substantially increases fairness compared to the race-
blind and optimistic algorithms. The latter models
supervised learning—thus, our results show the im-
portance of accounting for dynamics when ensuring
fairness. We find similar (but weaker) trends for equal
opportunity. Like prior work (Hardt et al., 2016), we
find that demographic parity reduces the bank’s re-
wards more than equal opportunity.

Unlike the static case (Hardt et al., 2016), our model
has dynamic parameters. Time series data would be
needed to estimate them; instead, we choose them
manually. Also, (Hardt et al., 2016) uses the empirical
CDF of the distribution over repayment probabilities
p0, whereas we assumed p0 is a Beta distribution. Our
goal is to understand the consequences of ignoring dy-
namics, not to study a real-world scenario.
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7 Conclusion

We have proposed algorithms to learn fair policies that
account for the dynamical e↵ects, and have demon-
strated the importance of accounting for these e↵ects.
There is much room for future work. One important
direction is extending our results for the case where the
initial MDP is unknown beyond explore-then-commit
to obtain better regret guarantees. Another direc-
tion is theoretically analyzing the cost of fairness—
e.g., what is the cost to the bank for imposing a fair-
ness constraint, and how they can mitigate this cost
by improving predictive power. Finally, reinforcement
learning problems in practice are often o✏ine—i.e., the
goal is to learn from historical data and the algorithm
does not have the opportunity to explore. Studying
fairness in this context is an important problem.
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