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Abstract

We introduce a new method for inference
in stochastic epidemic models which uses
recursive multinomial approximations to in-
tegrate over unobserved variables and thus
circumvent likelihood intractability. The
method is applicable to a class of discrete-
time, finite-population compartmental mod-
els with partial, randomly under-reported or
missing count observations. In contrast to
state-of-the-art alternatives such as Approxi-
mate Bayesian Computation techniques, no
forward simulation of the model is required
and there are no tuning parameters. Evalu-
ating the approximate marginal likelihood of
model parameters is achieved through a com-
putationally simple filtering recursion. The ac-
curacy of the approximation is demonstrated
through analysis of real and simulated data
using a model of the 1995 Ebola outbreak in
the Democratic Republic of Congo. We show
how the method can be embedded within a
Sequential Monte Carlo approach to estimat-
ing the time-varying reproduction number of
COVID-19 in Wuhan, China, recently pub-
lished by Kucharski et al. (2020).

1 Introduction

Compartmental models are used for predicting the scale
and duration of epidemics, estimating epidemiological
parameters such as reproduction numbers, and guid-
ing outbreak control measures (Brauer, 2008; O’Neill,
2010; Kucharski et al., 2020). They are increasingly
important because they allow joint modelling of disease
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dynamics and multimodal data, such as medical test
results, cell phone and transport flow data (Rubrichi
et al., 2018; Wu et al., 2020), census and demographic
information (Prem et al., 2020). However, statistical
inference in stochastic variants of compartmental mod-
els is a major computational challenge (Bretó, 2018).
The likelihood function for model parameters is usu-
ally intractable because it involves summation over
a prohibitively large number of configurations of la-
tent variables representing counts of subpopulations in
disease states which cannot be observed directly.

This has lead to the recent development of sophisti-
cated computational methods for approximate infer-
ence involving various forms of stochastic simulation
(Funk and King, 2020). Examples include Approximate
Bayesian Computation (ABC) (Kypraios et al., 2017;
McKinley et al., 2018; Brown et al., 2018, 2016), Data
Augmentation Markov Chain Monte Carlo (MCMC)
(Lekone and Finkenstädt, 2006), Particle Filters (Mur-
ray et al., 2018), Iterated Filtering (Stocks, 2019), and
Synthetic Likelihood (Fasiolo et al., 2016). These meth-
ods continue to have real public health impact, for
example the ABSEIR R package of Brown et al. (2018)
features in the current UK COVID-19 surveillance pro-
tocols (de Lusignan et al., 2020). However the intricacy
of these methods, their substantial computational cost
arising from use of stochastic simulation, and their
dependence on tuning parameters are obstacles to their
wider use and scalability. The present work addresses
the challenge of finding alternative inference techniques
which are computationally simple and easy to use.

Contributions We introduce a new approach to in-
ference in compartmental epidemic models which:

• applies to a class of finite population, partially ob-
served, discrete-time, stochastic models. In contrast
to ODE models, these models can account for statis-
tical variability in disease dynamics;

• allows approximate evaluation of the likelihood func-
tion for model parameters, and filtering and smooth-
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ing for compartment occupation numbers, without
any stochastic simulation or algorithm tuning param-
eters, in contrast to state-of-the-art techniques such
as ABC;

• revolves around a computationally simple filtering
recursion. The resulting likelihood and smoothing
approximations can be combined with e.g., MCMC or
Expectation Maximization techniques for parameter
estimation;

• is shown to recover ground truth parameter values
from synthetic data, and to compare favourably
against Data Augmentation MCMC (Lekone and
Finkenstädt, 2006), ABC using the ABSEIR R pack-
age (Brown et al., 2018) and ODE (Chowell et al.,
2004) alternatives analyzing real Ebola outbreak data
under a model from Lekone and Finkenstädt (2006);

• is used to extend a method of Kucharski et al. (2020)
for estimating the time-varying reproduction num-
ber of COVID-19 in Wuhan, China, from an ODE
compartmental model to a stochastic model.

2 Preliminaries

2.1 Difficulties of inference in stochastic
compartmental models

We use the well-known Susceptible-Exposed-Infective-
Recovered (SEIR) model as a simple running example.
The new methods we propose are applied to more
realistic and complex models in section 5.

SEIR example. The discrete-time stochastic SEIR
model is:

St+1 = St −Bt,
Et+1 = Et +Bt − Ct,
It+1 = It + Ct −Dt,

Rt+1 = Rt +Dt,

(1)

with conditionally independent, binomially-distributed
random variables:

Bt ∼ Bin(St, 1− e−hβIt/n)

Ct ∼ Bin(Et, 1− e−hρ),
Dt ∼ Bin(It, 1− e−hγ),

(2)

where h > 0 is a time-step size, β, ρ, γ are model param-
eters, and the process is initialized with nonnegative
integers in each of the compartments (S0, E0, I0, R0)
such that S0 + E0 + I0 + R0 = n and n is the total
population size. The interpretation of β is the rate at
which an interaction between a susceptible individual
and the infective proportion of the population results in

the disease being passed to that individual. The mean
exposure and infective periods are respectively 1/ρ and
1/γ. The sequence (St, Et, It, Rt)t≥0 is a Markov chain.

In practice, one typically observes times series of count
data associated with some subset of the compartments,
perhaps subject to random error, or under-reporting.
Given such data, evaluating the likelihood function of
the model parameters and initial condition requires the
variables associated with unobserved compartments to
be marginalized out. In general this is infeasible for
models with anything but a small population size n
and a small number of compartments.

Stochastic compartmental models also commonly arise
in the form of continuous-time pure jump Markov pro-
cesses, in which transitions of individuals between com-
partments occur in an asynchronous manner (Bretó,
2018). Likelihood-based inference for such processes
is similarly intractable in general. There are rigor-
ous limit theorems which link continuous time Markov
process compartmental models to deterministic ODE
models in the large population limit, e.g., Kurtz (1970,
1971); Roberts et al. (2015). However the precise na-
ture of the asymptotic is somewhat subtle and not
always meaningful in practice: the supplementary ma-
terials includes a simple example in which a stochastic
model exhibits substantial statistical variation even
when the population size is 107, and the corresponding
ODE limit is pathological. Thus, ODE models are no
substitute for stochastic models.

2.2 Notation

In the remainder of the paper, bold upper-case and
bold lower-case characters are respectively matrices
and column vectors, e.g., A and b, with generic el-
ements a(i,j) and b(i). The length-m column vector
of 1’s is denoted 1m. A vector is called a probability
vector if its elements are nonnegative and sum to 1.
A matrix is called row-stochastic if its elements are
nonnegative and its row sums are all 1. The indicator
function is denoted I[·]. The element-wise product of
matrices is denoted A ◦ B and the outer product of
vectors is denoted a ⊗ b. Element-wise natural log-
arithm and factorial are denoted log A and A!. For
positive integers m and n, define Cm := {1, . . . ,m}
and Sm,n := {x = [x(1) · · · x(m)]T : x(i) ≥ 0, i =
1, . . . ,m;

∑m
i=1 x

(i) = n}. For x ∈ Sm,n, define
η(x) := [x(1)/n · · · x(m)/n]T. For a matrix P (resp.
a vector π) with nonnegative elements summing to 1,
Mult(n,P) (resp. Mult(n,π)) denotes the distribution
of the random matrix (resp. vector) whose elements are
the incidence counts obtained from sampling n times
with replacement according to P (resp. π). This is the
usual definition of a multinomial distribution.
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3 Model

3.1 A class of compartmental models
specified by the transition probabilities
of individuals

The general model we consider is defined by: m, the
number of compartments; n, the total population size;
a length-m probability vector π0; and for each t ≥ 1, a
mapping from length-m probability vectors to m×m
row-stochastic matrices, η 7→ Kt,η. The population at

time t ≥ 0 is a set of n random variables {ξ(1)t , . . . , ξ
(n)
t },

each valued in Cm. The counts of individuals in each of
the m compartments at time t are collected in a vector

xt = [x
(1)
t · · ·x

(m)
t ]T ∈ Sm,n, x

(i)
t :=

∑n
j=1 I[ξ

(j)
t = i].

For t ≥ 1 let Zt be the m ×m matrix with elements
z
(i,j)
t :=

∑n
k=1 I[ξ

(k)
t−1 = i, ξ

(k)
t = j], which counts the

individuals transitioning from compartment i at t− 1
to j at t.

The sequence {ξ(1)t , . . . , ξ
(n)
t }t≥0 is constructed to be

a Markov chain: the members of the initial popula-

tion {ξ(1)0 , . . . , ξ
(n)
0 } are i.i.d. with p(ξ

(i)
0 = j) = π

(j)
0 ,

and given {ξ(1)t−1, . . . , ξ
(n)
t−1}, {ξ

(1)
t , . . . , ξ

(n)
t } are condi-

tionally independent, with ξ
(i)
t drawn from the ξ

(i)
t−1’th

row of Kt,η(xt−1). It follows from this prescription that
the sequence of matrices (Zt)t≥0 is also a Markov chain.
Indeed, conditional on Zt−1, and hence automatically
on xt−1 since Zt1m = xt−1, the rows of Zt are inde-
pendent, and the distribution of the ith row of Zt is

Mult(x
(i)
t−1,K

(i,·)
t,η(xt−1)

), where K
(i,·)
t,η(xt−1)

is the ith row

of Kt,η(xt−1). Moreover, noting 1T
mZt = xT

t , we ob-
serve (xt)t≥0 is also a Markov chain, but we shall not
need an explicit formula for its transition probabilities.

SEIR example The SEIR model in (1)-(2) is equiv-
alent to taking m = 4,

(Kt,η)
(i,j)

=



e−hβη
(3)

i = j = 1

1− e−hβη(3) i = 1 and j = 2

e−hρ i = j = 2

1− e−hρ i = 2 and j = 3

e−hγ i = j = 3

1− e−hγ i = 3 and j = 4

1 i = j = 4

0 otherwise

(3)

for all t ≥ 1, and identifying [x
(1)
t x

(2)
t x

(3)
t x

(4)
t ]T with

respectively the counts of susceptible, exposed, infective
and recovered individuals at time t.

We consider two observation models.

3.2 Observations derived from (xt)t≥1

In this scenario, the observation at time t ≥ 1 is a

length-m vector yt with elements y
(i)
t which are condi-

tionally independent given xt, and:

y
(i)
t ∼ Bin(x

(i)
t , q

(i)
t ). (4)

We shall collect the parameters q
(i)
t ∈ [0, 1] in a length-

m vector qt. When conducting likelihood-based in-

ference for xt using this model, if y
(i)
t is a missing

observation, then in the likelihood function associated

with (4) one should take y
(i)
t to be 0, set q

(i)
t = 0.

3.3 Observations derived from (Zt)t≥1

In this scenario, the observation at time t ≥ 1 is a m×m
matrix Yt with elements y

(i,j)
t which are conditionally

independent given Zt, and:

y
(i,j)
t ∼ Bin(z

(i,j)
t , q

(i,j)
t ). (5)

The parameters q
(i,j)
t ∈ [0, 1] from (5) are collected

into a m×m matrix Qt. Missing data are handled by

putting a 0 in place of the missing y
(i,j)
t and setting

q
(i,j)
t = 0.

SEIR example In practice, one typically observes,
at each time step, counts of new infectives rather than
the total number of infectives, subject to some random
under-reporting or missing data. How can such data
be represented in the model? Due to the definition of
Zt, the number of new infectives at time t is exactly

z
(2,3)
t , since the only way an individual can transition

to being infective (compartment 3) is by first being

exposed (compartment 2). Therefore in this case y
(2,3)
t

following (5) is a count of newly infectives at time
t, subject to binomial random under-reporting with

parameter q
(2,3)
t , as required.

4 Inference

We now introduce our methods for approximating the
so-called filtering distributions and marginal likelihoods
p(xt|y1:t), p(y1:t) and p(Zt|Y1:t), p(Y1:t) under respec-
tively the observation models of sections 3.2 and 3.3.
These quantities are at the core of smoothing and pa-
rameter estimation techniques demonstrated in section
5 and detailed in the supplementary materials.

For the observation model of section 3.2, note that
(xt,yt)t≥1 is a hidden Markov model, and in principle
the filtering distributions can be computed through a
two-step recursion:

p(xt−1|y1:t−1)
prediction−→ p(xt|y1:t−1)

update−→ p(xt|y1:t).
(6)
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However in practice, the summations involved in the
‘prediction’ and ‘update’ operations are prohibitively
expensive since they involve summing over all possible
values of xt−1 and xt.

4.1 Approximating the prediction operation

For each x = [x(1) · · · x(m)]T ∈ Sm,n and length-m
probability vector η, let Mt(x,η, ·) be the probability
mass function on Sm,n of (1T

mZ)T, where Z is a ran-
dom m×m matrix whose rows are independent, and

whose ith row has distribution Mult(x(i),K
(i,·)
t,η ). So

by construction Mt(xt−1,η(xt−1),xt) is the probabil-
ity transition function for the Markov chain (xt)t≥0
defined in section 3.1. Thus the prediction operation
in (6) can be written in terms of Mt:

p(xt|y1:t−1) =
∑

xt−1∈Sm,n

p(xt−1|y1:t−1)p(xt|xt−1)

=
∑

xt−1∈Sm,n

p(xt−1|y1:t−1)Mt(xt−1,η(xt−1),xt).

(7)

Our approximation to this operation is as follows: as-
suming we have already obtained a multinomial dis-
tribution approximation to p(xt−1|y1:t−1), then in (7)
we replace p(xt−1|y1:t−1) by this multinomial distribu-
tion, and replace the vector η(xt−1) by its expectation
under this multinomial distribution. This results in a
multinomial distribution approximation to p(xt|y1:t−1).
The following lemma formalizes this recipe.

Lemma 1. If for a given length-m probability vec-
tor π, µ(·) is the probability mass function on
Sm,n associated with Mult(n,π) and Eµ[η(x)] is
the expected value of η(x) when x ∼ µ, then∑

x∈Sm,n
µ(x)Mt(x,Eµ[η(x)], ·) is the probability mass

function associated with Mult(n,πTKt,π).

The proof is given in the supplementary materials.

4.2 Approximating the update operation

The update operation in (6) is:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
,

p(yt|y1:t−1) =
∑

xt∈Sm,n

p(yt|xt)p(xt|y1:t−1),
(8)

which has the interpretation of a Bayes’ rule update
applied to p(xt|y1:t−1). Assuming we have already
obtained a multinomial distribution approximation to
p(xt|y1:t−1), our approximation to the update oper-
ation is to substitute this multinomial distribution
in place of p(xt|y1:t−1) in (8), resulting in a shifted-
multinomial distribution whose mean vector is used

to define a multinomial distribution approximation to
p(xt|y1:t). The following lemma formalizes this recipe.

Lemma 2. Suppose that x ∼ Mult(n,π) for a given
length-m probability vector π, and assume that given x,
y is a vector with conditionally independent elements
distributed: y(i) ∼ Bin(x(i), q(i)). Then the conditional
distribution of x given y is equal to that of y + x?,
where

x? ∼ Mult

(
n− 1T

my,
π ◦ (1m − q)

1− πTq

)
(9)

with q = [q(1) · · · q(m)]T, and the conditional mean of
x given y is:

E[x|y] = y + (n− 1T
my)

(
π ◦ (1m − q)

1− πTq

)
. (10)

Moreover, the marginal distribution of y has probability
mass function given by:

log p(y) = log(n!) + yT(logπ + log q)− 1T
m log(y!)

+ (n− 1T
my) log(1− πTq)− log((n− 1T

my)!),

(11)

with the convention 0 log 0 ≡ 0.

The proof is given in the supplementary materials.

4.3 Multinomial filtering

Putting together the results of lemma 1 and lemma 2
in a recursive fashion leads us to algorithm 1; line 3 is
motivated by lemma 1, line 4 is motivated by (9)-(10).

Algorithm 1 Multinomial filtering with observations
derived from (xt)t≥1

1: initialize π0|0 ← π0

2: for t ≥ 1 do
3: πt|t−1 ← (πT

t−1|t−1Kt,πt−1|t−1
)T

4: πt|t ←
yt
n

+

(
1− 1T

myt
n

)
πt|t−1 ◦ (1m − qt)

1− πT
t|t−1qt

5: logwt ← log(n!) + yT
t (logπt|t−1 + log qt) −

1T
m log(yt!)+(n−1T

myt) log(1−πT
t|t−1qt)−log((n−

1T
myt)!)

6: end for

One may take as output from algorithm 1 the approxi-
mations:

p(xt|y1:t−1) ≈ Mult(n,πt|t−1),

p(xt|y1:t)
d
≈ yt + x?t ,

(12)

where the
d
≈ term indicates approximation of p(xt|y1:t)

by the distribution of the sum of yt (regarded as a
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constant) and a random variable x?t which is defined
to have distribution:

x?t ∼ Mult

(
n− 1T

myt,
πt|t−1 ◦ (1m − qt)

1− πT
t|t−1qt

)
. (13)

In view of (11), the quantities wt computed in algorithm
1 can be used to approximate the marginal likelihood
as follows:

p(y1:t) = p(y1)

t∏
s=2

p(ys|y1:s−1) ≈
t∏

s=1

ws. (14)

Now turning to the observation model from section 3.3
and noting that (Zt,Yt)t≥1 is a hidden Markov model,
we approximate the recursion:

p(Zt−1|Y1:t−1)
prediction−→ p(Zt|Y1:t−1)

update−→ p(Zt|Y1:t).
(15)

Many details are similar to those above so are given
in the supplementary materials. The counterpart of
algorithm 1 is algorithm 2, from which one may take
the approximations:

p(Zt|Y1:t−1) ≈ Mult(n,Pt|t−1),

p(Zt|Y1:t)
d
≈ Yt + Z?t ,

(16)

where

Z?t ∼ Mult

(
n− 1T

mYt1m,
Pt|t−1 ◦ (1m ⊗ 1m −Qt)

1− 1T
m(Pt|t−1 ◦Qt)1m

)
.

(17)
The marginal likelihood is approximated using the same
formula as in (14) but with the wt’s computed as per
algorithm 2.

Algorithm 2 Multinomial filtering with observations
derived from (Zt)t≥1

1: initialize π0|0 ← π0

2: for t ≥ 1 do
3: Pt|t−1 ← (πt−1|t−1 ⊗ 1m) ◦Kt,πt−1|t−1

4: Pt|t ←
Yt

n
+

Pt|t−1 ◦ (1m ⊗ 1m −Qt)

1− 1T
m(Pt|t−1 ◦Qt)1m

−(
1T
mYt1m
n

)
Pt|t−1 ◦ (1m ⊗ 1m −Qt)

1− 1T
m(Pt|t−1 ◦Qt)1m

5: logwt ← log(n!) + 1T
m(Yt ◦ log Pt|t−1)1m +

1T
m(Yt ◦ log Qt)1m − 1T

m log(Yt!)1m + (n −
1T
mYt1m) log(1 − 1T

m(Pt|t−1 ◦ Qt)1m) − log((n −
1T
mYt1m)!)

6: πt|t ← (1T
mPt|t)

T

7: end for

4.4 Computational cost

The computational cost of algorithms 1 and 2 is inde-
pendent of the overall population size n, except through
factorial terms such as log(n!) and log((n − 1T

my)!).
However these terms do not depend on the model pa-
rameters Kt,η, qt etc., so can be pre-computed or even
not computed at all if the approximate marginal like-
lihood needs to be evaluated only up to a constant
of proportionality independent of model parameters.
Leaving these factorial terms out the worst case costs
of algorithms 1 and 2 are therefore respectively O(tm2)
and O(tm3). Costs may be substantially lower in prac-
tice as Kt,η and qt are typically sparse. Similar obser-
vations hold for the smoothing algorithms.

This compares to O(tmf(n)) to simulate (xt)t≥0 from
the model where f(n) is the complexity of sampling
from Bin(n, p), assuming no more than two non-zero en-
tries in each row of Kt,η. A larger number of non-zero
entries would imply a higher cost. Such a simulation is
necessary (but usually not sufficient) to approximately
evaluate the likelihood in ABSEIR (Brown et al., 2018).
The worst case is f(n) = O(n), but modest improve-
ments are available if one accepts ‘with high probability’
performance measures (Farach-Colton and Tsai, 2015).
The worst case time complexity of the Data Augmenta-
tion MCMC method (Lekone and Finkenstädt, 2006) is
also linear in n. Whilst the wall-clock time of any given
algorithm is of course heavily dependent on exactly how
it is implemented, these considerations suggest that the
proposed methods will have attractive computational
costs in many applications, where m is often many
orders of magnitude smaller than n

5 Numerical results

Additional details of models, data sources, algorithms,
prior distributions, hyper-parameter settings, further
numerical results and tutorials are given in the supple-
mentary materials.

5.1 The 1995 Ebola outbreak in the
Democratic Republic of Congo

We analyzed simulated and real data under a discrete-
time SEIR model used by Lekone and Finkenstädt
(2006) to investigate the impact of control interventions
on the 1995 outbreak of Ebola in the Democratic Re-
public of Congo. Our experiments follow closely those
in Lekone and Finkenstädt (2006) to allow comparisons
with their Data Augmentation MCMC method. We
also include comparisons to the ABC method from the
ABSEIR R package (Brown et al., 2018), and results
of least-squares fitting of an ODE model from Chowell
et al. (2004) which Lekone and Finkenstädt (2006) used
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as a benchmark.

The model of Lekone and Finkenstädt (2006) is the
same as the SEIR model in (1) with h = 1, except
that β is replaced by a time-varying parameter βt = β
for t < t? and βt = βe−λ(t−t?) for t ≥ t? where t?
is the time at which control measures began. Thus
Kt,η is as in (3) but with β replaced by this βt. Also
following Lekone and Finkenstädt (2006), the data con-
sist of daily counts of new cases (i.e. new infectives)
and new deaths (i.e. new removals). In Lekone and
Finkenstädt (2006) it was assumed these counts are ob-
served directly, subject to known proportions of missing
data. We consider a slightly more general observation

model as per section 3.3 with q
(i,j)
t = 0 for all (i, j)

except (2, 3) and (3, 4), and where q
(2,3)
t and q

(3,4)
t are

treated as constant-in-t but otherwise unknown and to
be estimated.

Synthetic data Using the following settings from
Lekone and Finkenstädt (2006): (β, λ, ρ, γ) =
(0.2, 0.2, 0.2, 0.143), S0 = 5, 364, 500, E0 = 1, I0 =

R0 = 0, t? = 130 , plus q
(2,3)
t = 291/316 and

q
(3,4)
t = 236/316 for all t ≥ 1 informed by realistic pro-

portions of non-missing data (Lekone and Finkenstädt,
2006), we simulated the epidemic from the model until
extinction, which took 175 time steps. Table 1 shows
MLE’s from an EM algorithm which uses our approxi-
mate filtering and smoothing methods, and marginal
posterior means and standard deviations estimated us-
ing a Metropolis-within-Gibbs MCMC algorithm which
incorporates our approximate marginal likelihood, un-
der three sets of prior distributions over (β, λ, ρ, γ)
labelled ‘vague’, ‘informative’ and ‘noncentered’ by
Lekone and Finkenstädt (2006). The basic reproduc-
tion number is R0 = β/γ. The results show accurate
recovery of the true parameter values.

Real data We analyzed the same real Congo Ebola
data as in Lekone and Finkenstädt (2006). Table 2
shows several interesting findings. 1) The results from
our methods are generally closer to those from the
Data Augmentation MCMC sampler of Lekone and

Finkenstädt (2006) than those from the ABC method
of Brown et al. (2018); the former targets the true
posterior distribution whilst the latter does so only
approximately. 2) Under the ‘vague’ prior our method
finds bi-modal posteriors for β, λ, and 1/ρ. For β, one
of the modes roughly matches the posterior mean ob-
tained using Lekone and Finkenstädt (2006) whilst the
other is more similar to the least-squares estimate from
Chowell et al. (2004); we conjecture that our MCMC
sampler has better mixing than that of Lekone and
Finkenstädt (2006), allowing it to find these two modes.
3) We can report estimates for q(2,3) and q(3,4), whilst
the other methods do not. Figure 2 shows posterior
and posterior-predictive distributions for the counts of
new infectives each day. The former estimates for the
true numbers which gave rise to the under-reported
data, whilst the latter shows coverage of the data hence
a good model fit (Gelman et al., 1996).

5.2 Accuracy: filtering bias and credible
interval coverage

The purpose of this subsection is to study the accuracy
of the approximate filtering distributions obtained from
algorithm 2 when applied to the Ebola model described
in subsection 5.1. The ground truth parameter values
(β, λ, ρ, γ) in the synthetic data experiment were taken

together with q
(2,3)
t = 291/316, q

(3,4)
t = 236/316. We

considered three population sizes n = 5 × 102, 5 ×
104, 5 × 106, and in each case the initial distribution
was π0 = [1− 1/n, 1/n, 0, 0]T. For each value of n, we
simulated 2× 104 data sets from the model, each over
200 time steps.

To assess accuracy we considered bias and credible-
interval coverage. For the former we calculated the
empirical bias associated with the mean vector of the
approximation to p(xt|Y1:t) obtained from algorithm 2
as an estimator of xt. For the latter we calculated the
empirical coverage of the nominal 95%-credible interval

for the marginal over each x
(i)
t , i = 1, 2, 3, 4. For the

true (i.e. approximation-free) filtering distributions,
asymptotically in the number of simulated data sets

Parameter β λ ρ γ q(2,3) q(3,4) R0

True value 0.2 0.2 0.2 0.143 0.92 0.75 1.40
MLE (EM-alg.) 0.20 0.18 0.21 0.139 1.00 0.81 1.44
MCMC (vague) 0.23 (0.028) 0.21 (0.080) 0.22 (0.076) 0.173 (0.024) 0.81 (0.140) 0.66 (0.119) 1.31 (0.088)
MCMC (infor.) 0.22 (0.020) 0.22 (0.065) 0.20 (0.035) 0.162 (0.017) 0.83 (0.130) 0.67 (0.112) 1.34 (0.082)
MCMC (noncent.) 0.32 (0.048) 0.35 (0.101) 0.17 (0.031) 0.256 (0.049) 0.79 (0.147) 0.64 (0.125) 1.28 (0.084)

Table 1: Parameter estimation for synthetic data under the Ebola model using our EM and MCMC methods
under three sets of prior distributions specified by Lekone and Finkenstädt (2006). For the MCMC results,
the posterior means is reported as the point estimate and the numbers in parentheses are posterior standard
deviations.
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Parameter β λ 1/ρ 1/γ q(2,3) q(3,4) R0

Our MCMC method
vague prior

0.36 (0.049)
0.22 (0.025)

0.32 (0.140)
0.05 (0.008)

10.39 (1.554)
1.86 (0.487)

6.17 (1.042) 0.44 (0.103) 0.36 (0.088)
2.18 (0.227)
1.42 (0.102)

Our MCMC method
informative prior

0.26 (0.033) 0.12 (0.064) 6.07 (1.919) 6.86 (0.834) 0.50 (0.109) 0.41 (0.093) 1.64 (0.696)

(Lekone and Finkenstädt, 2006)
vague prior

0.24 (0.020) 0.16 (0.009) 9.43 (0.620) 5.71 (0.548) 1.38 (0.127)

(Lekone and Finkenstädt, 2006)
informative prior

0.21 (0.017) 0.15 (0.010) 10.11 (0.713) 6.52 (0.564) 1.36 (0.128)

ODE + least squares
(Chowell et al., 2004)

0.33 (0.006) 0.98 (unknown) 5.30 (0.230) 5.61 (0.190) 1.83 (0.060)

ABC ABSEIR
(Brown et al., 2018)

0.3 (0.088) 0.36 (0.325) 7.91 (2.703) 15.01 (32.863) 3.66 (6.592)

Table 2: Parameter estimation for the real Ebola data. Numbers in parentheses in column 5 are standard errors,
for all other columns they are posterior standard deviations. For columns 2,3,4,6 the parameter estimates are
posterior means. For each of β, λ, and 1/ρ the pairs of estimates in column 1 were obtained from the respective
bi-modal posteriors by applying k-means clustering, with k = 2, to the MCMC output.
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Figure 1: Empirical bias and empirical coverage of nominal 95%-credible intervals from 2× 104 simulations over
200 time steps of the Ebola model. Columns from left to right: n = 5 × 102, 5 × 104, 5 × 106. Top row: bias,

bottom row: coverage. Red, yellow, blue, green correspond to x
(i)
t , i = 1, 2, 3, 4, i.e. susceptible, exposed, infective,

recovered.

the bias would be zero and the coverage would be 95%.

Figure 1 shows that for all three values of n, the bias
at every time step and for every compartment is less
than 0.1 in magnitude. This shows the approximation

is very accurate: the true values of x
(i)
t , i = 1, 2, 3, 4

are always integers, and a bias less than 0.5 in magni-
tude means that, on average, if the estimated number
of individuals is rounded to the nearest integer, the
true number of individuals is recovered. The credible
interval coverage reported in figure 1 shows that the ap-
proximate filtering distributions tend to over-represent
uncertainty: the empirical coverage at all time steps
for all compartments of the nominal 95% interval is is
between 97% and 100%. The bias and coverage appear
robust to population size.

5.3 Estimating the time-varying
reproduction number of COVID-19 in
Wuhan, China

A compartmental model for estimating the time-varying
reproduction number of COVID-19 in Wuhan, China,
has recently been published in Kucharski et al. (2020).
The model has 15 compartments: susceptibles in
Wuhan become exposed and either stay in Wuhan or
depart internationally, then in either case pass through
further stages being exposed, infective, symptomatic
and confirmed. The transmission rate is modelled
as time-varying (βt)t≥0, a-priori by a geometric ran-
dom walk, and βt is considered proportional to the
reproductive number Rt. Kucharski et al. (2020) pro-
posed a Sequential Monte Carlo (SMC) algorithm to
estimate (Rt)t≥0 which weights samples of (βt)t≥0 by
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the likelihood of the associated ODE solution under
a Poisson observation model. Our methods can be
used to replace their ODE model with a discrete-time
stochastic version of the compartmental model, and
with their Poisson model replaced our binomial ob-
servation model from section 3.3. Our version of the
SMC algorithm weights samples of (βt)t≥0 by their
approximate marginal likelihoods, computed using our
multinomial filtering techniques. We jointly analyzed
two of three data sets from Kucharski et al. (2020):
daily counts of new infectives by date of symptom onset
in Wuhan, and internationally exported from Wuhan.

Figure 3 shows our results in the format of Kucharski
et al. (2020). Compared to results obtained using their
ODE model (see supplementary material), our esti-

mates of Rt are generally lower, and closer 1 for the
period after travel restrictions are introduced; and our
credible intervals for the in-sample plots are generally
wider, reflecting the stochastic nature of our compart-
mental model. In the bottom two plots our posteriors
are mostly concentrated on lower values than those
from the method of Kucharski et al. (2020).
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Figure 2: Analysis of real Ebola data with our method. Posterior smoothing distributions for the number of
new infectives per day and posterior predictive distributions for the associated observations, i.e., subject to
under-reporting. Control measures were introduced on day 70.
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Figure 3: Results for the COVID-19 model using our methods. Red line is date at which travel restrictions
were introduced. Top: estimated reproduction number. Middle row: estimated daily new confirmed cases in
Wuhan (left) and internationally (right), both with in-sample data by date of symptom onset. Bottom row, left:
estimated new symptomatic but possibly unconfirmed cases (left axis) and out-of-sample new confirmed cases
data (right axis); right: estimated confirmed international cases by date of confirmation, and out-of-sample data.
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