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Abstract

There is significant growth and interest in the
use of synthetic data as an enabler for machine
learning in environments where the release of
real data is restricted due to privacy or avail-
ability constraints. Despite a large number of
methods for synthetic data generation, there
are comparatively few results on the statisti-
cal properties of models learnt on synthetic
data, and fewer still for situations where a
researcher wishes to augment real data with
another party’s synthesised data. We use
a Bayesian paradigm to characterise the up-
dating of model parameters when learning
in these settings, demonstrating that caution
should be taken when applying conventional
learning algorithms without appropriate con-
sideration of the synthetic data generating
process and learning task at hand. Recent
results from general Bayesian updating sup-
port a novel and robust approach to Bayesian
synthetic-learning founded on decision theory
that outperforms standard approaches across
repeated experiments on supervised learning
and inference problems.

1 Introduction

Privacy enhancing technologies comprise an area of
rapid growth (The Royal Societyl [2019). An important
aspect of this field concerns publishing privatised ver-
sions of datasets for learning; it is known that simply
anonymising the data is not sufficient to guarantee
individual privacy (e.g. Rocher et al.| 2019). We in-
stead adopt the Differential Privacy (pp) framework
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(Dwork et al., [2006)), to define working bounds on the
probability that an adversary may identify whether a
particular observation is present in a dataset, given
that they have access to all other observations in the
dataset. DP’s formulation is context-dependent across
the literature; here we amalgamate definitions regard-
ing adjacent datasets from [Dwork et al.| (2014); Dwork
and Lei| (2009):

Definition 1 ((g, ¢)-differential privacy) 4 ran-
domised function or algorithm K is said to be
(e, 9)-differentially private if for all pairs of adjacent,
equally-sized datasets D and D’ that differ in one
observation and all S C Range(K),

PrK(D) € §] < ef x Pr[K(D') € S]+6 (1)

Current state-of-the-art approaches involve the privati-
sation of generative modelling architectures such as
Generative Adversarial Networks (GANs), Variational
Autoencoders (vAEs) or Bayesian Networks. This is
achieved through adjustments to their learning pro-
cesses such that their outputs fulfil a DP guarantee
specified at the point of training (e.g. [Zhang et al.,
2017} [Xie et al.l 2018} [Jordon et al.| 2018}, [Rosenblatt
et al., |2020). Despite these contributions, a fundamen-
tal question remains regarding how, from a statistical
perspective, one should learn from privatised synthetic
data. Progress has been made for simple exponential
family and regression models (Bernstein and Sheldon)
2018, 2019)), but these model classes are of limited use
in modern machine learning applications.

We characterise this problem for the first time via an
adoption of the M-oren world viewpoint (Bernardo and
Smith| 2001) associated with model misspecification;
unifying the privacy and synthetic data generation lit-
erature alongside recent results in generalised Bayesian
updating (Bissiri et al.; 2016) and minimum divergence
inference (Jewson et all [2018]) to ask what it means
to learn from synthetic data, and how can we improve
upon our inferences and predictions given that we ac-
knowledge its privatised synthetic nature?
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This characterisation results in generative models that
are ‘misspecificed by design’, owing to the constraints
imposed upon their design by requiring the fulfilment
of a DP guarantee. This inevitably leads to discrepancy
between the learner’s final model and the one that they
would otherwise have formulated if not for this pp
restriction. In real-world, finite data contexts where
synthesis methods are often ‘black-box’ in nature, it is
difficult for a learner to fully capture and understand
the inherent differences in the underlying distributions
of the real and synthetic data that they have access to.

There are two key insights that we explore in this pa-
per following the characterisation above: Firstly, when
left unchecked, the Bayesian inference machine learns
model parameters minimising the Kullback-Leibler di-
vergence (KLD) to the synthetic data generating process
(s-paP) (Berk et al., [1966; Walker, 2013) rather than
the true data generating process (DGP); Secondly, ro-
bust inference methods offer improved performance
by acknowledging this misspecification, where in some
cases synthetic data can otherwise significantly hinder
learning rather than helping it.

In order to investigate these behaviours, we experiment
with models based on a mix of simulated-private and
real-world data to offer empirical insights on the learn-
ing procedure when a varying amount of real data is
available, and explore the optimalities in the amounts
of synthetic data with which to augment this real data.

The contributions of our work are summarised below:

1. Learning from synthetic data can lead to unpre-
dictable and negative outcomes, due to varying levels
of model misspecification introduced by its genera-
tion and associated privacy constraints.

2. Robust Bayesian inference offers improvements over
classical Bayes when learning from synthetic data.

3. Real and synthetic data can be used in tandem to
achieve practical effectiveness through the discovery
of desirable stopping points for learning, and optimal
model configurations.

4. Consideration of the preferred properties of the in-
ference procedure are critical; the specific task at
hand can determine how best to use synthetic data.

We adopt a Bayesian standpoint throughout this paper,
but note that many of the results also hold in the
frequentist setting.

2 Problem Formulation
We outline the inference problem as follows,

e Let x1., denote a training set of n exchangeable
observations from Nature’s true pap, Fy(x) with

density fo(x) with respect to the Lebesque measure,
such that x1., ~ Fy(x); we suppose z; € R?. These
observations are held privately by a data keeper K.

e K uses data 1., to produce an (e, d)-differentially
private synthetic data generating mechanism (s-
pGP). With a slight abuse of notation we use
Ge,5(21:,) to denote the s-DGP, noting that G, 5 could
be a fully generative model, or a private release mech-
anism that acts directly on the finite data x1.,, (see
discussion on the details of the s-pap below). We
denote the density of this s-DaP as g s.

e Let fy(x) denote a learner L’s model likeli-
hood for Fy(z), parameterised by 6 with prior
7(0), and marginal (predictive) likelihood p(x) =
J, fo(x)7(8)do.

e [’s prior may already encompass some other set of
real-data drawn from F, leading to 7(6) = 7(6 |
zf,,.), for ny, > 0 prior observations.

We adopt a decision theoretic framework (Berger} 2013)),
in assuming that L wishes to take some optimal action
a in a prediction or inference task; satisfying:

a= argr&aj(/U(x,a)Fo(x)dx. (2)

This is with respect to a user-specified utility-function
U(x,a) that evaluates actions in the action space A,
and makes precise L’s desire to learn about Fj in order
to accurately identify a.

Details of the synthetic data generation mech-
anism. In defining G, 5, we believe it is important to
differentiate between its two possible forms:

1. Ges(zim) = Ges(z | 1) G is a privacy-
preserving generative model fit on the real data,
such as the PATE-GAN (Jordon et all 2018), pp-
GAN (Xie et al.l |2018) or PrivBaves (Zhang et al.,
2017). Privatised synthetic data is produced by in-
jecting potentially heavy-tailed noise into gradient-
based learning and/or through partitioned training
leveraging marginal distributions, aggregations and
subsets of the data. The s-DGP provides conditional
independence between z1.,, and x1.,, and therefore
no longer queries the real data after training.

2. Ges = [ K. 5(x,dz)Fy(dz): A special case of this
integral comprises the convolution of Fy with some
noise distribution H, such that G, s = FyxH, 5. The
sampling distribution is therefore not a function of
the private data x1.,. In this case, the number of
samples that we can draw is limited to m < n as
drawing one data item requires using one sample
of K’s data. Examples of this formulation include
the Laplace mechanism (Dwork et all |2014) and
transformation-based privatisation (Aggarwal and
Yul, [2004).
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The fundamental problem of synthetic learning.
L wants to learn about Fj but only has access to their
prior 7(#) and to z1.m, ~ Ge 5, where G, 5 # Fy. That
is, the s-paP G, 5(-) is ‘misspecified by design’. This
claim is supported by a number of observations:

e L specifies a model p(x) using beliefs about the tar-
get Fp to be built using real data x1.,, they are then
constrained by a subsequently imposed requirement
of guaranteeing DP which instead requires consider-
ation of the resulting s-DGP G 5; this leads to an
inevitable change in their beliefs such that the re-
sulting model would be misspecified relative to the
original ‘best’ model for the true pGp Fj.

e Correctly modelling a privacy preserving mechanism
as part of an s-DGP such as a ‘black-box’ GAN or
complex noise convolution is often intractable.

e There is inherent finiteness to real-world sensitive
data contexts that makes it difficult for a gener-
ative model to capture the true DGP of even the
non-private data it seeks to emulate. Considering
sufficiently large quantities of data, and sufficiently
flexible models, would in theory allow for the true
DGP to be learnt, but relying on asymptotic be-
haviour in this setting is at odds with the definition
of DP given that the identifiability of individuals
would also naturally diminish as data availability
increases. Moreover, for non-trivial high-dimensional
models, the amount of data required to properly cap-
ture the DGP often becomes infeasible, regardless of
the magnitude of DP constraints.

Therefore, the posterior predictive converges to a differ-
ent distribution under real and synthetic data generat-
ing processes such that p(x | 21.m—o0) Z P(T | Z1:n—00)-
Learning from synthetic data is an intricate example
of learning under model misspecification, where the
misspecification is by K'’s design. It is important, as
shown below, that this is recognised in the learning
of models. Fortunately we can adapt recent advances
in Bayesian inference under model misspecification to
help optimise learning with respect to L’s task.

2.1 Bayesian Inference under model
misspecification

Bayesian inference under model misspecification has
recently been formalised (Walker} 2013; |Bissiri et al.,
2016) and represents a growing area of research, see
Watson and Holmes| (2016); |Jewson et al.| (2018)); Miller
and Dunson| (2018]); Lyddon et al.| (2018); |Grinwald
et al.| (2017)); [Knoblauch et al.| (2019) to name but a
few. Traditional Bayes rule updating in this context
can be seen as an approach that learns about the pa-
rameters of the model that minimises the logarithmic
score, or equivalently, the Kullback-Leibler divergence

(kLD) of the model from the pap of the data (Berk
et al.l [1966; [Walker} 2013; [Bissiri et al., [2016|), where

KLD(ge s || f) = [ log (9=:4/f) dG- 5.

As a result, if L updates their model fy(z) using syn-
thetic data 21, ~ Ge (1), then as m — oo they
will be learning about the limiting parameter that min-
imises the KLD to the s-pDGP:

0510 = argmin KLD (9.5() | fo()),  (3)

and under regularity conditions the posterior distri-
bution concentrates around that point, m(0 | z1.,) —
leé(LD as m — 00.

£,8

Furthermore, this posterior will concentrate away from
the model that is closest to Fy in KLD, corresponding
to the limiting model that would be learnt given an
infinite real sample 1., from Fy:

05 # 05" = argmin KLD (fo(4) | fo()) . (4)

This problem is exacerbated by the fact that s-DGpP’s
can be prone to generating ‘outliers’ relative to the
private data as a result of the injection of additional
noise into their training or generation to ensure (g,0)-
pP, combined with the fact that 65" is known to be
non-robust to outliers (e.g. Basu et al,[1998). There-
fore, given that as we collect more synthetic data our
inference is no longer minimising the KLD towards Fy,
we must carefully consider and investigate whether our
inference is still ‘useful’ for learning about Fy at all.

2.2 The approximation to Fj

Before we proceed any further we must consider what
it means for data from G, 5 to be ‘useful’ for learning
about Fy. We can do so using the concepts of scoring
rules and statistical divergence.

Definition 2 (Proper Scoring Rule) The function
s: X X P is a strictly proper scoring rule provided its
difference function D satisfies

D(foll f) = Bango [s(2, F())] = Eangy [s(x, fo(-))]
D(fi1lf2) 20, D(f|| f) =0 for all f, f1, f2 € P(x)

P(r) = {f(x) @ zowex, [ - 1} ,

Where the function D measures a distance between
two probability distributions. s(z, f) arises as the di-
vergence and is minimised when fy = f (Gneiting and
Raftery, [2007; \Dawid}, |2007)). A further advantage of
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this representation is that it allows for the minimisation
of D(fo]|-) using only samples from Fp,

argmin D(fo || f) = argminE, g, [s(z, f(-))]
feF feF

Henceforth, we define any concepts of closeness (or
‘usefulness’) in terms of a chosen divergence D and
associated scoring rule s, where the approximating
density f is given by the predictive inferences resulting
from synthetic 1., ~ G. 5. Given that inference using
G. s is no longer able to exactly capture fy, L can use
this notion of closeness to define what aspects of Fy they
are most concerned with capturing. The importance
of this specification is illustrated in Section [

3 Improved learning from the S-DGP

The classical assumptions underlying statistics are that
minimising the KLD is the optimal way to learn about
the pap, and that more observations provide more
information about this underlying DGp; such logic does
not necessarily apply here. L wishes to learn about the
private DGP, Fp, but must rely on observations from the
S-DGP G, s to do so. In this section we acknowledge this
setting to propose a framework for improved learning
from synthetic data. In so doing we pose the following
question and detail our solutions in turn: Given the
scoring criteria D, is 95::? the best the learner can do?

1. Can the robustness of the learning procedure be im-
proved to better approximate Fy by acknowledging
the misspecification and outlier prone nature of zy.,,,7

2. Starting from the prior predictive, p(x), for a given
learning method, when does learning using z ~ G. 5
stop improving inference for Fy(z)? That is, when

E- [D (fo() I p( | z1:542))] > E [D (fo() [ (- [ 215))]

3.1 General Bayesian Inference

In order to address these issues we adopt a general
Bayesian, minimum divergence paradigm for inference
(Bissiri et al., 2016 |[Jewson et all [2018) inspired by
model misspecification, where L can coherently update
beliefs about their model parameter 6 from prior (9)
to posterior m(0| z1.,) using:

7 (0) exp (= 3252, €25, fo))
JR©@)exp (=325, £z, fo)) dO”
where £(z, fy) is the loss function used by L for infer-

ence. Note that in this formulation, the logarithmic
score {o(z, fo) = — log fo(z) recovers traditional Bayes

71'2(9 | 21:m)

(6)

rule updating. The predictive distribution associated
with such a posterior and the model fy is:

P (@l 1m) = / fo@)r Olzrm)dd  (7)

3.2 Robust Bayes and dealing with outliers

In the absence of the ability to correctly model the
S-DGP, robust statistics (see e.g. Berger et al.l [1994)
provide an alternative option to guard against artefacts
of the generated synthetic data. We can gain increased
robustness in our learning procedure to data zi.,, by
changing the loss function £(z, fy) used for inference in
Eq. @ We consider two alternative loss functions to
the standard logarithmic score underpinning standard
Bayesian statistics,

éw(zvfG) = —wlogfg(z) (8)

0Dz, fy) - ﬁ / fe(yW“dy—%fa(z)ﬁ. (9)

Here, ¢,,(z, fo) introduces a learning parameter w > 0
into the Bayesian update (e.g. |Lyddon et al., |2018}
Griinwald et al.2017; Miller and Dunson, [2018; [Holmes
and Walker} 2017)). Down-weighting, w < 1 will gener-
ally produce a less confident posterior than in the case
of traditional Bayes’ rule, with a greater dependence
on the prior. Conversely, w > 1 will have the opposite
effect. The value of w can have ramifications for infer-
ence and prediction (Rossell and Rubio, 2018} |Griin+
wald et al.,|2017)). However, we note that as the sample
size grows using the weighted likelihood posterior will
still learn about 6, if w is fixed. Choosing w = ¢/m
instead can be seen to average the log-likelihood, with
e providing a notion of effective sample size.

Alternatively, minimising ¢(%) (z, f(-)) in expectation
over the DGP is equivalent to minimising the (-
divergence (gD) (Basu et al.| [1998)). Therefore, analo-
gously to the KLD and the log-score, using £%) (xz, f(-))
(Bissiri et all [2016; [Jewson et al., |2018} |Ghosh and
Basul 2016|) produces a Bayesian update targeting:

9555 ;= arg reréig BD (ge,s(:) || fo) - (10)
As f — 0, then sgp — KLD, but as [ increases it
provides increased robustness through skepticism of
new observations relative to the prior. We demonstrate
the robustness properties of the gD in some simple
scenarios in the Supplementary material (see A.1) and
refer the reader to e.g. [Knoblauch et al.| (2019} 2018)
for further examples. We note there are many possible
divergences providing greater robustness properties
than the KLD, e.g. Wasserstein or Stein discrepancy
(Barp et al., [2019), but for our exposition we focus on
the gD for its convenience and simplicity.
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A key difference between the two robust loss func-
tions considered above is that while £,,(z, fp) down-
weights the log-likelihood of each observation equally,
(B (x, f(-)) does so adaptively, based on how likely
the new observation is under the current inference (Cis
chocki et al., [2011)). It is this adaptive down-weighting
that allows the gD to target a different limiting param-
eter to ng(;f. This, in particular, allows the gD to be
robust to outliers and/or heavy tailed contaminations.
As a result, we believe that

D (FO I fggD ) <D <F0 I fegL6D>
€,8 €,

across a wide range of S-DGPs, i.e. the gD minimising
approximation to G, 5 is a better approximation of Fj
than the KLD minimising approximation. Proving
that this is the case in general proves complicated
and is hampered by the intractability both of the gD
minimisation and of many popular s-DGP’s. However,
we further justify this claim in A.1.2 where we show
that for the prevalent Laplace bP mechanism, this
holds uniformly over the privacy level parameterised
by the scaling parameter of the Laplace distribution A
for D = KLD.

A strength of the gD is that, unlike standard robust
methods using heavier tailed models or losses (Berger
et all (1994} [Huber and Ronchetti, [1981; |Beaton and
Tukey, 1974), ¢%)(x, f(-)) does not change the model
used for inference. In the absence of any specific knowl-
edge about the s-DGP, updating using the gD maintains
the model L would have used to estimate Fp, but up-
dates its parameters robustly. This also has advantages
in the data combination scenario where L is combining
inferences from their own private data xme with syn-
thetic data z1.,,. They can maintain the same model
for both datasets, with the same model parameters,
yet update robustly about zy., whilst still using the
log-score for zf,, (i.e. to condition their prior 7(6)).

3.3 The Learning Trajectory

The concept of closeness provided by D allows us to
consider how L’s approximation to Fj changes as more
data is collected from the s-pGp. To do so we consider
the ‘learning trajectory’, a function in m of the expected
divergence to Fy of inference using m observations from

gs,(s:
Ty (m; D, fo,9e.5) = Ex [D (fo() | 9°C- | 21:m))] 5

where p’(- | z1.,) is the general Bayesian posterior
predictive distribution (using ¢) based on (synthetic)
data z1.,,. This ‘learning trajectory’ traces the path
taken by Bayesian inference from its prior predictive
(m = 0) towards the synthetic data’s DGP under in-
creasing amounts of data (e.g. Figure [I} Section A.4).

We provide a proposition that says using more data
and approaching the limit, 65" is not necessarily the
optimal target to learn about according to criteria D.

Proposition 1 (Suboptimality of the s-DGP)
For s-pap G, 5, model fg(-), and divergence D, there
exists prior 7(0), private DGP Fy and at least one
value of 0 < m < oo such that,

Ty (D, fovgis) < D (Fall e ). (1)

where 0P := arg ming. g KLD(Ge s || fo) and Ty, is the
learning trajectory of the Bayesian posterior predictive
distribution (using fy) based on (synthetic) data z1.p,,

see Eq. .

The proof of Proposition [I] involves a simple counter
example in which the prior is a better approximation
to Fy according to divergence D than G.s. While
trivial, this could reasonably occur if L has strong, well-
calibrated expert belief judgements, or if they have a
considerable amount of their own data before beginning
to incorporate synthetic data. Furthermore, we argue
next that by considering this learning trajectory path
between the prior and the s-DGP G, 5, in terms of the
number of synthetic observations m, it is possible to
get even ‘closer’ to Fj in terms of a chosen D.

Changing the divergence used for inference as suggested
in Section changes these trajectories by chang-
ing their limiting parameter. However, Proposition
[} which considered learning minimising the KLD, can
equally be shown for learning minimising the 8D (see
A.2.1). In the following sections we talk generally
about optimising such a trajectory for a given learn-
ing method, before focusing on comparisons in these
methods and the resulting trajectories in Section [4]

3.4 Optimising the Learning Trajectory

The insights from the previous section raise two ques-
tions for a learner L using synthetic data:

1. Is synthetic data able to improve L’s inferences
about Fy according to divergence D? If so,

2. What is the optimal quantity to use for getting the
learner closest to Fy according to D?

Both questions can be solved by the estimation of

m* :=argmin Ty (m; D, fo, ge.5) (12)

0<m<M

However, clearly the learner never has access to the
data generating density. Instead we take advantage of
the representation of proper scoring rules and propose
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using a ‘test set’ .y ~ Fp to estimate

T —argmln—fzz (), p" (=) (13)

0<m<M b=1 j—1
. b
with {z{") Yo, ~ Ges.

As such we use a small amount of data from F{y to guide
the synthetic data inference towards Fj. We consider
two procedures for doing so: Firstly, by tailoring to
L’s specific inference problem, and when this is not
possible, putting the onus on K to evaluate the general
ability of their s-DGP to capture Fy. Before so doing
the following remark briefly considers optimising the
learning trajectory for a specific stream of data rather
than average over the s-DGP.

Remark 1 We note that although previously the learn-
ing trajectory was defined to average across samples
from the s-DGP, there may be cases where it is prefer-
able to define the learning trajectory based on a concrete
stream of data z1.,,. In such a scenario we may con-
sider data-dependent

m™*(z1.m) 1 = gi%nmlnD (fo( Y% | Zl:m)) . (14)

This can be seen as learning the optimal point to stop
learning for a specific stream of data rather than the
optimal size for the average synthetic dataset. Such a
setting introduces an undesirable dependence between
m™(z1.a) and the ordering of the data, but this can be
somewhat mitigated by averaging different realisations
of the synthetic data (see Prop. |2 and A.2.3/A.5.2 for
more details). For the rest of this paper, however, we
focus on the more generally defined m* from Eq. .

3.4.1 Optimising for L’s inference

In the first instance we consider the learner L has
access to an independent test set x].5 ~ Fp allowing
them to calculate the m associated with their specific
learning trajectory. Two potential sources are for z}.
are 1) for L to sacrifice some of their own data x1;,,
when constructing their prior, or 2) require that K hold
x).y out when it trains the s-paPp, which can then be
queried by L in order to estimate m. Clearly K is not
able to share the observations with L as this would
violate the DP guarantee. Instead a secure protocol
for two-way communication between L’s model and
K'’s test set must be established; promising directions
include (Cormode et al.|[2019; [de Montjoye et al., 2018)
and a practical use case (UK HDR Alliancel [2020).

3.4.2 A Broader Study

When the previous, problem, and data-specific methods
are not available we have to fall back on a broader

study. Here we recommend that alongside releasing
synthetic data, K optimises the learning trajectory
themselves, under some default model, loss and prior
setting by repeatedly partitioning ., into test and
training sets. For example, when releasing classification
data, K could release an m associated with logistic
regression and BART, for the log-score, under some
vaguely informative priors, providing learners an idea
of what to expect in terms of utility from the synthetic
data. Whilst this is less tailored to any specific inference
problem, it still allows K to communicate a broad
measure of the quality of its released data for learning
about Fp, and is advisable given our results.

3.5 Posthoc improvement through averaging

Once M has been estimated, the question then remains
of how to conduct inference given m. In particular,
if more synthetic data is available (e.g. 1 << M or
sampling z;.,,,,m — oo from a GAN), we can average
the posterior predictive distribution across different
realisations, using m each time, ensuring we do not
waste any synthetic data. Jensen’s inequality allows us
to prove that performance of the predictive distribution
will not diminish if we consider convex proper scoring
rules such as the logarithmic score:

Proposition 2 (Predictive Averaging) Given di-
vergence D with convex scoring rule, averaging over
different realisations of the posterior predictive depend-
ing on different synthetic data sets cannot deteriorate
inference:

plr 1 B B () Jenserés ineq.
0 H E b:le (x|21:m) =
D (Bl (21:0,))

A more detailed proof is provided in A.2.2. The sig-
nificance of this is that more synthetic data cannot
hinder the predictive distribution, but only if we do
not naively use all of it to learn at once.

B

43D (s (a)) -

b=1

4 Experimental Setup and Results

In order to investigate the concepts and methodologies
outlined above, we consider two experiment types:

1. Learning the location and variance of a univariate
Gaussian distribution.

2. Using Bayesian logistic regression for binary classifi-
cation on a selection of real-world datasets.

In these contexts we investigate the learning trajectory
of classical Bayesian updating alongside the robust ad-
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justments discussed in Section In order to draw
comparisons between these methods, we study the tra-
jectories’ dependence on values spanning a grid of data
quantities ny, and m, robustness parameters w and S,
prior values, and the parameters of chosen ppP mecha-
nisms (see A.6.3 for full experimental specifications).
The varying amounts of non-private data available to
L were used to construct increasingly informative pri-
ors @(#) = m(6 | L, ) through the use of standard
Bayesian updating, as robustness is not required when
learning using data drawn from F,. Learning trajec-
tories are then estimated utilising an unseen dataset
x}.y (mimicking either K’s data or some subset of L’s
data not used in training).

To this end we use optimised MCMC sampling schemes
(e.g. [Hofflman and Gelman) 2014) to sample from all
of the considered posteriors in each experiment’s case;
drawing comparisons across the grid laid out above and
repeating experiments to mitigate any sources of noise.
This results in an extensive computational task, made
feasible through a mix of Julia’s Turing PPL (Ge et al.|
2018)), MLJ (Blaom et al., 2020) and Stan (Carpenter
et al., [2017).

The majority of the experiments are carried out with
€ = 6, which is seen to be a realistic value respective of
practical applications (Lee and Clifton) 2011} [Erlings-
son et al.| 2014} Tang et al., |2017; [Differential Privacy
Team at Apple, [2017) and upon observation of the re-
lationship between privacy and misspecification shown
in Figure A.4. We evaluate our experiments according
to the divergences and scoring rules discussed in detail
in A.6.2, presented across a range of the figures in the
main text and supplementary material.

4.1 Simulated Gaussian Models

We first introduce a simple but illustrative simulated
example in which we infer the parameters of a Gaus-
sian model fy = N(u,0?) where 6 = (i, 02). We place
conjugate priors on 6 with 02 ~ InverseGamma(ay,, 3,)
and p ~ N (up, 0, X o) respectively. We consider x1.,
drawn from pGp Fy = N(0,12) and adopt the Laplace
mechanism (Dwork et al., |2014]) to define our s-pGP.
This mechanism works by perturbing samples drawn
from the pGP with noise drawn from the Laplace dis-
tribution of scale A, calibrated via the sensitivity S of
the DGP in order to provide (g,0)-DP per the Laplace
mechanism’s definition with e = §/x. To achieve finite-
ness of § in this case, we adjust our model to be that
of a truncated Gaussian; restricting its range to +30
to allow for meaningful €’s to be calculated under the
Laplace mechanism (See A.3 for a proof of this result).

We then compare and evaluate the empirical perfor-
mance of the competing methods defined below (see

A.6.1.1 for explicit formulations):

1. The standard likelihood adjusted with an additional
reweighting parameter w as in Eq. .

2. The posterior under the gD loss as in Eq. @D

3. The ‘Noise-Aware’ likelihood where the s-DGP can
be tractably modelled using the Normal-Laplace
convolution (Reed) [2006; [Amini and Rabbani) |2017)).

4.1.1 Results and Discussion

We observe that three different categories of learning
trajectory occur across the models; these are illustrated
in the ‘branching’ plots in Figure [1| (explained and
analysed further in A.6.4 and A.6.5):

1. The prior 7 is sufficiently inaccurate or uninforma-
tive (in this case due to low ny,) such that the syn-
thetic data continues to be useful across the range
of m we consider. As a result the learning trajectory
is a monotonically decreasing curve in the criteria
of interest.

2. A turning point is observed; synthetic data initially
brings us closer to Fy before the introduction of
further synthetic observations moves the inference
away. We see that in the majority of cases these
trajectories lie under the limiting kLD and gD ap-
proximations to G. s demonstrating the efficacy of
‘optimising the learning trajectory’ through the ex-
istence of these optimal turning points.

3. The final scenario occurs under a sufficiently infor-
mative prior 7 (here due to a large ny) such that
synthetic data is not observably of any use at all; it
can be seen to immediately cause model performance
to deteriorate.

We can further quantify the turning points which are
perhaps the most interesting characteristic of these
experiments. To do this we formulate bootstrapped
averages of the number of ‘effective real samples’ that
correspond to the estimated optimal quantity of syn-
thetic data. This is done by comparing these minima
with the black curves in the ‘branching’ plots represent-
ing the learning trajectory under an increasing ny and
m =0 (see A.6.4 for more details). These calculations
are shown in Figure [2] (and discussed further in A.6.5).

In general, we observe a significant increase in perfor-
mance from the gD (see Figures , indicated by
its proximity to even the noise-aware model at lower
values of ny, alongside more modest improvements
from reweighting methods. The gD achieves more de-
sirable minimum-trajectory log score, KLD and Wasser-
stein values compared to other model types; exhibiting
greater robustness to larger amounts of synthetic data
where other approaches lose out significantly.
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Figure 1: Shows how the KLD to Fj changes as we add more synthetic data, starting with increasing amount of
real data. This demonstrates the effectiveness of the optimal discovered gD configuration compared to the the
closest alternative traditional model in terms of performance with down-weighting w = 0.5; the black dashed line
illustrates KLD(Fy || fo+) for 6* = GEEL’JD (left) and 6* = 05?6 (right), representing the approximation to Fy given
an infinite sample from G, s under the two learning methods, and exhibiting the superiority of the sD.
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Figure 2: Shows the effective number of real samples gained through optimal / synthetic observations alongside
varying amounts of real data usage with respect to the AUROC and log-score performance criteria. These
are calculated and presented here via bootstrapped averaging under a logistic regression model learnt on the
Framingham dataset. The amount of effective real samples is significantly affected by the learning task’s criteria.
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Figure 3: Given a fixed real amount of data, we can compare model performances directly by focusing on one of
the ‘branches’ in the class of diagrams shown in Figures[I] & [ to see that the sD’s performance falls between
that of the noise-aware model and the other models, exhibiting robust and desirable behaviour across a range
of 8. Naive and reweighting-based approaches fail to gain significantly over not using synthetic data (shown
by w = 0’s flat trajectory); the resampled model in the logistic case can also be seen to perform very poorly in
comparison to models that leverage the synthetic data.
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Figure 4: This plot illustrates an interesting and impor-
tant observation made when varying € for a GAN based
model, we observe that there is a privacy ‘sweet-spot’
around € = 1 whereby more private data performs bet-
ter than less private data (see the curves for € = 100
which essentially represent non-private data)ﬂ

4.2 Logistic Regression

We now move on to a more prevalent and practical class
of models that also exhibit the potentially dangerous
behaviours of synthetic data in real-world contexts,
via datasets concerning subjects that have legitimate
potential privacy concerns. Namely, we build logistic
regression models for the UCI Heart Disease dataset
(Dua and Grafl] 2017) and the Framingham Cohort
dataset (Splansky et al.l|2007)). Clearly, we are now only
able to access the empirical distribution F',«, where n*
is the total amount of data present in each dataset. We
use Ti.,r to train an instance of the aforementioned
PATE-GAN G, 5 and keep back xy,(,,«_,r) for evaluation;
we then draw synthetic data samples 21.,, ~ Gz 5. As
before, we investigate how the learning trajectories are
affected across the experimental parameter grid.

Again, we consider learning using ¢,, and {g applied
to the logistic regression likelihood, fy (see A.6.1.2 for
exact formulations). In this case we cannot formulate
a ‘Noise-Aware’ model due to the black-box nature
of the cAN, highlighting the reality of the model mis-
specification setting we find ourselves in aside from
simple or simulated examples. We can instead define a
‘resampled’ model that recycles the real data used in
formulating the prior.

4.2.1 Results and Discussion

Here the learning trajectories are defined with respect
to the AUROC as well as the log score; whilst not tech-
nically a divergence, this gives us a decision theoretic
criteria to quantify the closeness of our inference to Fj.

!This plot exhibits the effect under the D model on the
Framingham dataset with 8 = 0.5, but is observable across
all model types in both AUROC and log score.

Referring to Figures and [4] we see that the learn-
ing trajectories observed in this more realistic example
mirror those observed in our simulated Gaussian ex-
periments. There are however some cases in which the
reweighted posterior outperforms the gD, and we see
large discrepancies in m when comparing log score to
AUROC values, reinforcing the importance of carefully
defining the learning task to prioritise.

Additionally, experiments using synthetic data from
a GAN offer the unique observation that performance
can actually improve as € decreases. We believe this
is due to potential mode collapse in the GAN learning
process on imbalanced datasets, and concentrations of
realisations of G. s as the injected noise increases such
that a small number of synthetic samples can actually
be more representative of Fy than even the real data.
This effect is short-lived as more synthetic observations
are used in learning, as presumably these samples then
become over-represented through the posterior distribu-
tion and performance begins to deteriorate, see Figure
[ for performance comparisons across .

5 Conclusions

We consider foundations of Bayesian learning from
synthetic data that acknowledge the intrinsic model
misspecification and learning task at hand. Contrary
to traditional statistical inferences, conditioning on in-
creasing amounts of synthetic data is not guaranteed to
help you learn about the true data generating process
or make better decisions. Down-weighting the infor-
mation in synthetic data (either using a weight w or
divergence gD) provides a principled approach to robust
optimal information processing and warrants further
investigation. Further work could consider augmenting
these general robust techniques with tailored adjust-
ments to inference based on the specific synthetic data
acknowledging the discrepancies between its generating
density and the Learner’s true target.
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