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Abstract

Existing deterministic variational inference
approaches for diffusion processes use sim-
ple proposals and target the marginal den-
sity of the posterior. We construct the vari-
ational process as a controlled version of the
prior process and approximate the posterior
by a set of moment functions. In combination
with moment closure, the smoothing problem
is reduced to a deterministic optimal control
problem. Exploiting the path-wise Fisher in-
formation, we propose an optimization proce-
dure that corresponds to a natural gradient
descent in the variational parameters. Our
approach allows for richer variational approx-
imations that extend to state-dependent dif-
fusion terms. The classical Gaussian process
approximation is recovered as a special case.

1 INTRODUCTION

Itô processes governed by a stochastic differential
equation (SDE) are an important class of time series
models involving uncertainty. Originating from the
statistical physics of diffusion, SDEs have become an
important modeling tool in areas as diverse as biology,
finance and engineering. However, applying SDEs as
a predictive tool requires learning model parameters
from real data. Usually, such data is corrupted by
noise and only available at discrete sampling times.
In such a scenario, likelihood-based parameter infer-
ence requires estimation of the posterior over the la-
tent process. Computing this posterior requires the so-
lution of a PDE that is only computationally tractable
for very low-dimensional state spaces or for linear sys-
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tems (see Särkkä and Solin (2019) for an accessible in-
troduction). Thus, standard approximations linearize
the system dynamics or use a discrete time approx-
imation. In a Bayesian setting, Monte Carlo meth-
ods such as MCMC, SMC or particle MCMC methods
are a common (Golightly and Wilkinson, 2011). In
practice, sampling-based methods often struggle with
high dimensional settings or with highly informative
observations (Del Moral and Murray, 2014). In such a
scenario, variational inference (Blei et al., 2017) may
provide a more scalable alternative.

Related Work The variational formulation of
Bayesian inference of latent stochastic processes and
its connection to stochastic control have been observed
first by Mitter and Newton (2003). Archambeau et al.
(2007a) introduced variational inference for SDEs to
the machine learning community. Their core idea is
to compute the best linear Gaussian process approxi-
mation of the posterior. While this approach has been
refined and extended several times over the years (e.
g. Vrettas et al., 2011; Ruttor et al., 2013; Duncker
et al., 2019), it is limited to state independent diffusion
terms. An alternative approach presented by Sutter
et al. (2016) constructs the variational process such
that the marginal density belongs to a prespecified
exponential family. While overcoming the Gaussian
limitation, the construction is also mathematically in-
volved. Cseke et al. (2016) suggested an approxi-
mation of the posterior in terms of moments rather
than the marginal density within an expectation prop-
agation framework for smoothing. Another moment-
based approximation, albeit in the context of Markov
jump processes, was proposed by Wildner and Koeppl
(2019). However, the key idea of transition space par-
titioning for complexity reduction cannot be applied
to SDEs. The main drawback of the deterministic
approaches above is that they rely on model-specific
derivations. Sampling-based variational inference does
not require such computations and can also be applied
to SDEs (Ryder et al., 2018). However, this comes at
the price of much longer training times. More recently,
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a promising neural SDE framework based on a stochas-
tic adjoint method has been proposed (Li et al., 2020).

Contributions In this work, we propose a new
sampling-free structured variational approach to latent
diffusion processes that mitigates some drawbacks of
earlier methods. Similarly to the approach of Cseke
et al. (2016), we construct the proposal process as a
controlled version of the prior process and reduce com-
plexity by projecting the stochastic process onto a col-
lection of summary statistics. To solve the variational
problem, we adapt a strategy proposed by Wildner
and Koeppl (2019). Using the Markov property in
combination with moment closure, we map the full
smoothing problem to a deterministic optimal con-
trol problem. Exploiting the path-wise Fisher infor-
mation, we construct an effective natural gradient de-
scent in the variational parameters. To keep model-
specific derivations at a minimum, we implement our
method in the PyTorch framework. Thus, we can
circumvent a large part of the model-specific compu-
tations by exploiting Pytorch’s automatic differenti-
ation capabilities. Exploiting the structural similar-
ity to the moment-based approach to Markov jump
processes, we provide a unified framework capable of
handling both SDEs and MJPs. The accompanying
code is available at https://git.rwth-aachen.de/

bcs/projects/cw/public/mbvi_sde.

2 PRELIMINARIES

This section summarizes material on SDEs, the infer-
ence problem for noisy observations in discrete time
and the general variational formulation.

2.1 Stochastic Differential Equations

Let X ⊂ Rn. We consider a stochastic processes X on
Rn over a finite time interval [0, tf ] given by the Itô
SDE

dXt = a(Xt)dt+ b(Xt)dWt . (1)

Here, W is an n-dimensional Wiener process and
a : Rn → Rn, b : Rn → Rn×n are functions of suitable
regularity, i.e. satisfying a Lipschitz condition. Addi-
tionally, we will focus on cases where b(x) has full rank
for all x ∈ X . The solution of an SDE of the form (1)
is a Markov process and the corresponding marginal
density satisfies the Fokker-Planck equation. In prac-
tice, one is often not interested in the full density but
rather certain summary statistics S : Rn → Rl. Often,
S will correspond to first and second order monomi-
als but other choices are possible as well. Now define
the moment functions ϕ(t) := E[S(Xt)]. The idea is
now to propagate ϕ in time rather than the density.

One can show that the moment functions ϕi satisfy a
system of differential equations

ϕ̇i(t) = E[A†Si(Xt)] (2)

where the backward generator A† is the L2-adjoint of
the Fokker-Planck operator and given by

[A†f ](x) =

n∑
i=1

ai(x)∂if(x) +
1

2

N∑
i,j=1

Dij(x)∂i∂jf(x)

(3)

for f ∈ C2(Rn) (Ethier and Kurtz, 2005). The diffu-
sion tensor D is determined by the SDE (1) through
the relation D = bb>. In general, the system (2) is not
closed in ϕ, i.e. it will be of the form

ϕ̇(t) = Bϕ(t) +B′E[S′(Xt)] . (4)

Here, B and B′ are matrices of suitable dimension and
S′ corresponds to a collection of higher order moments.
Thus, Eq. (4) still depends on the full process X. In
order to obtain a closed form description, one can em-
ploy moment closure (Kuehn, 2016). A general closure
is given by a function h that approximates the higher
order moments S′ such that (4) reduces to

ϕ̇(t) = Bϕ(t) +B′h(ϕ(t)) . (5)

Two common methods to obtain closure schemes are
via extensions and truncation of the summary statis-
tics and by assuming an underlying distribution. In
this work, we focus on the latter approach as it
has been shown to correspond to a projection of the
stochastic process onto a parametric family of distri-
butions (Bronstein and Koeppl, 2018).

2.2 Posterior Path Estimation

We consider a scenario where the underlying process
X is not observed directly. Instead, we have access
to sparse and noisy observations Y = (Y1, . . . , Yn)>

obtained at sample times 0 ≤ t1 ≤ . . . ≤ tn ≤ tf .
We assume that the observations are conditionally in-
dependent given the latent path of X and follow a
noise distribution Yi ∼ Pobs(· | X(ti)). The smooth-
ing problem refers to evaluating expectations of the
form E[f(Xt) | σ(Y )] where σ(Y ) denotes the his-
tory of the observation process Y up to the termi-
nal time tf . Under mild conditions, E[f(Xt) | σ(Y )]
can be represented by a conditional probability density
π(x, t | y1, . . . , yn). Now π can be understood as the
marginal density of a posterior process X̄. The poste-
rior process X̄ obeys an SDE with the same diffusion
term as the prior process (1) and a modified drift

ā(x, t) = a(x) +D(x)∇ log(β(x, t)) (6)
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where the source term β satisfies a backward equation
(Archambeau and Opper, 2011)

β(x, t) = −A†β(x, t) .

Intuitively, (6) corresponds to a controlled version of
the prior process where the second term steers the pro-
cess towards future observations. This analogy is the
main motivation underlying our structured variational
approximation introduced in Sec. 3.1.

2.3 Variational Smoothing

Let µ and ν be probability measures on a common
probability space such that µ is absolutely continuous
with respect to ν. Recall that the Kullback-Leibler di-
vergence or relative entropy between µ and ν is defined
as

DKL[µ || ν] =

∫
log

(
dµ

dν

)
dµ .

Now consider two diffusions Z, X with drifts aZ , aX

respectively and a shared diffusion tensor D that is
invertible for almost every x ∈ X . Then the Kullback-
Leibler divergence on the level of sample paths is given
by

DKL[PZ ||PX ] =

∫ tf

0

E
[(
aZ(Zt)− aX(Zt)

)>
×D(Zt)

−1
(
aZ(Zt)− aX(Zt)

)]
dt ,

(7)

where PZ , PX denote the measures over sample paths
induced by the processes Z and X, respectively. A
rigorous exposition on the relative entropy of diffusion
processes is given in Mitter and Newton (2003). More
intuitively, the path divergence (7) can be derived by
considering the divergence of a corresponding discrete
time system and taking the continuum limit (Archam-
beau et al., 2007a,b). For variational smoothing, we
aim to find an approximate process Z within a class
Z of simpler processes. Following the usual variational
inference framework (Blei et al., 2017), the best ap-
proximation Z∗ within Z is given by

Z∗ = arg min
Z∈Z

DKL[PZ ||P X̄ ] .

By inserting the true posterior drift (6), one can show
that this objective function decomposes into

DKL[PZ ||P X̄ ] = DKL[PZ ||PX ]

−
n∑
k=1

E[log p(yk | Ztk)] + logC
(8)

where X is the prior process and C = E[p(y1, . . . , yn |
X(t1), . . . , X(tn))] is the evidence.

3 VARIATIONAL SMOOTHING

3.1 Structured Variational Approximation

From the posterior drift (6), we observe that the true
posterior process X̄ is a controlled version of the prior
process X. The idea is now to approximate the driving
term in (6) by a feedback control. This leads to a drift
of the form

aZ(z, t) = aX(z) +R(x)v(t)T (x) . (9)

Here v : [0, tf ] → Rn×m is a deterministic, matrix-
valued function corresponding to the variational pa-
rameters while T : Rn × [0, tf ] → Rm represents a
collection of control features and R : Rn → Rn×n is
a rescaling matrix. Typically, R will be set to the
identity, the diffusion term b or the diffusion tensor D.
Suitable choices of the rescaling factor can simplify the
resulting equations and also reduce the computational
complexity of the algorithm. A more detailed discus-
sion is given in App. A2.2. In general, the control fea-
tures T will be different from the summary statistics S.
In the simple case where T is the identity map, (9) cor-
responds to a linear feedback control. For the follow-
ing discussion, we also introduce u : [0, tf ] → Rnm as
a vectorized control obtained by stacking the columns
of v.

Lemma 1. Under the variational drift (9), the KL-
term in the objective function (8) becomes a quadratic
form in the vectorized controls u and can be represented
as

DKL[PZ ||PX ] =
1

2

∫ tf

0

u(t)>g(ϕ(t))u(t) dt , (10)

where the matrix valued function g : Rl → Rnm×nm

is determined by the diffusion tensor D, the rescal-
ing matrix R, the control features T and the summary
statistics S.

Proof sketch. First, we show by direct calculation that
under the variational drift (9) the KL term can be
written as

DKL[PZ ||PX ] =
1

2

∫ tf

0

u(t)>E[ψ(x(t))]u(t) dt

with ψ : Rn → Rnm×nm such that

ψ(x) =

T1T1D̃
−1 . . . T1TmD̃

−1

... · · ·
...

TmT1D̃
−1 . . . , TmTmD̃

−1

 (x)

with D̃−1 = R>D−1R. Under a suitable choice of the
summary statistics S, one can express the expectation
as E[ψ(Zt)] = g(ϕ(t)). Such a g can always be found,
e.g. by augmenting the summary statistics S accord-
ingly. The details are given in App. A1.1.
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The full variational inference problem now corresponds
to minimizing the objective function (8) with respect
to u and ϕ subject to the moment equation (2). Since
(2) still depends on the full stochastic process Z, we
consider instead a relaxed variational inference prob-
lem by replacing the exact moment constraint with

ϕ̇(t) = f(u(t), ϕ(t)) . (11)

where f is obtained from a closure scheme. The re-
laxation of the moment constraint simplifies the vari-
ational inference problem considerably as summarized
in the following proposition.

Proposition 1. The relaxed variational inference
problem corresponds to a finite dimensional determin-
istic optimal control problem of the form

min
u,ϕ

J [u, ϕ]

s.t. ϕ̇(t) = f(u(t), ϕ(t))
(12)

with

J [u, ϕ] =

∫ tf

0

L(u(t), ϕ(t)) dt−
n∑
k=1

Fk(ϕ(tk)) (13)

where

Fk(ϕ(tk))) = E[log p(yk | Ztk)]

represents the contributions of the observations in (8)
expressed in terms of ϕ. The cost function L is given
by

L(u(t), ϕ(t)) =
1

2
u(t)>g(ϕ(t))u(t) . (14)

Proposition 1 is a consequence of Lemma 1 in combi-
nation with the moment closure relaxation. A detailed
discussion is given in App. A1.2.

3.2 Gradient-Based Optimization

A standard approach to solve control problems of the
form (12) is a gradient descent in the controls u (see
e.g. Stengel, 1994). While such a gradient descent may
work in principle, it often suffers from slow conver-
gence. We can do better in our scenario by exploit-
ing the probabilistic nature of the objective function.
The key insight here is that the variational family in-
duces a statistical manifold on the sample path space
parametrized by the controls. This allows us in a
first step to construct the path-wise Fisher informa-
tion which we then use to derive a natural gradient
descent (Amari, 1998) in the controls u.

Lemma 2. Let Z and Z ′ be two members of the vari-
ational process family parametrized by u and u′ respec-
tively. We then have

DKL[PZ ||PZ
′
] =

1

2
G(u)[u− u′, u− u′] (15)

where G(u)[·, ·] for fixed u is a symmetric positive
semidefinite bilinear form given by

G(u)[u′ − u, u′ − u] =

∫ tf

0

(u′(t)− u(t))>

× g(ϕ(t))(u′(t)− u(t)) dt .

Lemma 2 can be proved very similarly to Lemma
1. For completeness, the proof is provided in App.
A1.3. Now the Fisher information corresponds to
the second order approximation of DKL[PZ ||PZ′ ] as
u′ approaches u. Since the divergence is already a
quadratic form, it follows immediately from Lemma 2
that G(u)[·, ·] is the path-wise Fisher information at u.
This allows us to construct natural gradient updates
to solve the control problem (12). Both optimization
algorithms featured in this work are summarized in the
following proposition. An algorithmic representation
is given in Alg. 1.

Proposition 2. The regular (RGD) and natural
(NGD) gradient descent updates of the control problem
(12) with respect to the statistical manifold induced by
u and step size h are given by

u(i+1)(t) = u(i)(t)

− h
(
g(ϕ(i)(t))u(i)(t)− f (i)

u

>
(t) · η(i)(t)

)
,

(16)

u(i+1)(t) = u(i)(t)

− h
(
u(i)(t)− g(ϕ(i)(t))−1f (i)

u

>
(t) · η(i)(t)

)
,

(17)

where ϕ(i) is the solution of the forward equation

ϕ̇(i)(t) = f(u(i)(t), ϕ(i)(t))

and η(i) is the solution of the adjoint equation

η̇(i)(t) = L(i)
ϕ (t)− f (i)

ϕ (t)> · η(i)(t) . (18)

The notation (·)(i)
ϕ and (·)(i)

u denote the Jacobians with
respect to ϕ(i) and u(i), respectively.

Proof sketch. Since the control u fully defines the mo-
ments ϕ, we can understand the control problem (12)
as the minimization of a functional J [u]. Steepest de-
scent with respect to a local metricG corresponds solv-
ing the constrained optimization problem

u(i+1) = arg min
u
J [u]

s.t.
1

2
G(u(i))[u− u(i), u− u(i)] = ε

for small ε and then taking the limit ε→ 0. For small
ε, one can expand J [u] around u(i). Keeping only the
first order term leads to a quadratic problem that can
be solved with variational calculus. For RGD, we use
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that gradient descent corresponds to a steepest descent
w.r.t. to the Euclidean metric. The result follows
therefore by an identical computation with G(u) re-
placed by the L2 inner product. For the details, we
refer to App. A1.4.

If the dynamic equation (11) is obtained via moment
closure, the summary statistics ϕ will not correspond
to a globally valid stochastic process. Thus, the gradi-
ent has to be understood as an approximation as well.
It is then advisable to check the results empirically
by creating samples from the variational process with
optimized control u∗.

3.3 A Note on Implementation

Solving the backward equation and computing the gra-
dient updates requires the derivation of a number of
model-specific functions. To reduce this overhead, we
exploit the automatic differentiation capabilities of Py-
Torch which allows to effectively compute gradients
and Jacobian-vector products. The most general ver-
sion of our implementation only requires the specifica-
tion of two functions: the r.h.s. of the forward equa-
tion f and either g or L. For certain subclasses, the
implementation can be further simplified. In particu-
lar, we construct a general purpose method by fixing
the control features and summary statistics as

T (x) = (1, x1, . . . , xn)> ,

S(x) = (x1, . . . , xn, x
2
1, x1x2, x

2
2, . . . , x

2
n)> .

(19)

Intuitively, the choice of features T corresponds to
a linear feedback control. The summary statistics
S consist of first and second order moments and
thus directly correspond to the mean and covari-
ance of the approximate posterior, which is in line
with many approximate non-linear filtering techniques
Särkkä (2013). Here, it is also convenient to represent
the control in terms of functions u0, u1 such that we
can write

v(t)T (x) = u0(t) + u1(t)x . (20)

With m(t) ≡ E[Zt] and M(t) ≡ E[(Zt − m(t))(Zt −
m(t))>], we obtain from (2)

ṁ(t) = E[a(Zt)] + u0(t) + u1(t)m(t)]

Ṁ(t) = E[a(Zt)Z
>
t ] + E[Zta(Zt)

>] + E[D(Zt)]

+ u1(t)M(t) +M(t)u1(t)>

− E[a(Zt)]m(t)> −m(t)E[a(Zt)]
>

Under the choice (19), f and g can be constructed
automatically by specifying E[a(Zt)], E[a(Zt)Z

>
t ] and

E[D(Zt)] in terms of the first and second order mo-
ments. This will typically require a moment closure.

We include two standard closure schemes that lead to
a reduction to moments of first and second order: a
Gaussian closure for processes defined on the whole
Rn and a log-normal closure for processes defined on
Rn+ (see App. A2.1). We conclude this section by
commenting on the relation to the standard Gaussian
process approximation Archambeau et al. (2007a,b).
As shown in App. A1.5, by a suitable choice of the
control features the GP approximation arises as a spe-
cial case within our framework.

Algorithm 1 Robust Natural Gradient Descent for
Moment-Based Variational Smoothing

1: Input: Initial guess u(0), initial condition ϕ(0),
learning rate h, step size modifiers α, β.

2: for i = 0, . . . , maxiter do
3: Given u(i), ϕ(0), compute ϕ(i) using (11).
4: Given u(i), ϕ(i), compute η(i) using (18).
5: Set u′ according to (17).
6: if J [u′] < J [u(i)] then
7: h→ α · h, u(i+1) → u′

8: else
9: h→ β · h, u(i+1) → u(i+1)

10: end if
11: end for
12: Output: Variational control u∗ .

3.4 Online Variational Smoothing

The optimization based on Alg. 1 processes the full se-
quence of observations at once. This can be problem-
atic for some dynamical systems as the initial estimate
might be far away from the observations or when the
variance of the prior process is very large. For such
cases, we employ an online version of the variational
smoother. For this online version, Alg. 1 is run for a
number of steps on the first observation only. Then,
the second observation is included and the smoother
is initialized with the last control of the previous step.
This procedure is repeated until all observations are
processed.

4 PARAMETER INFERENCE

Variational smoothing algorithms can be straightfor-
wardly extended to inference of model parameters. Let
θ be a collection of real-valued parameters and extend
the prior model such that the drift and diffusion terms
are understood as functions of θ. More explicitly, re-
place a(x) → a(x, θ) and b(x) → b(x, θ) in the model
given by (1). We can now proceed along the line of Sec.
3 to derive a relaxed variational inference problem (see
App. A2.5.1). Again the result can be phrased as a
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control problem

min
θ,u,ϕ

∫ tf

0

L(θ, u(t), ϕ(t)) dt−
n∑
k=1

Fi(ϕ(tk))

s.t. ϕ̇(t) = f(θ, u(t), ϕ(t))

(21)

Solving the control problem (21) is equivalent to maxi-
mizing an approximate evidence lower bound. We dis-
cuss three ways to solve (21). In the first approach, θ
and u are optimized interchangeably corresponding to
the usual variational expectation maximization frame-
work. The second idea is to construct a joint gradient
descent in the parameters θ and the controls u. In
practice, we observed that a combination of both ap-
proaches works well, where we alternately take a num-
ber of gradient steps for θ and u.
Finally, we consider a scenario were we have several
independent time series samples Y 1, . . . , Y N from the
same underlying model. The standard variational in-
ference procedure in this case requires computing u∗n(t)
for each time series Y n to perform a single parameter
update. This becomes intractable for larger data sets.
We therefore consider an amortized approach based on
an inference network. The idea is to model the con-
trols as a parametric function of the observations. In
our case, we set un(t) = h(yn, φ) where h is a feed-
forward neural network parametrized by φ. As shown
in App. A2.5.2, the corresponding optimization prob-
lem becomes

min
θ,φ,ϕ

N∑
i=1

∫ tf

0

L(θ, h(yi, φ), ϕi(t)) dt−
n∑
k=1

Fi(ϕi(tk))

s.t. ϕ̇i(t) = f(θ, h(yn), ϕi(t)) i = 1, . . . , N
(22)

For an implementation in PyTorch, we can exploit
that our approach is gradient-based. Prop. 2 allows
us to compute the gradient of the objective function
with respect to an arbitrary control u(t). We can
thus backpropagate through the variational smooth-
ing code such that it supports automatic differenti-
ation. Conceptually, this is similar to neural ODE
framework (Chen et al., 2018) which allows to back-
propagate through an ODE solver. Using the resulting
module as the loss function, the inference network can
be trained end-to-end using standard optimizers based
on back-propagation. For a simple conceptual demon-
stration of the inference network, we refer to Sec. 5.3.

5 EXPERIMENTS

In this section, we present four examples chosen to
illustrate the versatility of our approach. For more
details regarding the model equations and implemen-
tation, we refer to App. A3.
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Figure 1: Evolution of the objective function under
natural gradient descent (red) and regular gradient de-
scent (blue). The lines correspond to the log of the
objective function averaged over 10 runs started with
randomly initialized controls.

5.1 Regular Gradient vs. Natural Gradient

We are interested in comparing the performance of the
natural and regular gradient descent. We investigate
this using the non-linear diffusion given by

dXt = 4Xt(1−X2
t )dt+ σdWt (23)

that was also featured in the original work on Gaussian
process approximations Archambeau et al. (2007a,b).
The drift of the system has two stable stationary points
at x = ±1. On occasion, the process noise may drive
the system from one stationary point to another. We
pick one fixed trajectory for which such a switch oc-
curs. We then generate 10 different initial controls at
random. For each of these initial controls, we per-
form the optimization with regular gradient descent
and with natural gradient descent. The averaged log-
transformed objective functions over gradient itera-
tions are shown in Fig. 1. We observe that the natural
gradient descent is more effective then the regular gra-
dient descent, in particular in the middle part of the
optimization. Also note that for small to medium di-
mensions, the computation time per gradient step is
approximately equal for both methods. This is be-
cause the Fisher information is required for both (see
Prop. 2). Only for larger system, the matrix inver-
sion in (17) may become prohibitive compared to the
forward and backward ODE solution.

5.2 Joint Smoothing and Inference

Geometric Brownian motion is a simple example of
a process with a state dependent diffusion term and
thus cannot be treated in the linear gaussian process
framework. Here, we consider a simple multivariate
extension given by the SDE system

dXi,t = riXi,tdt+Xi,tdW̃i,t (24)
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a)

b)

c)

Figure 2: Joint smoothing and inference for a multi-
variate geometric Brownian with n = 4. a) Noisy ob-
servations, ground truth and smoothed state for the
process components. For comparison, we show the
prior process initialized with uninformative parame-
ters. The shaded region indicates the standard devia-
tion of the prior. b) A zoom-in showing the posterior
compared to the noisy observations and the ground
truth. The shaded blue region indicates the standard
deviation of the variational posterior. c) Ground truth
of the correlation matrix compared to reconstructed
correlation matrix.

for each component i. Here W̃i,t is a collection of
correlated Brownian motions. Similar as for a mul-
tivariate normal distribution, a correlated Brownian
motion can be constructed as W̃t = RWt where Wt

is a vector of independent standard Brownian motions
and the matrix R encodes the correlations. We con-
sider a noise-dominant scenario and thus treat R as the
parameter to be inferred. To test joint inference and
smoothing, we simulated a trajectory over an inter-
val of [0, 720] with independent Gaussian observations
every 7 units. For optimization, we use the alternat-
ing gradient descent. As demonstrated qualitatively in
Fig. 2, state and correlation structure can be inferred
quite well. Note that we show the correlation matrix

RR> since many R may give rise to the same process.
The details of the experiment and a more quantitative
evaluation are given in App. A3.1.

5.3 Amortized Smoothing

We explore the possibility of amortized smoothing
(Sec. 4). To keep it simple, we consider a two-
dimensional Ornstein-Uhlenbeck process given by the
SDE

dXt = −γ(Xt − µ)dt+ σdWt .

where µ ∈ R2, γ, σ ∈ R2×2. We generated 1000 trajec-
tories of a two-dimensional model with fixed parame-
ters and initial conditions. Each sample was observed
over 20 s with 9 evenly spaced observation. The in-
ference network was trained over 50 epochs using the
Adam optimizer with default parameters, a weight de-
cay of 0.001 and a batch size of one. Fig. 3 shows the
prediction of the smoothing network on a previously
unseen sample compared to the exact solution. This
demonstrates, in principle, that the controls for varia-
tional smoothing can be learned and that the inference
network generalizes to unseen trajectories.
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Figure 3: Two-dimensional Ornstein-Uhlenbeck pro-
cess. For both components, the graph shows the
smoothing predicted by the inference network on a
previously unseen example. For comparison, we also
show the simulated ground truth and the true poste-
rior. Shaded regions indicate the standard deviations
of the corresponding process.

5.4 Population Models

Population models describe the time evolution of a
number of species over time. A convenient way to
represent a population model is via the language of
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chemical reactions. More precisely, let there be species
X1,Xd and r reactions of the form

si1X1 + . . .+ sidXd
ci−→ pi1X1 + . . .+ pidXd

with the matrices S and P encoding the number of
molecules before and after a certain reaction event and
the rate constants ci determining the time scale of each
reaction. In addition, let V ≡ P − S. Then the j-th
row vj of V encodes the net change caused by reaction
j. Under certain conditions, the concentrations of the
species is governed by the chemical Langevin equation
Gillespie (2000). This leads to an SDE of the form

dXt = V >h(Xt)dt+
√
V >diag(h(Xt))V dWt (25)

where
√
· indicates a matrix square root and the mass-

action propensity h : Rd → Rr is defined component
wise by

hi(x) = ci

d∏
k=1

xk!

sik!(xk − sik)!
.

We combine a linear control and a multivariate log-
normal closure to derive a general method for (25) (see
App. A2.4). As a test system, we use the stochastic
Lotka-Volterra model that describes the interaction of
a prey species and a predator species. The correspond-
ing matrices are given by

S =

1 0
1 1
0 1

 , P =

2 0
0 2
0 0


We stress, however, that our code is not specific to
the predator prey dynamics but takes general S and
P as input. To study the behavior of our approach
we recreate a scenario from Ryder et al. (2018). We
generate a synthetic trajectory starting from the ini-
tial X0 = (71, 79)> and take four observations within
the interval [0, 50]. As shown Fig. 4, the variational
smoothing can reconstruct the true trajectory quite ac-
curately. We also observe that only four observations
restrict the variance of the process significantly.

6 DISCUSSION

We provide an ODE-based approach to variational
smoothing that extends classical Gaussian process re-
gression to models with state-dependent diffusion and
allows for more versatile variational families. To
achieve this, we understand the variational process
as a controlled modification of the prior process and
project the marginal posterior to a set of selected mo-
ment functions. In comparison to earlier work, we
apply a refined optimization algorithm based on the
natural gradient descent. Conceptually, our work ex-
tends a previous moment-based variational approach
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Figure 4: Smoothing for the stochastic Lotka-Volterra
system. Solid lines indicate the mean, the shaded area
indicates the corresponding standard deviation. Re-
sults are shown for the prior process and the varia-
tional smoothing. For reference, the simulated ground
truth and the noisy observations are also provided.

from MJPs to SDEs. Due to the structural simi-
larity of both approaches, the moment-based varia-
tional method provides a unified inference framework
for both process classes. In interesting future direc-
tion is to extend the moment-based variational frame-
work to other Markov processes, in particular to jump-
diffusions. In this work, we have used two simple clo-
sure schemes that work sufficiently well in the consid-
ered examples. Future work may consider more ad-
vanced clsoure schemes and also investigate the effect
of different closures on the inference quality.
While previous ODE-based approaches have required
manual derivations of the backward equation and gra-
dients with respect to the parameters, we exploit auto-
matic differentiation to construct these quantities au-
tomatically. In general, our approach only requires
to provide two model-specific functions. For certain
subclasses, these functions can be constructed auto-
matically as well. Since our method is gradient-based,
it can implemented as an automatically differentiable
function. This allows straightforward integration with
deep models. As a first example, we train an amor-
tized inference network on a toy model with known
model parameters. A promising future direction is to
extend this to a full variational autoencoder for time
series.
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