
Supplementary Material:
Sparse Algorithms for Markovian Gaussian Processes

A Statistical Properties of Linear SDEs

A.1 Marginals

A linear time invariant (LTI) stochastic differential equation (SDE) can be expressed as follows:

ṡ(x) = Fs(x) + Lε(x) , f(x) = Hs(x) , (24)

where ε(x) is a white noise process, F is the feedback matrix, L is the noise effect matrix, and H is the measurement
matrix.

The marginal distribution of the solution to this LTI-SDE evaluated at any ordered set x = [x1, . . . , xN] ∈ R
N

follows a discrete-time linear system:

s(xn+1) = An,n+1s(xn) + qn, qn ∼ N (0,Qn,n+1),

s(x0) ∼ N (0,P0), fn = Hs(xn),
(25)

where the state transition matrices, An,n+1 ∈ R
d×d, noise covariance matrices, Qn,n+1 ∈ R

d×d, and stationary
state covariance matrix P0 ∈ R

d×d can be computed analytically. Denoting the matrix exponential as Φ and
with step size ∆n = xn+1 − xn, we have

An,n+1 = Φ(F∆n) ,

Qn,n+1 =
∫∆n

0
Φ(∆n − τ)LQcL

⊤Φ(∆n − τ)
⊤ dτ .

(26)

A.2 Conditionals

This section is adapted from Appendix A.1 of Adam et al. (2020). We consider a stationary Markovian GP with
state dimension d and denote by (um, s,um+1) its evaluation on the triplet (zm, x, zm+1). We here detail the
derivation of p(s |v = [um,um+1]).

Derivation from the joint precision

p(s |um,um+1) ∝ p(s |um)p(um+1 | s)

∝ N (s;Am,xum,Qm,x)N (um+1;Ax,m+1s,Qx,m+1)

∝ exp−
1

2

[

‖s−Am,xum‖
2
Q

−1
m,x

+ ‖um+1 −Ax,m+1s‖
2
Q

−1
x,m+1

]

∝ exp−
1

2

[
s⊤(Q−1

m,x + (Ax,m+1)
⊤Q−1

x,m+1Ax,m+1)
︸ ︷︷ ︸

T−1

s− 2s⊤
[
Q−1

m,xAm,x, A⊤
x,m+1Q

−1
x,m+1

]

︸ ︷︷ ︸

M=[M1,M2]

v
]

∝ exp−
1

2

[
s⊤T−1s− 2s⊤Mv

]
= N (s;Rv,T) (27)

with

T = (Q−1
m,x +A⊤

x,m+1Q
−1
x,m+1Ax,m+1)

−1 (Woodbury identity)

= Qm,x −Qm,xA
⊤
x,m+1(Qx,m+1 +Ax,m+1Qm,xA

⊤
x,m+1)

−1Ax,m+1Qm,x

= Qm,x −Qm,xA
⊤
x,m+1Q

−1
m,m+1Ax,m+1Qm,x (28)

and R = [R1,R2] = TM = [TM1,TM2] given by

R1 = (Qm,x −Qm,xA
⊤
x,m+1Q

−1
m,m+1Ax,m+1Qm,x)Q

−1
m,xAm,x

= Am,x −Qm,xA
⊤
x,m+1Q

−1
m,m+1Am,m+1, (29)

R2 = (Qm,x −Qm,xA
⊤
x,m+1Q

−1
m,m+1Ax,m+1Qm,x)A

⊤
x,m+1Q

−1
x,m+1

= Qm,xA
⊤
x,m+1Q

−1
x,m+1 −Qm,xA

⊤
x,m+1Q

−1
m,m+1(Qm,m+1 −Qx,m+1)Q

−1
x,m+1 (Woodbury identity)

= Qm,xA
⊤
x,m+1Q

−1
m,m+1. (30)

The conditional function evaluation f(x) = Hs is thus:

p(f(x) |um,um+1) = N (f(x);HRv,HTH⊤) = N (f(x);Wv, ν). (31)

B Inference in Site-based Sparse Markovian GP Models

The site based algorithms build an approximation to the posterior of the form:

q(s(·)) ∝ p(u) p(s(·) |u)
∏

m tm(vm). (32)

The factors tm are called sites and are parameterized as unnormalized Gaussian distributions in the natural
parameterization: tm(vm) = zm exp(v⊤

mT1,m − 1/2v⊤
mT2,mvm) = Ñ (vm; zm,T1,m,T2,m).

B.1 Filtering and Smoothing

It is possible to compute the posterior marginals over the individual inducing states q(um) and pairwise consecutive
inducing states q(vm = [um,um+1]) by introducing the forward (f) and backward (b) filters:

qf (um) ∝
∫
p(u≤m)

∏

m′<m tm′(vm′) du<m,

qb(um) ∝
∫
p(u≥m)

∏

m′≥m tm′(vm′) du>m.
(33)

These can be evaluated using the following recursions:

qf (um+1) =
∫
p(u≤m+1)

∏

m′<m+1 tm′(vm′) du<m+1

=
∫
p(u≤m)

∏

m′<m tm′(vm′)
∫
p(um+1 |um)tm(vm) du<m+1

=
∫ [∫

p(u≤m)
∏

m′<m tm′(vm′) du<m

]
p(um+1 |um)tm(vm) dum

=
∫
qf (um) p(um+1 |um) tm(vm) dum,

qb(um) =
∫
p(u≥m)

∏

m′≥m tm′(vm′) du>m.

=
∫ [∫

p(u≥m+1)
∏

m′≥m+1 tm′(vm′) du>m+1

]
p(um |um+1)tm(vm) dum+1.

=
∫
qb(um+1) p(um |um+1) tm(vm) dum+1

=
∫
qb(um+1) p(um+1 |um) p(um) / p(um+1) tm(vm) dum+1.

(34)

The desired marginals are then obtained as the product of the forward and backward filtering distributions,
divided by the prior:

qs(um) =
∫
q(u) du 6=m

=
∫
p(u)

∏

m′ tm′(vm′) du 6=m

=
∫ [
p(u≤m)

∏

m′<m tm′(vm′)
][
p(u>m |um)

∏

m′≥m tm′(vm′)
]
du 6=m

=
[
p(u≤m)

∫ ∏

m′<m tm′(vm′) du<m

][∫
p(u≥m)

∏

m′≥m tm′(vm′) du>m

]
/p(um)

= qf (um) qb(um) / p(um),

qs(vm) =
∫
q(u) du 6=(m,m+1)

=
∫
p(u)

∏

m′ tm′(vm′) du 6=(m,m+1)

=
∫ [
p(u≤m)

∏

m′<m tm′(vm′)
]
tm(vm)p(um+1 |um)

[
p(u>m+1 |um+1)

∏

m′≥m+1 tm′(vm′)
]
du 6=(m,m+1)

=
[∫

p(u≤m)
∏

m′<m tm′(vm′) du<m

]
tm(vm)p(um+1 |um)/p(um+1)

[∫
p(u≥m+1)

∏

m′≥m+1 tm′(vm′) du>m+1

]

= qf (um) p(um+1 |um) tm(vm) / p(um+1) q
b(um+1).

(35)

Kalman recursions The above product of forward and backward filters is known as two-filter smoothing (Särkkä,
2013). An alternative way to implement this is via the more standard Kalman filter (f) and Rauch-Tung-Striebel
(RTS) smoother (s). Letting u0 = s(−∞) and uM+1 = s(∞),

qf (u0) = N (u0 |0,P0), initialise Kalman filter

qf (vm) = qf (um) p(um+1 |um) tm(vm), compute joint, include site

qf (um+1) =
∫
qf (vm) dum, marginalise (filtering dist.)

qs(uM) =
∫
qf (vM) duM+1, initialise RTS smoother

qp(um+1) =
∫
qf (um)p(um+1 |um) dum, forward prediction

qs(um) = qf (um)

∫
p(um+1 |um) qs(um+1)

qp(um+1)
dum+1, smoothing dist.

(36)

where qp(·) is the forward filter prediction and qs(·) is the desired smoothing distribution, i.e., the marginal
posterior.

To derive the last line in Eq. (36) we let ỹ represent pseudo data implied by the sites, p(ỹm |vm) = tm(vm). With
this notation the forward filter is given by qf (um) = p(um | ỹ1:m) ≈ p(um |y1:n(m)), where n(m) is the number of
data points to the left of zm, and the smoother by qs(um) = p(um | ỹ1:M) ≈ p(um |y1:N), so we can write,

qs(um) = p(um | ỹ1:M)

=

∫

p(um,um+1 | ỹ1:M) dum+1

=

∫

p(um |um+1, ỹ1:M) p(um+1 | ỹ1:M) dum+1

=

∫

p(um |um+1, ỹ1:m) qs(um+1) dum+1

=

∫
p(um,um+1 | ỹ1:m)

p(um+1 | ỹ1:m)
qs(um+1) dum+1

= qf (um)

∫
p(um+1 |um) qs(um+1)

qp(um+1)
dum+1.

(37)

B.2 Normaliser

We are interested in the normalizer of q(s). A dense formulation can be obtained as follows:

log
∫
q(s(.)) ds = log

∫
p(s(.) |u) p(u)

∏

m t(vm) ds du

= log
∫
p(u)

∏

m t(vm) du

= log
∫ eG(p(u))

∏

m zm
eG(q(u)) q(u) du

= G(q(u))−G(p(u)) +
∑

m log zm, (38)

where we have defined the log-normaliser as the functional G(Ñ (u; z,T1,T2)) = log
∫
Ñ (u; z,T1,T2) du.

A more efficient formulation dedicated to Markovian GPs is obtained using the filtering recursions of the previous
section:

∫
q(u) du =

∫
p(u)

∏

m tm(vm) du

=
∫
p(um>1 |u1)

∏

m>0 tm(vm)
[∫
p(u1 |u0) t0(v0) p(v0) du0

]

︸ ︷︷ ︸

cf1 qf (u1)

du>0

=
∫
p(um>2 |u2)

∏

m>1 tm(vm)cf1
[∫
p(u2 |u1) t1(v1) q

f (u1) du1

]

︸ ︷︷ ︸

cf2 qf (u2)

du>1

= · · · = cf1 . . . c
f
M−1

∫
qf (uM) duM = cf1 . . . c

f
M . (39)

The terms cfm are the normalisers computed during the forward filtering recursions described in the previous
section. The normaliser can equivalently be computed using the backward filter:

∫
q(u) du =

∫
p(u)

∏

m tm(vm) du

=
∫
qb(u0) du0 c

b
0 . . . c

b
M = cb0 . . . c

b
M . (40)

Finally, the normaliser can also be computed using both the forward and backward filters, meeting at site indexed
m:

∫
q(u) du =

∫
p(u)

∏

m tm(vm) du

= cf1 . . . c
f
m

∫

qf (um) p(um+1 |um)
qb(um+1)

p(um+1)
tm(vm) dvm cbm+1 . . . c

b
M . (41)

This latter expression is useful when one needs to compute the normaliser of a site-based approximation after a
single site update, as is the case in EP.

C Algorithms

C.1 S2VGP Algorithm

The approximate posterior process is parametrized as

q(s(·)) = p(s(·) |u) q(u)

∝ p(s(·) |u)q(u0)
∏M

m=1 qm(vm+1 |um). (42)

The variational lower bound to the marginal evidence is:

L(q) = Eq log p(y | f)−KL[q(u) ‖ p(u)]. (43)

The KL divergence is between two linear Gaussian state space models and thus decomposes as:

KL[q(u) ‖ p(u)] = KL[q(u1) ‖ p(u1)] +
∑M

m=1 KL [q(um+1 |um) ‖ p(um+1 |um)] . (44)

Due to the locality of the conditional f |u, the variational expectation for a data point at x such that zm ≤ x < zm+1

is:

q(f(x)) =
∫
p(f(x) |vm = [um,um+1]) q(vm) dvm

=
∫
N (f(x) |Wv, ν)N (vm |µvm

,Σvm
) dvm

= N (f(x) |Wµvm
,WΣvm

W⊤ + ν), (45)

where q(vm) is a pairwise posterior marginal over the consecutive inducing states [um,um+1], which can be
evaluated with linear time complexity in M , using classic Kalman smoothing algorithms (see App. B.1).

C.2 S2CVI Algorithm

We follow the derivation of Khan and Lin (2017). The approximate posterior process is parametrized using shared
sites:

q(s(·)) = p(s(·) |u)q(u)

∝ p(s(·) |u)p(u)
∏

n

tm(vm). (46)

This is the same structure as for the S2PEP algorithm, but here, since we approximate the posterior as a Gaussian,
the normaliser of the sites are irrelevant.

The approximate posterior is optimized to get close to the true posterior in the sense of the KL divergence
KL[q(s(·)) ‖ p(s(·) |y)], or equivalently by maximizing the variational objective:

L(q) = Eq log p(y | f)−KL[q(u) ‖ p(u)]. (47)

The joint model is split into a conjugate and a non-conjugate part:

p(f ,u,y) = p(u)
︸︷︷︸

pc(u)

p(f |u) p(y | f)
︸ ︷︷ ︸

pnc(f ,u)

. (48)

The conjugate part has sparse minimal sufficient statistics φ(u) = [(uk,uku
⊤
k)

M

k=1, (uk+1u
⊤
k)

M−1
k=1], with the

bilinear terms corresponding to the block-tridiagonal entries of matrix uu⊤ which we note btd[uuT]. We denote
by Λ the natural parameters of the prior p(u) associated to sufficient statistics φ(u).

CVI approximates the non-conjugate part using Gaussian sites with the same sufficient statistics as the conjugate
part: p̃nc(u) ≈ p(f |u)t(u), where t(u) =

∏M
m=1 tm(vm). Each site tm has natural parameter λ(m) associated to

local minimal sufficient statistics φm(u) = [vm,vmv⊤
m] ⊂ φ(u). We denote by Pm the linear operator projecting

these minimal natural parameter into natural parameter with ‘full’ sufficient statistics φ(u) and setting the rest
of the natural parameters to 0. We denote by λ the projected natural parameters of the sites

∏

m t(vm), i.e.,
λ =

∑

m Pm(λ(m)). The natural parameters of the posterior over u are thus Λ+ λ.

One can show that a natural gradient step on the variational parameters λ(m) boils down to (Khan and Lin,
2017):

g(m) = ∇µ(m)Eq(f (m)) log p(y
(m) | f (m))

λ
(m)
k+1 = (1− ρ)λ

(m)
k + ρg(m),

(49)

where fm and y(m) are here the subset of the data where the input x falls in [zm, zm+1], and µ(m) are the
expectation parameters of the posterior q(u(m)).

These updates to the parameters can be written in terms of the derivatives of the variational expectations with
respect to the mean and variance of the posterior marginal via the chain rule,

g
(m)
2 =

∑

n∈M

W⊤
n

∂Ln

∂Σn

Wn,

g
(m)
1 =

∑

n∈M

W⊤
n

∂Ln

∂µn

− 2W⊤
n

∂Ln

∂Σn

Wnµm(n),

(50)

where Ln = Eq(f (m)) log p(y
(m) | f (m)) and µn = Wnµm(n), Σn = WnΣm(n)W

⊤
n + νn, and where M represents

the indices to the data points whose inputs fall in [zm, zm+1].

C.2.1 S2CVI ELBO

Although the CVI method sidesteps direct computation of the ELBO for the variational parameter updates, it
can still be used for hyperparameter learning. As in Adam et al. (2020), the ELBO is given by:

L = Eq(s) log p(y | s)−KL [q(u) ‖ p(u)] (51)

In S2CVI, we are interested in the normalized posterior, i.e., q(u) = Z−1p(u)
∏

m tm(vm), where Z =
∫
p(u)

∏

m tm(vm) du is the normalizer (i.e., the marginal likelihood of the approximate conjugate model)
and can be computed as shown in App. B.2. The KL term in the ELBO is:

KL [q(u) ‖ p(u)] = KL
[
Z−1p(u)

∏

m tm(vm) ‖ p(u)
]

= − logZ +
∑

m Eq(vm) log tm(vm). (52)

So the ELBO is:

L = Eq(s) log p(y | s) + logZ −
M∑

m=1

Eq(vm) log tm(vm). (53)

C.3 S2PEP Algorithm

We follow the notation of Bui et al. (2017) in their derivation of the sparse PEP algorithm. There are two
differences in our derivation: the latent process is an SDE, and the sites are inherently local due to the Markovian
property of the model. The starting point is a joint model of the data y and the process prior s(·):

p(s(·),y | θ) = p(s(·))
N∏

n=1

p(yn | fn, θ). (54)

In this setting, sparse EP consists of singling out a set of inducing inputs z = (z1, . . . , zM) ∈ R
M and using the

associated inducing states u = s(z) ∈ R
M×d to parametrize an approximation to this joint distribution of the

form:

p(s(·),y | θ) ≈ p(s(·) |u) p(u)
N∏

n=1

tn(u) = q(s(·)), (55)

where we denote q(s(·)) to be the approximate joint, which differs from the other algorithms we present. The factors
tn are called sites and are parameterized as unnormalized Gaussian distributions in the natural parameterization:
tn(u) = zn exp(u

⊤T1,n − 1/2u⊤T2,nu) = Ñ (u; zn,T1,n,T2,n).

When there is one site per data point, the optimal form of the site is rank one: tn(u) = Ñ (Wnu; zn, T1,n, T2,n),
where Wn is the projection is the prior conditional mean Ep[fn |u] = Wnu, and zn, T1,n, T2,n are scalars.

When working with Markovian GPs, the optimal site for data point n can be shown to depend on the subset of
inducing variables consisting of the two nearest inducing states vm(n) = [um(n),um(n)+1], where m(n) is such

that zm(n) ≤ xn < zm(n)+1. So the final parameterization is tn(vm(n)) = Ñ (Wnvm(n); zn, T1,n, T2,n), where Wn

is the sparse projection is the prior conditional mean Ep[fn |u] = Ep[fn |vm(n)] = Wnvm(n).

Noting that all the Nm data points whose input falls in [zm, zm+1] have sites over vm makes those sites natural
candidates to be locally tied together: for each segment [zm, zm+1], we replace each of the rank one sites
{tn(vm);xn ∈ [zm, zm+1]} by a fraction of a full rank site tm(vm)1/Nm . Our approximation to the join thus
becomes:

q(s(·)) = p(s(·) |u) p(u)
N∏

n=1

tm(n)(vm(n))
1/Nm(n) = p(s(·) |u) p(u)

M+1∏

m=0

tm(vm). (56)

Given the above parametrisation, the S2PEP algorithm involves three main steps: the cavity computation
(‘deletion’), moment matching (‘projection’), and finally the update to the site parameters.

C.3.1 Updates

The three steps of the algorithm to update the sites are:

1. Deletion: for a data point n, compute a cavity (which is an unnormalized Gaussian) by removing a fraction
k = α/Nm(n) of a factor from the approximate joint q(s(·)):

q\n(s(·)) =
q(s(·))

tkm(n)(vm(n))
. (57)

This fraction k can be understood as first picking the fraction of the shared site attributed to a data point
(1/Nm(n) where Nm(n) is the number of sites tied together locally), then updating only a fraction α of this
fraction.

2. Projection: The new site is computed in the context of the other sites through the cavity, by minimizing
the unnormalized KL divergence between the tilted distribution q\n(s(·)) pα(yn | fn) and the full approximate
joint. Minimising the KL directly gives the new approximate joint q∗(s(·)) as,

q∗(s(·)) ← argmin
q(s(·))∈Q

KL
[

q\n(s(·)) pα(yn | fn)
∥
∥
∥ q(s(·))

]

. (58)

Here, Q is the set of acceptable distributions and corresponds to {q\n(s(·)) tk(vm(n)); ∀t}, in other words,
the optimization only changes the site that has been removed to build the cavity. One can show that

q∗(vm(n)) = N (vm(n) |µ
*
m(n),Σ

*
m(n)), where

logZn = logEq\n [p
α(yn | fn)],

µ*
m(n) = µm(n) +Wm(n)

d logZn

dµn
,

Σ*
m(n) = Σm(n) +Wm(n)

d2 logZn

dµ2
n

W⊤
m(n).

(59)

3. Update: Compute a new fraction of the approximate factor by dividing the new approximate joint by the
cavity tkm(n),new(vm(n)) = q∗(vm(n))/q

\n(vm(n)) which is a rank one site. This fraction is then incorporated

back to obtain the new site: t∗m(n)(vm(n)) = t1−k
m(n),old(vm(n))t

k
m(n),new(vm(n)).

The normaliser is then updated by matching the integral of the two terms in the KL divergence:

log
∫
q\n(s(·))pα(yn | fn) ds(·) = log

∫
q\n(s(·))tkm(n),new(vm(n)) ds(·)

logZn = log
∫
q\n(u)tkm(n),new(vm(n)) du

= G(q∗(u))−G(q\n(u)) + k log zm(n),new,

log zm(n),new =
1

k

(

logZn −G(q
∗(u)) +G(q\n(u))

)

.

So the new site normaliser is log z∗m(n) = (1 − k) log zm(n),old + k log zm(n),new. The normalizer can be
computed efficiently using the recursions described in App. B.2

C.3.2 S2PEP Energy

Following the approach of Bui et al. (2017), the PEP energy is defined as the marginal likelihood of the approximate
joint:

logZPEP = log
∫
q(s(.)) ds

= log
∫
p(u) p(s(.) |u)

∏

m t(vm) ds du

= log
∫
p(u)

∏

m t(vm) du

= log

∫
eG(p(u))

∏

m zm
eG(q(u))

q(u) du

= G(q(u))−G(p(u)) +
∑

m log zm, (60)

This normalizer can be implemented efficiently as described in App. B.2. It depends on the sites normalizer zm
which themselves depend on the model hyper-parameters through the site update equations. The energy function
thus provides an objective to perform parameter optimization, as a proxy to the marginal likelihood p(y).

We provide an alternative derivation of the same energy which is arguably easier to implement, and highlights
the connection to the S2CVI ELBO. Recall that t(vm) = Ñ (u; zm,T1,m,T2,m) = zmN (u |T1,m,T2,m), where
T1,m, T2,m are the natural parameters, then

logZPEP = log
∫
p(u)

∏

m t(vm) du

= log

∫

p(u)
∏

m zmN (vm |T1,m,T2,m) du

= log
∏

m zm
∫
p(u)

∏

mN (vm |T1,m,T2,m) du

= log
∏

m zm + log
∫
p(u)

∏

mN (vm |T1,m,T2,m) du

=
∑

m log zm + logZ, (61)

where logZ = log
∫
p(u)

∏

mN (vm |T1,m,T2,m) du is the normaliser of the approximate model, and can be
computed in closed form via the Kalman filter as shown in App. B.2, or using the method in App. C.4, replacing
the true likelihood with N (vm |T1,m,T2,m).

To compute zm, the idea is to reuse the cavity computation, and to match the zero-th moment of
the tilted distribution in the same way as we do for the first and second moments during infer-
ence. Let Zlik,m = Eqcav(vm)[

∏

n∈M Ep(fn |vm)[p
α(yn | fn)]] =

∏

n∈M Eqcav(fn)[p
α(yn | fn)], and Zsite,m =

Eqcav(vm)[N
α(vm |T1,m,T2,m)] be the cavity normalisers of the true likelihoods and the site approximations. We

require the site constant factor, zm, to be such that

zαmZsite,m = Zlik,m

=⇒ zαm = Zlik,m/Zsite,m

=⇒ log zm =
1

α
(logZlik,m − logZsite,m),

(62)

so the full S2PEP energy can be written,

logZPEP =
1

α

∑

m(logZlik,m − logZsite,m) + logZ

=
1

α

∑

n logEqcav(fn)[p
α(yn | fn)]−

1

α

∑

m logEqcav(vm)[N
α(vm |T1,m,T2,m)] + logZ. (63)

C.4 Approximate Marginal Likelihood via Approximate Filtering

The marginal likelihood can be expressed as,

p(y) = p(y1)
∏N

n=2 p(yn |y1:n−1). (64)

Further, each conditional term can be written (letting s(xn) = sn),

p(yn |y1:n−1) =
∫
p(yn | fn = Hsn) p(sn |y1:n−1) ds(xn), (65)

where p(sn |y1:n−1) is the intractable forward filtering distribution:

p(sn |y1:n−1) =
∫
p(sn | sn−1) p(sn−1 |y1:n−2) dsn−1. (66)

Our approximation consists of running the approximate forward filter described in Eq. (36) to obtain qf (um) for
m = 1, . . . ,M . We then approximate a single term p(yn |y1:n−1) as,

p(yn |y1:n−1) ≈
∫
p(yn | fn) p(fn |um(n)) q

f (um(n)) t
kn(um(n)) dum(n), (67)

where t(um(n)) =
∫
tm(n)(vm(n)) dum(n)+1 is the contribution of the site in the forward direction and kn =

N left
n /Nm(n), with Nm(n) being the number of data points whose inputs lie in [zm(n), zm(n)+1] and N left

n being the
number of data points whose inputs lie in [zm(n), xn). Intuitively, this means the fraction of the site corresponding

to the data points to the left of xn are included. Here fn |um(n) ∼ N (fn |Am(n),nµm(n),Am(n),nΣm(n)A
⊤
m(n),n +

Qm(n),n).

C.5 Posterior Linearisation (S2PL)

In the general non-Gaussian likelihood case, when performing posterior linearisation we typically use the
approximation p(yn | fn) ≈ N (E[yn | fn],Cov[yn | fn]), allowing us to use the additive noise statistical linear
regression (SLR) equations (Särkkä, 2013) in order to linearise the expected likelihood:

ωn =

∫

E[yn | fn]q(fn) dfn,

Bn =

∫
[
(E[yn | fn]− ωn)(E[yn | fn]− ωn)

⊤ + Cov[yn | fn]
]
q(fn) dfn,

Cn =

∫

(fn − µn)(E[yn | fn]− ωn)
⊤q(fn) dfn,

(68)

where µn is the mean of the approximate marginal posterior q(fn).

As in S2CVI, the site updates for our extension to PL, S2PL, require only the posterior marginals, q(fn), whose
moments are µn = Wnµm(n) and Σn = WnΣ

−1
m(n)W

⊤
n + ν2n. The site update rule then proceeds as in Wilkinson

et al. (2020), but now including the projection back from fn to vm(n) through the conditional fn |vm(n),

λ2,n = −
1

2
W⊤

nΩ
⊤
n Σ̃

−1
n ΩnWn,

λ1,n = −2λ2,nµm(n) +W⊤
nΩ

⊤
n Σ̃

−1
n rn.

(69)

where we have introduced

rn = yn − ωn,

Σ̃n = Bn − C
⊤
n Σ−1

n Cn,

Ωn =
∂ωn

∂µn

= Eq(fn)

[
E[yn | fn]Σ

−1
n (fn − µn)

]
.

(70)

Extended Kalman Smoother (S2EKS) If the statistical linear regression equations are replaced by a
first-order Taylor expansion, then PL reduces to the EKS. Hence we can also obtain a doubly sparse EKS (S2EKS)
algorithm by similarly substituting a Taylor expansion into the above. In practice, this amounts to setting

Σ̃n = Cov[yn | fn] and Ωn = ∂E[yn | fn]
∂fn

|fn=µn
. Whilst the EKS is not a common choice for modern day machine

learning tasks, it does provide a useful trade off between efficiency, stability and performance. In particular,
inference in S2EKS avoids numerical integration, making it applicable in some scenarios where other methods are
impractical.

PL Marginal Likelihood Approximation When defining the PL marginal likelihood, García-Fernández
et al. (2019) assume a restrictive form for the sites, and discard a term in the marginal likelihood. However, the
resulting approximation can be seen as a simplified form of the EP energy given in App. C.3.2. Therefore, to
enable fair comparison, we use the EP energy for both S2PL and S2EKS in all our experiments.

D Experimental Details

The following descriptions of our experimental tasks are adapted from Wilkinson et al. (2020).

Motorcycle (heteroscedastic noise) The motorcycle crash data set (Silverman, 1985) contains 131 non-
uniformly spaced measurements from an accelerometer placed on a motorcycle helmet during impact, over a
period of 60 ms. It is a challenging benchmark (Tolvanen et al., 2014), due to the heteroscedastic noise variance.
We model both the process itself and the measurement noise scale with independent GP priors with Matérn-3/2

kernels: yn | f
(1)
n , f

(2)
n ∼ N (yn | f

(1)(xn), [φ(f
(2)(xn))]

2), with softplus link function φ(f) = log(1 + ef) to ensure
positive noise scale.

Coal (log-Gaussian Cox process) The coal mining disaster data set (Vanhatalo et al., 2013) contains 191
explosions that killed ten or more men in Britain between 1851–1962. We use a log-Gaussian Cox process, i.e. an
inhomogeneous Poisson process (approximated with a Poisson likelihood for N = 333 equal time interval bins). We

use a Matérn-5/2 GP prior with likelihood p(y | f) ≈
∏N

n=1 Poisson(yn | exp(f(x̂n))), where x̂n is the bin coordinate
and yn the number of disasters in the bin. This model reaches posterior consistency in the limit of bin width
going to zero (Tokdar and Ghosh, 2007). For the linearisation-based inference methods (S2PL, S2EKS) we utilise
the fact that the first two moments are equal to the intensity, E[yn | fn] = Cov[yn | fn] = λ(xn) = exp(f(xn)).

Airline (log-Gaussian Cox process) The airline accidents data (Nickisch et al., 2018) consists of 1210
dates of commercial airline accidents between 1919–2017. We use a log-Gaussian Cox process with bin width

of one day, leading to N = 35,959 observations. The prior has multiple components, κ(x, x′) = κ(x, x′)
ν=5/2
Mat. +

κ(x, x′)1 year
per. κ(x, x′)

ν=1/2
Mat. + κ(x, x′)1week

per. κ(x, x′)
ν=1/2
Mat. , capturing a long-term trend, time-of-year variation (with

decay), and day-of-week variation (with decay). The state dimension is d = 59.

Binary (1D classification) As a 1D classification task, we create a long binary time series, N = 10,000, using

the generating function y(x) = sign{ 12 sin(4πx)
0.25πx+1 + σx}, with σx ∼ N (0, 0.012). Our GP prior has a Matérn-7/2

kernel, d = 4, and the sigmoid function ψ(f) = (1 + e−f)−1 maps R 7→ [0, 1] (logit classification).

Audio (product of GPs) We apply a simplified version of the Gaussian Time-Frequency model from Wilkinson
et al. (2019) to half a second of human speech, sampled at 44.1 kHz, N = 22,050. The prior consists of 3 quasi-
periodic (κexp(x, x

′)κcos(x, x
′)) ‘subband’ GPs, and 3 smooth (κMat-5/2(x, x

′)) ‘amplitude’ GPs. The likelihood
consists of a sum of the product of these processes with additive noise and a softplus mapping φ(·) for the positive

amplitudes: yn | fn ∼ N (
∑3

i=1 f
sub.
i,n φ(famp.

i,n), σ2
n). The nonlinear interaction of 6 GPs (d = 15) in the likelihood

makes this a challenging task.

In Fig. 4 we analyse the effect of increasing the number of inducing inputs in the Audio task. We observe that
the training marginal likelihood (NLML) and the test predictive density (NLPD) improve as M increases, as

expected for all methods. S2PEP significantly outperforms the other methods, requiring fewer than 1000 inducing
inputs to provide good results.

0 500 1000 1500 2000

0
1
0
0
0
0

2
0
0
0
0

Number of inducing inputs, M

S2EKS

S2PL

S2PEP(α = 1)

S2PEP(α = 0.5)

S2PEP(α = 0.01)

S2CVI

(a) NLML

0 500 1000 1500 2000
−
0
.5

0
0
.5

1

Number of inducing inputs, M

(b) NLPD

0 500 1000 1500 2000

0
.2

0
.4

0
.6

0
.8

1

Number of inducing inputs, M

(c) RMSE

Figure 5: Analysis of the Audio task with varying number of inducing inputs. S2PEP (α = 1) performs best in
terms of test predictive density (NLPD) and RMSE, and requires many fewer inducing points. Whilst we expect
S2PEP (α = 0.01) and S2CVI to give similar results, the numerical integration error when using 3-dimensional
cubature causes the results to differ in practice.

Banana (2D classification) The banana data set, N = 5300, is a common 2D classification benchmark
(Hensman et al., 2015). We use the logit likelihood with a separable space-time kernel: κ(r, x; r′, x′) =

κ(x, x′)
ν=5/2
Mat. κ(r, r

′)
ν=5/2
Mat. . The vertical dimension is treated as space, r, and the horizontal as the sequential

(‘temporal’) dimension, x. We use M = 15 inducing points in r, as well as M = 15 inducing points in x. The state
dimension is d = 3M = 45. For the SVGP baseline, we use M = 152 = 225 inducing points placed on a 2D grid.

Electricity (large scale regression) We analyse the electricity consumption of one household (Hébrail and
Bérard, 2012; Solin et al., 2018) recorded every minute (in log kW) over 1,442 days (2,075,259 total data points,
with 25,979 missing observations). We assign the model a GP prior with a covariance function accounting for
slow variation (Matérn-3/2) and daily periodicity with decay (quasi-periodic Matérn-1/2). We fit a GP to one 6
month’s worth of data, which amounts to N = 262,080 points.

	 Supplementary Material: Sparse Algorithms for Markovian Gaussian Processes
	Statistical Properties of Linear SDEs
	Marginals
	Conditionals

	Inference in Site-based Sparse Markovian GP Models
	Filtering and Smoothing
	Normaliser

	Algorithms
	S2VGP Algorithm
	S2CVI Algorithm
	S2CVI ELBO

	S2PEP Algorithm
	Updates
	S2PEP Energy

	Approximate Marginal Likelihood via Approximate Filtering
	Posterior Linearisation (S2PL)

	Experimental Details

