Hadamard Wirtinger Flow for Sparse Phase Retrieval:
Supplementary Materials

1 Understanding the Dynamics of Hadamard Wirtinger Flow

As discussed in Section 3, the Hadamard parametrization has previously been applied to problems such as sparse
recovery (Hoff, [2017; Vaskevicius et al., [2019; |Zhao et al., 2019) and matrix factorization (Gunasekar et al.l 2017}
Li et al., 2018} |Arora et al., [2019)), where it turns the additive updates of gradient descent into multiplicative
updates. The combination of multiplicative updates and a small initialization was shown to lead to sparsity in
the aforementioned problems, under the assumption of the restricted isometry property (RIP).

The problem of sparse phase retrieval that we consider is known to satisfy the RIP property, cf. (Voroninski
and Xul [2016) for instance, and a similar explanation on why on-support variables and off-support variables
can be made to grow at different speeds also holds in our setting. We now provide the main intuition behind
the convergence properties of HWF by considering the evolution of the algorithm at the population level, i.e. in
the case when m = oco. While a rigorous convergence investigation of HWF is outside the scope of the current
submission, the analysis that we now provide is instrumental to construct a good initialization for Algorithm 1.

Consider the simplified setting where x* is non-negative, i.e. 7 > 0 for all . We can set v = 0 in the
parametrization, so that x = u?. Further, assume that we have access to the population risk f(x) := E[{(x, Z)]
(in other words, m = o), where Z = (Y, A) is defined by Y = (ATx*)2. Its gradient can be computed as

Vix) = (3[x[5—1)x — Q(XTX*)X*. (1)
Under these two assumptions, first consider the initialization x° = a?1,, for some small constant o > 0. We

can directly track the evolution of the estimates x¢ (note that we use lowercase letters, since with m = oo the
sequence is not random anymore) generated by Algorithm 1 via

P = at (L 2313 1) — 2(6c) ) a])

This suggests that the evolution of x! can be divided into two phases: if ||x||3 < %,

(zi™! > ), while coordinates i € S on the support do so at a faster rate. If ||x*||3 >

decrease (:c?'l < z!), while coordinates on the support increase if the product of the signal component z} and
the inner product (x')7x* is larger than the term (3|x!||3 — 1)zt.

all coordinates grow

1 . .
3, coordinates i ¢ S

If we choose o > 0 small enough, we expect z’; to still be small (e.g. < 1/n) for j ¢ S when [x"[|5 > % first occurs,
as x} grows at a faster rate than 2 for i € S. Since

! decreases for j ¢ S when [|x"||3 > 3, we expect z! to stay
small throughout the algorithm for j ¢ S.

The smaller the step size 7 is, the more iterations are needed for the algorithm to converge. On the other hand, 7
cannot be too large; to illustrate this, consider the simplest case n = 1. The (scalar) gradient update becomes
't =21 — 6n[(2')3 — 2')]), and x! diverges if 7 is too large. We found a constant step size n = 0.1 to work
well in our simulations.

This recursion has three types of fixed points: x(!) = 0, any x(?) satisfying ||x?||2 = % and (x(?))Tx* = 0, and
x(®) = £x*. The first fixed point x1) is repelling, as all coordinates grow if ||x'||3 < 3. Similarly, the second
fixed point x(?) is repelling as x! grows at a faster rate than ah fori € S,j ¢ S. This leaves only x(®) | which is an
attracting fixed point of the recursion. Thus, we expect Algorithm 1 to converge to x* if m is sufficiently large.

Guided by this intuition, we aim to construct an initialization X° with (X°)Tx* large (more precisely, we will

have |(X?)Tx*| > },,,), while at the same time [|[X°||3 should not be too large (e.g. fixed to || X°[|3 = % [x*|2;

note that any other constant would also work, and that we use the estimate § = (L > UL Y5)1? of the signal size
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Ix*||2, see e.g. (Candés et all|2015; Wang et all |2017)). In order to obtain such an initialization, it suffices to
find a coordinate i € [n] with |2}| > %27,,,. Then, we can set X? = 6/1/3 and XJ(»J =0 for all j # i. Note that
such an initialization is not necessary, and even with a random initialization (e.g. U, V;? set to small random
noise for all ¢ = 1,...,n), the above intuition that coordinates ¢ € S on the support grow at a faster rate than
coordinates i ¢ S not on the support, continues to hold. However, the initial inner product (X°)7x* is closer to

zero with random initialization compared to our proposed initialization, which leads to the population gradient

V f(X1); initially being close to zero for all i = 1,...,n, and therefore slow convergence.
Define the random variables R; = L Z;”:l Y}A?l for i = 1,...,n. These quantities were also used in (Wang et al.,
2018) for support recovery, as one can compute E[R;] = ||x*||3 + 222 using the assumption A; ~ N(0,1,,) i.i.d..

Hence, if the number of measurements m is large, the random variables {R;}7_; will concentrate around their
means, separating them for ¢ € S and ¢« ¢ S. This intuition suggests the initialization proposed in Section 3.

2 Proof of Lemma 1

In the following, we assume, without loss of generality, that ||x*||2 = 1; this assumption is made purely for notational

ol — max|a?| and z
BB L

min ~

e . _
simplicity, since we then have z, .. = max i$1;10 EE
;

with max|2]| = 27,4, [[x*[]2 and min [z}] = 27, [[x"||2
i i £0

= I;lrliloh,‘ﬂ If ||x*||2 # 1 is

unknown, then we only need to replace z},,, and x, ..

i

respectively in the following proof. Further, note that knowledge of ||x*||2 is not required for HWF.

The proof of Lemma 1 relies on the following result, which is a combination of Theorems 3.6 and 3.7 of (Chung
and Lu, 2006]).

Theorem 3. (Chung and Lu, |2006) Let X; be independent random variables satisfying | X;| < M for all i € [n].
Let X =" | X; and || X| = /> ;_, E[X2]. Then, we have

P[|X —E[X]| >\ < 2exp(—2(”X”2);_ M)x/3))'

Proof of the first claim.

We first show that by choosing the largest instance in {5 37", ¥;A%,}7;, we obtain an index i with |z}| > x:’é‘”

with high probability. Recall that we write R; = -- Z;nzl YJA?Z We can compute

E[R;] = E[(ATx*)*A)]
= E[Azlli(xfy + (A{,fixtiyA%i]

= 3(27)? + [Ix13
= |73 + 2(=7)?,

where we denote by x_; € R"~! the vector obtained by deleting the i-th entry from x € R” and use the fact
that Aj; ~ N(0,1) ii.d. and hence AT ;x*; ~ N(0,[|x*,[|3), as x* € R" is a fixed vector independent of the
measurement vectors {A; };”:1

> R; holds for all i € [n]. If we can show |R; — E[R;]| < 3(x},,,)?

max

Let 1,4, = argmax; R;. By definition, R;
for all i € [n], then this would imply

max

113 + 2(21,,.,,)* = E[R;

max ]

[Ri] + (R; — E[R:]) + (E[Ry,,,.] — R1,,,.) + (Br1,,,, — 1)
[Ri] — 2 max |R; — E[R)]|

E
E

Y

* * 3 *
> %13 +2(27)% = 5 (47a)

2 max

for any i € [n]. In particular, if we choose i = argmax; [«}|, this implies |z} | > 37,,,, which concludes the

proof of the first claim.

max



In order to show |R; — E[R;]| < 2(x},,,)%, we use the following truncation argument: for any i € [n], we write

m m

ZYA = Z(AT )2AZ :%Z(Zl,jJng,j),

_7 1 j=1

where Z;; = (A7x*)?A43; - 1(max{|ATx*[,|4;;|} < /44logn) and Zy; = (ATx*)?A3, — Zy ;. Since Zy; is
bounded, we can apply Theorem [3] To this end, compute the second moment

S| 1 . 1 05
S R = 3 AT ) < 30 BT TR <

Jj=1 Jj=1

where we used the Cauchy-Schwarz inequality and the fact that Aij* ~ N(0,1). With this, we have
P 1 zm: 7 E[Z
m = 1.5

since m > O(max{klogn, log® n}(2},,,) " 2).

3 ( maT) —11
> (x:mm)zl < 2exp (— $ — ) <Onm™)
8 2(% + % %( max) /3)

For the second term Z3 ;, we can use the Chebyshev inequality: we have

1 « 1
Var(m ;Zg,]) < EE[(A{X*)‘lA‘fi : 1(max{|Afx*|, |[A1:]} > \/44logn)}

IN

1
\/IE[(A{X*)SA%] -P[max{|Afx*|, |[A1:]} > /44 log n}
m
_A5VI0OL

m

and hence, by the Chebyshev inequality,

3 ) 45V1001 | 9,,—11 )
* m _11
P ‘ ZZ2J Z2,] S(zrna;c) = W S O(TL )
64 \""max

Put together, this implies that

P(|Rs — B[R] > 5 (02| < O~1).
| o]

Taking the union bound over all i € [n] implies that |R; — E[R;]| < 3(z7,,,)? holds for all i € [n] with probability
at least 1 — O(n~1°). This concludes the proof of the first claim of Lemma 1.

Proof of the second claim.

First, note that the gradient of the empirical risk F(x) is given by
1 & .
= Z (ATx)? — (ATx")?)(ATx)A;.

By the dominated convergence theorem, the gradient of the population risk f(x) can then be computed as
Vi(x) =E[VF(x)] = E[((ATx)? - (A{x")*) (ATx)A4]
= (3|)x[|3 — 1)x — 2(x"x*)x*
for any fixed vector x € R™. Further, we have the initialization

« Z’#Ima:p

VP =a
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which leads to

0 o
Xo _ ﬁ 1= Imam
"o i # Imaz
Hence, we have
20

VFXO); = (0 - 1)X? 7 T

In particular, we have V f(X°) j=0for j ¢ S. Using standard concetration bounds for sub-exponential random
variables (see e.g. Prop. 5.16 of (Vershyninl [2012)), we can bound with probability 1 — O(n=19) (recall that we
have assumed ||x*||2 = 1 for notational simplicity),

- 1 & ) [logn

Jj=1

This bound implies 20 > /3, where we used that m > O(max{klogn, log®n}(z*,,,)"2).

For the second claim we need to show that [X/}| > |X | holds whenever i € S and j ¢ S. We can assume without
loss of generality that #7 > 0. First, consider the case i # Ia,. Since |X}| = [(U})? — (V}')?], it suffices to
show, assuming z; > 0, that

Ul > maX{Ujl, V] } (2)
Vit <min{U}, V}'} (3)

holds simultaneously. The case z} < 0 can be dealt with the same way, exchanging the roles of U} and V;!. We
can bound

Ul = a(1-2nVFE (X))
a(1—2pV f(X°); — 29| VF(X°); = Vf(X°)i]),
and
U <a(1429VF(X?); = V(X))
We have shown above that (recall that X? = 0 for i # Lna.)

* 1 * *
_Vf(XO) = 7 Imal i > 2xmawxmzn7
*
T

since from the first part we know that 2z > 1a7 .. and we assumed z} > 0. Hence, if we can show

i [VE(XO), = VJ(XO)| < 10300270 (4)

4 max*man’
then U} > U} follows. We also have
Vi < a(l+ 29| VE(X%); - (X)),
which then implies U} > V~1 completing the proof of @ @ can be shown the same way.
The case i = I 4, also follows from the bound . Since m > O(k(x},,,) % logn), we can bound
[VE(X)i| < [VFX)i] + [VF(X"); = VF(X°)|

logn 6 n 20( 2+ 1 I
\/7 \/7 ma:t 2\/3 max s min

<9

2

IN

)

where we used that =} ... < 1. Since we assume 1 < 0.1, we can bound

29V F(XO):] < 0.4,



which, since also o < 0.1, implies

0 3
U}>(¢3+ﬁ)(1—a®>2mma@wﬁmw7
and hence
X} = (U = (V') = max {(U})?, (V})?} > |X]|.

What is left to show is 1D Since X is not independent from {A;}",, we cannot immediately apply the

j=1>
truncation argument from the proof of the first claim. Therefore, define the (deterministic) vectors x() € R™ for
l=1,...,n by
1 -
(pz(l) _ % i=1
0 i#£1
Now, we need to show that the empirical gradient
1 «— N
VF(X(I))i = Z((A?X(l))Q - (AJ‘TX )2)(AjTX(l))Aji
j=1

is close to its expectation V f (x(l))i. Using the same truncation argument as in the proof of the first claim, we
can show

]P’[’Vf(x(l))i—VF( O)Y ’ lx xr < 0O(n™'?),

8 mazx*min
Taking the union bound over all ¢ and [ implies that
1
mlaxmax|VF(x(l)) VW) < <ok puts

max*min

holds with probability 1 — O (n~1%). The bound (4) now follows since X is close to x(fme=). We can write
\wwmwwww<lz@mmw>mww»|\z@@ymgmuww»

As both terms can be bounded the same way, we only demonstrate the following computations for the first term.
Using the definitions and Hélder’s inequality, we can bound

1 & 63 —1
= 7§ A A2,
’m,_ 1 i Imaz 3\/3‘

63 —1
sl 2
63 —1

1/4 3/4
1 & 1 &
— A = Al T
m e~ m e~ 3V3

It follows from standard Gaussian concentration that the first two sums are bounded by O(1) with high probability.
As shown above, we can bound

\ZAW (ATXO)?) — (ATl

\ A

IA

63 —1 logn
<O
3v3 | T < m

where we used the assumption z*; > Q(1/vk). Repeating the same computation for the second term, we can
show that

) < Ohusin)

* *

x’mal x’mm

0y _ (Imaa)
[VE(X?) = VE(x!m))| < 1=

Recalling the definition of the population gradient V f, we can also bound

VI (X0) = Vx| < et

— 16 max*min?

which completes the proof of and therefore also completes the proof of Lemma 1. O
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