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Abstract

We consider the problem of reconstructing an
n-dimensional k-sparse signal from a set of
noiseless magnitude-only measurements. For-
mulating the problem as an unregularized em-
pirical risk minimization task, we study the
sample complexity performance of gradient de-
scent with Hadamard parametrization, which
we call Hadamard Wirtinger flow (HWF). Pro-
vided knowledge of the signal sparsity k, we
prove that a single step of HWF is able to
recover the support from k(x%,,.)~2 (modulo
logarithmic term) samples, where 7, . is the
largest component of the signal in magnitude.
This support recovery procedure can be used
to initialize existing reconstruction methods
and yields algorithms with total runtime pro-
portional to the cost of reading the data and
improved sample complexity, which is linear
in k when the signal contains at least one large
component. We numerically investigate the
performance of HWF at convergence and show
that, while not requiring any explicit form
of regularization nor knowledge of £k, HWF
adapts to the signal sparsity and reconstructs
sparse signals with fewer measurements than
existing gradient based methods.

1 Introduction

Phase retrieval, the problem of reconstructing a signal
from the (squared) magnitude of its Fourier (or any
linear) transform, arises in many fields of science and
engineering. Such a task is naturally involved in ap-
plications such as crystallography (Millane, [1990) and
diffraction imaging (Bunk et al.. |2007)), where optical
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sensors are able to measure intensities, but not phases
of light waves. Due to the loss of phase information,
the one-dimensional Fourier phase retrieval problem is
ill-posed in general. Common approaches to overcome
this ill-posedness include using prior information such
as non-negativity, sparsity and the signal’s magnitude
(Fienup, 1982} Jaganathan et al., |2016)), or introducing
redundancy into the measurements by oversampling
random Gaussian measurements or coded diffraction
patterns (Candés et al.| [2015; |Chen and Candés, [2015)).

In many applications, the underlying signal is naturally
sparse (Jaganathan et al., [2016). A wide range of algo-
rithms has been devised for phase retrieval with a sparse
signal, including alternating minimization (SAMP) (Ne;
trapalli et al., 2015)), non-convex optimization based
approaches such as thresholded Wirtinger flow (TWF)
(Cai et all |2016), sparse truncated amplitude flow
(SPARTA) (Wang et al., [2018), compressive reweighted
amplitude flow (CRAF) (Zhang et al.,[2018) and sparse
Wirtinger flow (SWF) (Yuan et al.,|2019), and convex
relaxation based methods such as compressive phase
retrieval via lifting (CPRL) (Ohlsson et al.l [2012) and
SparsePhaseMax (Hand and Voroninski, [2016). Other
approaches to sparse phase retrieval include the greedy
algorithm GESPAR (Schechtman et all, [2014), a gen-
eralized approximate message passing algorithm (PR-
GAMP) (Schniter and Rangan) 2015) and majorization
minimization algorithms (Qiu and Palomar] 2017).

A limitation of these algorithms is their sample com-
plexity: the best known theoretical results require
O(k?logn) Gaussian measurements to guarantee suc-
cessful reconstruction of a generic k-sparse signal
x* € R™. On the other hand, it has been shown that
reconstruction is possible from O(klogn) phaseless
measurements (Eldar and Mendelson, [2014]); however,
there is no known algorithm which provably achieves
this in polynomial time. In fact, O(k?logn) quadratic
measurements are necessary for a certain class of con-
vex relaxations, on which algorithms such as CPRL are
based (Li and Voroninski, 2013). Other existing algo-
rithms such as SPARTA and SAMP require a sample
complexity of O(k%logn) for the initial estimation of
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the support of the signal. With the knowledge of the
support, these (and plenty other) algorithms require
only O(klogn) samples for the subsequent reconstruc-
tion of the signal. Hence, we identify the support
recovery step as the bottleneck of the sample complex-
ity of non-convex optimization based approaches to the
sparse phase retrieval problem.

Additional structural assumptions have been considered
to improve the sample complexity. It has been shown
that a k-sparse signal x* can be reconstructed from
O(klogn) measurements if one is allowed to freely
design the measurement vectors (Jaganathan et al.,
2013), or if the signal x* is assumed to be block-sparse
and the number of blocks containing non-zero entries
is O(1) (Jagatap and Hedge, 2017; |Zhang et al., |2018).
However, exact knowledge of the additional structure as
well as an algorithm designed to take advantage of it is
necessary in both cases. Linear sample complexity has
also been achieved assuming that the signal coeflicients
decay with power-law (Jagatap and Hedge, |2019)).

Another downside of the above algorithms is the fact
that sparsity is enforced or promoted explicitly. For
instance, CPRL and SparsePhaseMax augment the
objective function with an ¢; penalty term, which is
known to promote sparsity. SWF and SPARTA include
a thresholding step in their gradient updates, which
projects the iterates onto the set of k-sparse vectors,
and SAMP and GESPAR directly constrain the search
to a k-dimensional subspace of R™, which needs to be
carefully chosen and updated. In the case of CPRL and
SparsePhaseMax, additional regularization parameters
have to be tuned, while the thresholding step of SWF
and SPARTA requires knowledge of the sparsity k.

1.1 Owur Contributions

In this work, we analyze gradient descent with
Hadamard parametrization applied to the unregular-
ized empirical risk for the problem of (noiseless) sparse
phase retrieval and propose methods for support recov-
ery and parameter estimation. The main contributions
of this paper are stated below.

First, we propose a two-stage procedure for sparse
phase retrieval, which we call Hadamard Wirtinger flow
(HWF) (following the terminology used for Wirtinger
flow (Candeés et al., [2015]), which considers gradient
descent applied to the unregularized empirical risk
under the natural parametrization to solve phase re-
trieval without the assumption on sparsity). In stage
one, we estimate a single coordinate on the support
to construct a simple initial estimate, without using a
sophisticated initialization scheme typically required
such as the spectral initialization used in WF and SWF
or the orthogonality-promoting initialization used in

SPARTA. For stage two, we consider the Hadamard
parametrization, which has previously been applied to
problems on sparse recovery (Hoff], 2017} |Vaskevi¢ius
et al.| 2019; Zhao et al.| |2019) and matrix factorization
(Gunasekar et all [2017; [Li et al, [2018; |Arora et al.
2019)), and apply gradient descent to the unregularized
empirical risk under this parametrization.

Second, we prove that our proposed algorithm can be
used to recover the support § = {i : zf # 0} with high
probability by choosing the k largest components of the
estimate obtained after one step of HWF, provided that
m > O(max{klogn, log®n}(z* ,,)"2) and z*, =
Q(1/Vk), where we write z,,, := max; |*|/|x* |2 and
Xk = minegs |zF|/]|x*||2. Note that HWF does not
require knowledge of the sparsity level k, while support
recovery using one step of HWF does. With the knowl-
edge of the support S, plenty of algorithms provably
recover the signal x* under linear sample complexity
O(klogn), see e.g. (Candes et al, [2015; [Wang et al.,
2018). Thus, provided knowledge of the sparsity level k,
one step of HWF can be used as a support recovery tool
and, combined with any of the aforementioned algo-
rithms, it results in a procedure which provably recovers
k-sparse signals from O(max{klogn, log® n}(z%,,.)"2)
phaseless measurements.

If 27, .. = (1), then the sample complexity of this pro-
cedure reduces to O(klogn), provided k > O(log®n).
Unlike previous results which leverage additional struc-
tural assumptions to achieve linear sample complexity,
our procedure does not require knowledge of the value
of z}, .., nor does it need to be modified in any way to
accommodate for this additional structure; we run the

exact same algorithm regardless of the value of x

max-*

Third, we present numerical experiments showing the
low sample complexity of HWF. As a simple algorithm
not requiring thresholding steps nor added regulariza-
tion terms to promote sparsity, HWF is seen to adapt
to the sparsity level of the underlying signal and to
reconstruct signals from a similar number of Gaussian
measurements as PR-GAMP, which has been empir-
ically shown to achieve linear sample complexity in
some regimes with Gaussian signals (Schniter and Ran,
ganl, 2015). In particular, the numerical experiments
suggest that the sample complexity required by HWF
is lower than that of other gradient based methods
such as SPARTA and SWF. Further, if the signal sat-
isfies a7, .. = Q(1), the reconstruction performance
of HWF is seen to be greatly improved, without any
modifications to the algorithm being made.

2 Sparse Phase Retrieval

We denote vectors and matrices with boldface letters
and real numbers with normal font, and, where ap-
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propriate, use uppercase letters for random and low-
ercase letters for deterministic quantities. For vec-
tors u,v € R" we write ® for the Hadamard prod-
uct, (u® v); = u;v;, and, for notational simplicity,
u? = u ® u for taking squares entry-wise. We use the
common notation [n] := {1,...,n}. Since it is impossi-
ble to distinguish x* from —x* using magnitude-only
observations, we will often write x* for the solution
set {+x*} and consider, for any x € R", the distance
dist(x,x*) := min{||x — x*||2, [|x + x*||2}. Further, we
assume ||x*||]2 = 1 for notational simplicity; note that
this assumption is not needed for our results.

The goal in phase retrieval is to reconstruct an unknown
signal vector x* € R™ from a set of quadratic measure-
ments Y; = (AJTX*)Z, j =1,...,m, where we observe
A, ~N(0,1,) i.i.d.. For the sake of clarity, we focus
on the real-valued model. Our proposed algorithm also
works in the complex-valued Gaussian model, where
x* € C" and Aj ~ N(0,1L,) +iN(0, 31,,).

Many methods have been devised to solve this problem.
A popular class of algorithms performs alternating pro-
jections onto different constraint sets; these include the
seminal error reduction algorithm proposed by |Gerch{
berg and Saxton| (1972)) and alternating minimization
(AltMinPhase) (Netrapalli et al. [2015). Another more
recent approach is based on non-convex optimization:
Wirtinger flow (WF) (Candés et all [2015) and its
variants (Chen and Candeés, 2015; |Zhang et al., [2017)),
truncated amplitude flow (TAF) (Wang et al. |2017)
and the trust region method of (Sun et al., [2018)) all
minimize the empirical risk (which is non-convex due
to the missing phase) based on different loss functions.
The convex alternatives typically use matrix-lifting as
in PhaseLift (Candés and Li, 2012; |Candés et al., 2013)
and PhaseCut (Waldspurger et al., |2015), which allows
phase retrieval to be formulated as a semidefinite pro-
gramming problem, or consider a non-lifting convex
relaxation and solve the dual problem as in PhaseMax
(Goldstein and Studer} |2018|).

Our approach for estimating the signal x* follows the
established approach of empirical risk minimization.
Writing z = (y,a) € R x R™ for an observation, we
consider the loss function /(x,z) = +((a”x)? —y)? and,
given samples Zq, ..., Z,,, the empirical risk

m

e S (NI ) RN
j=1

F(x) =

It is worth mentioning that in previous applications the
amplitude-based loss function /(x,z) = 1 (|aTx|—/7)*
has been numerically shown to be more effective in
terms of sample complexity than the loss function
based on squared magnitudes (Wang et al., [2017;|Zhang
et al., |2017; Wang et al.| [2018)). However, with our

parametrization, we found the squared magnitude-
based loss function to be more effective.

Without any restrictions on the signal x* € R™, 2n — 1
Gaussian measurements suffice for x* to be the unique
(up to global sign) minimizer of F'(x) with high prob-
ability (Balan et all [2006]). If x* is k-sparse, then it
has been shown in (Li and Voroninski, [2013) that

{£x*} = argmin F(x) (2)

x:||x|lo <k

holds with high probability if we have m > 4k — 1
Gaussian measurements.

Solving involves two main difficulties: (i) the ob-
jective function F' is non-convex with potentially many
local minima and saddle points, and (i) due to the
constraint ||x||p < & the problem is of combinatorial
nature and NP-hard in general.

Regarding the first difficulty, the non-convexity is typ-
ically addressed by using a spectral or orthogonality-
promoting initialization, which produces an initial esti-
mate close to x* and in a region where the the objective
function is locally strongly convex, leading to linear
convergence towards x* (Candeés et al., 2015, |(Chen and
Candes|, 2015; |Wang et al., [2017; |Zhang et al., [2017).
Recently, it has been shown that such an initialization
is not always necessary in the phase retrieval problem
and that a random initialization can be used instead
(Sun et al. [2018; |Chen et al., [2019)).

Addressing the second difficulty, an approach replacing
the constraint ||x||o < k in (2)) by adding a penalty term
A|x||1 was proposed in (Yang et al., [2013). However,
this procedure requires tuning of the regularization
parameter A to reach a desired sparsity level, and it is
tailored for Fourier measurements only (in particular, it
uses the fact that the DFT matrix is unitary). Recently,
methods enforcing the constraint ||x||o < &k via a hard-
thresholding step have received a lot of attention. These
include SPARTA (Wang et al} 2018)), CRAF (Zhang
et al.l 2018)) and SWF (Yuan et al., |2019). However,
the implementation of such a thresholding step requires
knowledge of k (or a suitable upper bound).

Our proposed method does not have to deal with these
difficulties. We also approach the problem by mini-
mizing the objective F'(x). However, unlike existing
algorithms, we do not need to add any penalty term
to the objective or to introduce a thresholding step to
enforce the constraint ||x|lo < k. Our simulations show
that the iterates of gradient descent with Hadamard
parametrization remain (approximately) in the low-
dimensional space of sparse vectors. Hence, we neither
need to tune any regularization parameters, nor do we
need knowledge of the underlying signal sparsity. Fur-
ther, HWF does not need the sophisticated initializa-



Hadamard Wirtinger Flow for Sparse Phase Retrieval

tion scheme commonly used in non-convex optimization
based approaches to (sparse) phase retrieval.

3 Hadamard Wirtinger Flow

Consider the parametrization x =u®u— v ®v. Such
a parametrization has previously been applied to prob-
lems such as sparse recovery (Hofl} 2017, [Vaskevi¢ius
et all 2019; [Zhao et all |2019) and matrix factoriza-
tion (Gunasekar et all 2017 [Li et al., |2018} |Arora
et al., [2019). Exploiting the restricted isometry prop-
erty (RIP) assumed for these problems, the Hadamard
parametrization has been shown to confine the gradient
iterates to the low-dimensional spaces of sparse vectors
and low-rank matrices, respectively.

Overloading the notation, we write

j=1

for the empirical risk, with gradients
2 *
VuF = Z (u? —v?)? - (AJTX )%)
. (AjT(u ~v))A; Ou
=2VF(x)®u

and, similarly, VyF(u,v) = —2VF(x) ©® v. We con-
sider gradient descent in this parametrization,

X =UlteoU'-VteV
Ut =U'o (1, - 2qVF(X"), (3)
Vit =V'o (1, +2pVF(XY)),

where we denote by 1,, € R™ the vector of all ones.

The reason why the Hadamard parametrization pro-
motes sparsity is that this parametrization turns the
additive updates of gradient descent into multiplicative
updates. If we choose a small initialization, then, in the
aforementioned problems with RIP assumptions, the
multiplicative updates have been shown to lead to off-
support variables staying negligibly small while support
variables are being fitted. The variables grow expo-
nentially, but at different (time-varying) rates, with
off-support variables growing at a smaller rate than
support variables. With additive updates, off-support
variables would not stay sufficiently small and the al-
gorithm would typically converge towards non-sparse
local minima. We provide a more detailed discussion
on the role of the Hadamard parametrization in the
appendix, which suggests the following initialization:

V=al,, U’= (55“)‘2) 1= Imas (g

« 1 7& Imaz

where we write § = (X Py Y;)/? for the estimate
of the signal size ||x*||2 (see e.g.|Candés et al.| (2015]);
Wang et al.| (2017)), Ine = argmax; Zj 1 YA and

« > 0 1s the initialization size.

We show in the next section that if [z} [ > 527,
and m is sufficiently large, then, with high probablhty7
we can recover the support by running one step of .
The probability of finding a large coordinate I, can
be increased by allowing multiple restarts and consider-
ing not only the largest, but also a few more instances
in {Ri}7_; = {55 27, YiA3} ;. Specifically, if we
allow b restarts, we consider different initialization as in
using each of the b largest instances in {R;}7;. As
pointed out in Section 2] x* is the sparsest minimizer of
the objective F. Given the results from multiple runs,
we can therefore choose the (approximately) sparsest
solution, by which we mean the solution where the
fewest coordinates make up most (e.g. 95%) of the
norm ||X?||y. This is summarized in Algorithm

Algorithm 1: Hadamard Wirtinger flow, b restarts

Input: observations {Y;}7",, measurement vectors
{A,}7L,, step size 1), iterations ¢, initialization size
«, number of restarts l_J, sparsity tolerance s
forb=1to b do

Set I, to the b largest instance in {R;}? ,

N|=

Set U = Yo’b =al,, U?b’b = (% + a2)
fort=0tot do
Xt,b — Ut,b 0) Ut,b _ Vt,b ® Vt,b
Uttt = U (1, — 2V (X))
Vt+1,b — Vt,b ® (1n + QUVF(Xt’b))
end for
end for

Set Bynin to be the index minimizing

{1 00 = 0 S

ieC

Return: XtBmin

4 Support recovery

In this section we show, assuming z%,,, = Q(1/Vk),
that one step of Algorithm [I] can be used to recover
the support S from O(max{klogn, log®n}(z*,,.)"2)
Gaussian measurements. As pointed out in Section
[2] the sample complexity bottleneck of reconstruction
algorithms such as SPARTA and SAMP lies in the
initial support recovery. In particular, both algorithms
require O(k? log n) measurements to guarantee success-
ful support recovery; with the knowledge of the support
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S, these and plenty other algorithms such as WF, TAF
and PhaseLift only require a sample complexity of
O(klogn) to guaruantee successful reconstruction of a
k-sparse signal x*.

The main difference from previous work is that we only
need a single coordinate i with |z}| > a7 . rather
than the full support for our initialization. Therefore,
our sample complexity depends on z7,,.., which is at
least 1/v/k, rather than z*,, , which can be at most

1/+/k. This is made precise in the following Lemma.

Lemma 1. (Support recovery) Let x* € R™ be any
k-sparse vector with ¥, = Q(1/Vk), and assume
that we are given measurements {Y; = (ATx*)?}7L ),
where A; ~ N(0,L,), j = 1,...,m, are i.i.d. Gaus-
sian vectors. If m > O(max{klogn, log® n}(z%,..)"2),
then, with probability at least 1 — O(n~=1%), choosing
the largest instance in {1 >t Y; A3}, returns an
index i with |}| > $a%,4,-

Further, let X' be the estimate obtained from running
one step of Algorithm (1| with any n, o € (0, ) (and
b =1, i.e. no multiple restarts). Then, with the same
probability, we can recover the support S = {i : x} # 0}
by choosing the k largest coordinates of |X1| (where |- |

denotes taking absolute values coordinate-wise).

The proof of Lemma [I] relies on standard concentration
results and is deferred to the appendix.

Lemma [I] shows that, provided knowledge of the
sparsity level k, Algorithm can be used to re-
cover the support of a k-sparse signal x* from
O(max{klogn, log®n}(z*,,,)"2) Gaussian measure-
ments, which, provided k& > O(log? n), matches the
best known bounds O(k?logn) (Netrapalli et al.l 2015
‘Wang et al., |2018) in the worst case, while it is an im-
provement if x* contains (at least) one large coordinate.
For instance, if z*,,, = Q(1) and k > O(log?n), only
O(klogn) samples are required for support recovery.

We validate this theoretical result in the following ex-
periment. Let x* € R1990 be a k-sparse signal with
randomly sampled support S = {iy,...,ix} and nor-
malized to ||x*|l2 = 1. We consider maximum signal

values (1) x},,. = ﬁ, (i1) 20 = k7025 and (ii7)
Tynae = 0.7. In case (i), we set z}, = j:ﬁ at random

for all j = 1,...,k. For the cases (ii) and (iii), we
fix 2} = x},,,, sample the other components from
aj, ~N(0,1) iid., and then normalize them to satisfy
[[x*||2 = 1. We also consider a signal with z;, ~ N(0,1)
ii.d. normalized to ||x*||]2 = 1, without any restric-
tions on z; We generate m = 5000 measurements

max*

Y; = (ATx*)? with Aj ~ N(0,1,) i.i.d..

For our method (HWF) we run one step of Algorithm
and pick the k largest components of | X!|. We compare
it with the support recovery methods used in SPARTA

— HWF
—a— SPARTA
—— SAMP

Proportion of support recovered

00 02 04 06 08 10
Proportion of support recovered

00 02 04 06 08 10

T T T T T T T T T T T T T T T T T T T T T T T T
10 30 50 70 9 110 10 30 50 70 9 110
Sparsity level k

—— HWF
—=— SPARTA
B —— SAMP
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10 3 5 70 9 110 0 3 5 70 9 110
Sparsity level k

Sparsity level k

—— HWF
—s— SPARTA
—— SAMP

Proportion of support recovered

00 02 04 06 08 10
Proportion of support recovered

00 02 04 06 08 10

Sparsity level k

Figure 1: Proportion of support variables |S N S|/|S|
correctly recovered plus/minus one standard deviation
(vertical lines) by our method (red curve), SPARTA
(blue curve) and SAMP (black curve), for different
levels of z* From left to right then top to bottom:

max*

(1) Tppaw = —» (1) Ty = k=0, (d0) 2hyq, = 0.7,
Vk

(iv) Gaussian signal x* (without restrictions on % . ).

and SAMP (other algorithms like SWF and CRAF use
the same support recovery method as SPARTA). Note
that although correct identification of the full support
is required for the theoretical guarantees of algorithms
like SPARTA, it is not necessary in practice: it has been
noted in (Wang et al.| |2018) that, since the estimated
support Sis only used for the orthogonality-promoting
initialization, SPARTA can be successful as long as
the initial estimate is sufficiently close to the under-
lying signal (more precisely, dist(X°,x*) < 151x*||2),
regardless of whether or not the full support has been
correctly identified. Intuitively, the initialization pro-
duces an estimate sufficiently close to x* as long as
the majority of the support is recovered. This intu-
ition has been made rigorous for an alternative spectral
initialization in (Jagatap and Hedge, 2017)).

We evaluate the proportion of correctly recovered sup-
port variables |S N S|/|S| obtained from 100 indepen-
dent Monte Carlo trials, where S C [n] denotes the
estimated support. Figure [I|confirms the predictions of
Lemma [l In the first case, where the signal only takes
the values =} € {fﬁ, 0, ﬁ}, our theoretical bound

reads O(k?logn) (as we are considering a regime where
k > O(log? n)), and we expect the support recovery
performance of our method to be comparable to the
other methods. For sparsity levels k > 45, our method
is slightly worse than the other two, because it some-
times fails to identify a coordinate ¢ with z7 # 0 in
the first step. This case is of little practical relevance,
since if only such a small portion of the support is
recovered, neither of the three algorithms is able to re-
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construct x*. As we increase x,,,.., the performance of
our method improves substantially, while the support
recovery methods used in SPARTA and SAMP do not
show any improvement (in fact, they get slightly worse,
which can be attributed to the fact that, as we increase
Ty .z, the other coordinates become smaller since we
keep ||x*||2 =1 fixed). Our method also shows better
support recovery performance for Gaussian signals x*,

where we do not fix z7,,. (bottom-right figure).

5 Parameter estimation

In this section, we first demonstrate that our support
recovery method, one step of HWF, can be combined
with existing algorithms (such as SPARTA), which
leads to a final procedure which provably recovers a
k-sparse signal from O(max{klogn, log® n}(z*,,.) ")
measurements; this is summarized in Algorithm [2]

Algorithm 2: SPARTA-support, multiple restarts
Input: observations {Y;}7",, measurement vectors
{Aj}g-":l, sparsity level k, step size 7, iterations ¢,
initialization size «, number of restarts b, parame-

ters for SPARTA specified in (Wang et al., [2018)

for b=1to bdo
Set I, to the b largest instance in {R;}7_,

. 1/2
Set U’ =V =al,, U?b = (% + a2)
Run one step of HWF for X1
Set Sy to the k largest coordinates of |X1?|
Run 7 iterations of SPARTA using S for X%
end for
Set Bynin to be the index minimizing ||V F(X5)]|2
Return: X Bmin

Note that we can allow multiple restarts in this case as
well (b > 1) in order to further improve the probability
of obtaining a good initialization. Since SPARTA only
produces k-sparse solutions due to the thresholding
step, we choose the final solution by selecting the one
which produces the smallest gradient ||V F(X%?)]|z.

Our analysis from the previous section immediately
leads to the following result.

Theorem 2. Let x* € R" be any k-sparse vec-
tor with =¥, = Q1/Vk), and assume that we
are given measurements {Y; = (ATx*)2}7,, where
A; ~N(0,1,), j=1,...,m, are i.i.d. Gaussian vec-
tors. If m > O(max{klogn,log® n}(z%,..)"2), then,
with the parameters specified in (Wang et all, |2018),
successive estimates of SPARTA-support satisfy, with
probability at least 1 — O(m~' +n=19) and for a uni-
versal constant 0 < v < 1,

1
dist(X*, x*) < 1—0(1 — v)t|x*]|2, t>0.

Proof. By Lemmall] one step of HWF recovers the true
support with probability 1 — O(n~=1%). The result then
follows from Lemma 2 and 3 of (Wang et al| [2018]). O

Compared to Theorem 1 of (Wang et al.; |2018)), this
result reduces the sample complexity from O(k?logn)
to O(k(x*,,,) ?logn), provided k > O(log?n). The
assumption ¥, = Q(1/vk) is likely an artifact of the
proof method of (Wang et al.l 2018)) and not necessary.
Intuitively, identifying the full support is not neces-
sary, as a good initialization can also be obtained if
only small coordinates with =¥ < O(1/vk) are missed.
This intuition has been made rigorous for an alternative
spectral initialization (Jagatap and Hedgel 2017). How-
ever, the orthogonality-promoting initialization used in
SPARTA has been experimentally found to produce an
initial estimate closer to the signal x* than the spectral
initialization (Wang et al., [2017; |Zhang et al.| |2018]).

One step of Algorithm |1| requires O(nm) operations,
and ¢ = O(log(1/€)) SPARTA iterations are sufficient
to find an e-accurate solution, so SPARTA-support
incurs a total computational cost of O(nmlog(1/e)).
This is proportional to the cost of reading the data
modulo logarithmic terms.

However, SPARTA-support enforces sparsity of the
estimates X' explicitly via a hard-thresholding step,
which requires knowledge of & (or an upper bound).
Our simulations show that HWF adapts to the signal
sparsity k: we neither need knowledge of k for thresh-
olding steps, nor do we need to add a penalty term
to the objective and tune regularization parameters to
promote sparsity. Given enough samples, our algorithm
automatically converges to the k-sparse signal x*.

In the following, we present simulations evaluating
the reconstruction performance of HWF and SPARTA-
support relative to state-of-the-art methods for sparse
phase retrieval. In particular, we will consider SPARTA,
SWEF and PR-GAMP.

Remark 1 (Comparison with PR-GAMP). Our nu-
merical experiments show comparable sample complex-
ities for PR-GAMP and HWF, with both being lower
than the sample requirement of other gradient-based
methods. PR-GAMP has been empirically shown to
achieve linear sample complexity in some regimes with
Gaussian signals (Schniter and Rangan, |2015). How-
ever, PR-GAMP relies on the implementation and tun-
ing of several algorithmic principles, such as damp-
ing, normalization, and expectation-mazimization (EM)
steps. On the one hand, the application of these algo-
rithmic principles makes PR-GAMP difficult to analyze,
as rigorous theoretical investigations are known to be
challenging even for much simpler AMP-based algo-
rithms (Bayati and Montanari, |2011). On the other
hand, running PR-GAMP requires tuning of several
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parameters, including the sparsity rate k/n via EM
steps, and it requires choosing the prior distribution for
the signal x*. For our simulations we used the freely
available GAMP packagcﬂ that does automatic parame-
ter tuning, using the Gauss-Bernoulli prior. HWF is
a much simpler algorithm, as it is just vanilla gradi-
ent descent applied to the unregularized empirical risk
with Hadamard parametrization. HWF does not rely
on algorithmic principles to promote convergence to
good solutions, and it is empirically seen to adapt to
the sparsity level k. We leave it to future work to give
a full theoretical account on the convergence guarantees
of HWF and to consider more refined and fine-tuned
formulations of HWF that can combine algorithmic
principles typically used in the literature on sparsity

(cf. Section[f, Conclusion).

In experiments where we do not fix z,,.., the true

signal vector x* € R'%% was obtained by sampling
x* ~ N(0,T1000), setting (1000 — k) random entries of
x* to 0 and normalizing ||x*||2 = 1. Otherwise, x* is
generated as described in Section [d] We obtain m mea-
surements Y; = (ATx*)? with A; ~ N(0,T1000) i.i.d..

For the parameters of SPARTA and SWF, we found the
values suggested in the original papers to work best in
our simulations and used these in all experiments. For
HWF we found that a constant step size n = 0.1 works
well (similar to WF (Ma et al., 2018)). For the other
parameters, any small values work well without much
difference and we set a = 0.001, k = 0.05 and allow
b = 50 restarts. We run all algorithms for a maximum
of £ = 100,000 iterations or until F(X*) < 1077, and
declare it a success if the relative error

dist(X?, x*)

[[x*]l2

is less than 0.01. We evaluate the empirical success rate
obtained from 100 independent Monte Carlo trials. In
all experiments, SPARTA, SWF and SPARTA-support
were run with oracle knowledge of the true signal spar-
sity k, which is not needed for HWF.

In the first experiment, we fix the sparsity to k = 20
and vary m from 100 to 1000. Figure[2)(left) shows that
HWF is able to reconstruct the signal reliably (with
95% success rate) from m = 400 measurements, which
is slightly better than PR-GAMP (m = 500), while
SPARTA and SWF both require almost twice as many
observations (m = 700). Next, we fix m = 500 and
vary the sparsity level k. Figure [2| (right) shows that
HWF achieves a reconstruction rate of 95% for signals
with up to 35 non-zero entries, while the PR-GAMP
achieves this success rate only for signals with up to 25

'For PR-GAMP we used the code available from https
//sourceforge.net/projects/gampmatlab/

non-zero entries. PR-GAMP achieves slightly higher
success rates than HWF for sparsity levels where neither
algorithm is able to reliably reconstruct the signal.

— HWF
—4— SWF
—=— SPARTA
=% PR-GAMP
—— SPARTA-support
T T T T T T T T 1T
100 300 500 700 900

Number of measurements m

— HWF
|—4— SWF
—=— SPARTA
=%~ PR-GAMP
—|——_SPARTA-support
T T T T
10 20 30 40 50 60 70 80

Sparsity level k

Success rate
00 02 04 06 08 1.0

Success rate
00 02 04 06 08 1.0

Figure 2: Empirical success rate for n = 1000 fixed
against number of measurements m with sparsity level
k = 20 fixed (left) and against sparsity level k with
m = 500 measurements (right).

In the previous section, we discussed the superior sup-
port recovery performance of our method as zj,,.. in-
creases. The next experiment examines whether this
effect also translates into better reconstruction per-
formance. To this end, we consider signals generated
as in the experiments in Section [4 fix m = 500 and
vary k € [10, 80]. Figure [3| shows that, even when the
signal only takes values z} € { — ﬁ,o, ﬁ}, HWF
achieves higher success rates than SPARTA and SWF.
SPARTA-support is comparable to them, as also the
support recovery performance is similar for this x*, and
SPARTA-support subsequently applies the same steps
as SPARTA. As z7, .. increases, the reconstruction per-
formance of our methods improves, with HWF main-
taining a higher success rate than SPARTA-support.
As before, PR-GAMP achieves a 95% success rate up
to slightly lower sparsity levels than HWF. PR-GAMP
maintains success rates comparable to HWF as 7, ...
increases, which might explain the linear sample com-
plexity observed in (Schniter and Rangan, [2015)) in
some regimes for Gaussian signals. The maximum com-
ponent of a Gaussian vector scales (in expectation) like
Viogk/ V'k, which is, if k is not very large, noticeabl

larger than 1/ Vk. Comparing the right plot of Figure
and the top left plot of Figure[3] we see that PR-GAMP
achieves higher success rates for Gaussian signals than

for the signal with =, .. = 1/Vk.

Next, we examine how the sample complexity of HWF
scales with the signal sparsity k. The success rate vs
signal sparsity & and number of measurements m is
shown in Figure[d] which suggests that the sample com-
plexity scales as O(k(x},,,,) ?log %), where we obtain
Z), . as the average maximum coordinate of 100, 000
Gaussian k-sparse signals. We note that this scaling
appears almost linear.

One of the parameters in Algorithm [I]is the number of
restarts b. Increasing b also increases the probability
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Figure 3: Empirical success rate against sparsity level
k with n = 1000, m = 500 fixed and (i) z*,,, = 1/Vk
(top left), (i) 2},,. = k~°2° (top right) and (iii)

xfaw = 0.7 (bottom left), and against z},,. with

max max

k = 50 fixed (bottom right).

1000~

p_success
1.00

Number of observations m

10 20 30 40 50 60 70 80 % 100
Sparsity level k

Figure 4: Empirical success rate (red: high, blue:
low) of HWF against sparsity level k£ and number
of observations m, with n = 1000 fixed. Black line:
m = L(500) 2 og 2

of HWF finding the true signal, but this comes at the
cost of an increase in computational time. For the next
experiment, we run HWF in the same setting as the
first two experiments and vary the number of allowed
restarts b from 1 to 100. Figure shows that increas-
ing the number of allowed restarts indeed increases
the probability of successful reconstruction, where the
success rate barely increases further as we increase the
number of restarts b beyond 50.

Finally, we examine the convergence behavior of HWF.
We also test HWF in the complex-valued setting,
where we generate vectors x*,A; ~ N(0, %Ilooo) +
iN(0, $L1000), set 990 random entries of x* to zero,
normalize ||x*||2 = 1 and generate m = 500 measure-
ments Y; = ‘A?X*F. Figure |§| shows that HWF is
also able to reconstruct complex signals. While HWF
converges faster in the real case, both cases exhibit
sublinear convergence after a short "warm-up" period.
This can be explained by our parametrization. Con-

oloioioiol
e
PO ae
2385

3

Success rate
00 02 04 06 08 1.0

Success rate
0.0 02 04 06 08 1.0

T
100 300 500 700 900 10 20 30 40 50 60 70 80

Number of measurements m Sparsity level k

Figure 5: Empirical success rate for n = 1000 fixed
against number of measurements m with sparsity level
k = 20 fixed (left), and against sparsity level k with
m = 500 measurements (right), for varying number of
restarts b € [1,100].

sider the gradient V,F(U! V) = 2VF(X!) ® U': as
the initialization size « is small, the gradient is small in
the beginning due to the term U?. As X! approaches
x*, the term VF(X?") converges to zero, which leads to
linear convergence with a constant stepsize in the case
of WF . With our parametrization,
VuF (or VyF) converges to zero faster than V.F,
as we typically have U} — 0 or V;! — 0 (or both, if

*

xf = 0), leading to sublinear convergence.
o o
- | —— HWF-real
5 ! —— HWF-complex S
g 87 A
871 §
) o o~
2 g
] €% 7 — HwWrrea
~ —— HWF-complex
' T T T T T T T T T T T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 100 200 300 400 500
Iteration t Iteration t
Figure 6: Relative error (log-scale) of HWF for

real/complex signals with n = 1000, m = 500 and
k = 10 for 10,000 iterations (left) and zoom-in to 500
iterations (right).

Following the request of one of the reviewers, we in-
clude a numerical experiment that considers random
initialization. In particular, we initialize U?, V.0 to
small Gaussian noise N'(0,0.01%) for all i = 1,...,n.
In general, we find that more samples are required for
HWF to successfully reconstruct the signal x* starting
from a random initialization. Figure [7] shows that even
in a setting with n = 1000, m = 700 and k£ = 10, where
HWF with random initialization does converge to the
signal x*, the £ error dist(X*, x*) only decreases after
an initial plateau, leading to slower convergence. This
is in line with the intuition provided in the appendix,
namely that (7) the signal can still be recovered as
coordinates on the support of x* increase at a faster
rate than coordinates not on the support, while (i¢) all
coordinates only change at a very slow rate initially,
because the inner product (X°)Tx* is closer to zero
with random initialization compared to our proposed
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initialization , which leads to the initial plateau; see
the appendix for more details.

—— Our initialization
—— Random initialization

Relative error (log)
6 -5 -4 -3 -2 -1 0
|

T T T T T T T
0 500 1000 1500 2000 2500 3000
Iteration t

Figure 7: Relative error (log-scale) of HWF with ran-
dom initialization (blue) and our proposed initialization
(red) with n = 1000, m = 700 and &k = 10.

6 Conclusion

In this paper, we proposed HWF, which is a simple
algorithm for sparse phase retrieval. We proved that
one step of HWF can be used as a support recovery
tool, which, combined with existing algorithms such as
SPARTA, yields a computationally fast algorithm with
improved sample complexity, which reads O(klogn) if
the signal contains at least one large component and
k > O(log?n). We have shown in numerical experi-
ments that the sample complexity of HWF is lower
than that of existing gradient based methods such
as SPARTA and SWF, and comparable to PR-GAMP,
which has been empirically shown to achieve linear sam-
ple complexity for Gaussian signals in some regimes
(Schniter and Rangan| 2015). While HWF does not
require knowledge of the signal sparsity k, thresholding
steps or any added regularization terms, this simplicity
seems to come at the price of sublinear convergence
and thus increased computational cost. We leave it to
future work to investigate whether algorithmic princi-
ples such as the increasing step-size scheme considered
in (Vagkevicius et all 2019) or thresholding steps pre-
viously considered in the literature on sparse phase re-
trieval (e.g. (Cai et al.l [2016; |Wang et al., 2018} [Zhang
et al., [2018))) can be used to accelerate the conver-
gence speed of HWF or to further improve its sample
complexity beyond the level of the empirical results
observed for PR-GAMP, which already relies on a com-
bination of many such algorithmic principles (damping,
normalization, EM steps). Compared to PR-GAMP,
the simplicity of HWF makes the algorithm potentially
more amenable to a rigorous theoretical investigation
that can support the high-level analysis presented in
our work.
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