
Supplementary Materials: Hierarchical Inducing Point Gaussian
Processes for Inter-domain Observations

1 The HIP-GP Algorithm

We describe two algorithms that are core to the acceleration techniques we develop in Section 3.2. Algorithm 2
computes a fast MVM with a hierarchical Toeplitz matrix using the circulant embedding described in Algorithm 1.
Note that we can similarly compute the MVM R>v simply by adapting Algorithm 2 to perform FFT on C1/2

instead of on C. Together these algorithms are sufficient for use within PCG to efficiently compute kn.

Algorithm 1: Hierarchical circulant embedding.

Data: T (N1 × ...×ND representation of hierarchical Toeplitz matrix);
Result: C (circulant embedding of T)
C ← T ; // copy

for d← 1 to D do
Cr ← reverse-dim(C, dim = d)
Cr ← chop-single-dim(Cr,dim = d)
Cr ← binary-zero-pad(Cr) ; // front pad

C ← concat(C,Cr,dim = d)

return C

Algorithm 2: Matrix-vector multiplication Kv for a symmetric hierarchical Toeplitz matrix K and vector
v.
Data: k0 (first row of K in C-order); v (vector, also in C-order); N1, . . . , ND (grid dimensions)
Result: Kv (matrix-vector product)
T ← reshape(k0, N1:D) ; // to N1 × · · · ×ND
V ← reshape(v, N1:D) ; // to N1 × · · · ×ND
C ← Circ-Embed(T,N1:D) ; //

V ← Zero-Embed(V,N1:D) ; // match C
res← ifft(fft(C) · fft(V)) ; // D-dim fft

return flatten(res) ; // flatten in C-order

2 Optimization Details

In this section, we derive the gradients for structured variational parameters and kernel hyperparameters.

2.1 Variational parameters

The structured variational posterior is characterized by N(m,S) =
∏B
i=1N (mi,Si), where we decompose the

M ×M matrix S into B block-independent covariance matrices of block size Mb:

S =


S1

S2

· · ·
SB

 , (1)

and the vector m into corresponding B blocks: m1,m2, · · · ,mB .

Manuscript under review by AISTATS 2021

2.1.1 Direct solves

We first consider directly solving the optimal m and S.

Taking the derivatives of the HIP-GP objective w.r.t. m and S, we obtain

∂L
∂Si

= −1

2

(
(
∑
n

1

σ2
n

kn,ik
T
n,i) + IMb

)
︸ ︷︷ ︸

,Λi

+
1

2
S−1i , for i = 1 : B (2)

∂L
∂m

=
∑
n

1

σ2
n

ynkn︸ ︷︷ ︸
,b

−

(∑
n

1

σ2
n

knk
T
n + IM

)
︸ ︷︷ ︸

,Λ

m (3)

where a vector or a matrix with subscript i, denotes its i-th block.

The optimum can be solved in closed form by setting the gradients equal to zero, i. e.

∂L
∂Si

= 0 ⇒ Si = Λ−1i , for b = 1 : B (4)

∂L
∂m

= 0 ⇒ m = Λ−1b. (5)

If M is very large, this direct solve will be infeasible. But note that Λi, b and Λ are all summations over some
data terms, hence we can compute an unbiased gradient estimate using a small number of samples which is more
efficient. We will use natural gradient descent (NGD) to perform optimization.

2.1.2 Natural gradient updates

To derive the NGD updates, we need the other two paramterizations of N(m,S), namely,

• the canonical parameterization: {θ1,i}Bi=1, {θ2,i}Bi=1 where θ1,i = S−1i mi and θ2,i = − 1
2S
−1
i , i = 1 : B; and

• the expectation parameterization: {η1,i}Bi=1, {η2,i}Bi=1 where η1,i = mi and η2,i = mim
T
i + Si, i = 1 : B.

In Gaussian graphical models, the natural gradient for the canonical parameterization corresponds to the standard
gradient for the expectation parameterization. That is,

∂

∂η
L = ∇̃θL, (6)

where ∇̃θ denotes the natural gradient w.r.t. θ.

By the chain rule, we have

∂L
∂η1,i

=
∂L
∂mi

∂mi

∂η1,i

+
∂L
∂Si

∂Si
∂η1,i

(7)

= bi − S−1i mi − [(Λm)i −Λimi], (8)

∂L
∂η2,i

=
∂L
∂mi

∂mi

∂η2,i

+
∂L
∂Si

∂Si
∂η2,i

(9)

= −1

2
Λi +

1

2
S−1i . (10)

Therefore, the natural gradient updates for θ are as follows:

θ1,i ← θ1,i + l
∂L
∂η1,i

= θ1,i + l
(
bi − S−1i mi − [(Λm)i −Λimi]

)
(11)

θ2,i ← θ2,i + l
∂L
∂η2,i

= θ2,i + l

(
−1

2
Λi +

1

2
S−1i

)
, (12)

where l is a positive step size.

2.2 Kernel hyperparameters

We now consider learning the kernel hyperparameters θ with gradient descent.

For the convenience of notation, we denote the gram matrix Ku,u as K. HIP-GP computes K−1v by PCG.
Directly auto-differentiating through PCG may be numerically instable. Therefore, we derive the analytical
gradient for this part. Denote c as the first row of K — c fully characterizes the symmetric Toeplitz matrix

K. It suffices to manually compute the derivative w.r.t. c, i.e. ∂rTK−1v
∂c , since by the following term ∂c

∂θ can be
taken care of with auto-differentiation.

We note the following equality

∂rTK−1v

∂c
= −(K−1r)T

∂K

∂c
K−1v. (13)

The computation of b = K−1v is done in the forward pass and therefore can be cached for the backward pass.

Additional computations in the backward pass are (1) a = K−1r and (2) ∂aTKb
∂c . (1) can be computed efficiently

using the techniques developed in HIP-GP. Now we present the procedure to compute (2):

∂aTKb

∂c
=
∑
ij

aibj
∂Kij

∂c
(14)

=
∑
ij

aibje|i−j|+1 (15)

= toeplitz-mm(b1e1, b,a) + toeplitz-mm(a1e1,a, b)− (aT b)e1, (16)

where ei denotes the vector with a 1 in the i-th coordinate and 0’s elsewhere, and toeplitz-mm(x,y, z) denotes
the Toeplitz MVM Tz, with the Toeplitz matrix T characterized by its first column vector x and first row vector
y — this Toeplitz MVM can be also efficiently computed via its circulant embedding.

3 Additional Experiment Results

3.1 Empirical analysis on preconditioner

In this section, we present an empirical analysis on the preconditioner developed in Section 3.2. Specifically, we
investigate our intuition on the “banded property” that makes the preconditioner effective: when the number of
inducing points M are large enough, the inducing point Gram matrix Ku,u is increasingly sparse, and therefore
the upper left block of C−1 will be close to K−1u,u.

We note that the sparsity of the kernel matrix Ku,u depends on three factors (1) M , the number of inducing
points, (2) the lengthscale l of the kernel, and (3) the property of the kernel function itself such as smoothness.
Hence, to verify our intuition, we conduct the PCG convergence experiment by varying the combinations of
these three factors. We evenly place M inducing points in the [0, 2] interval that form the Gram matrix Ku,u,
and randomly generate 25 vectors v of length M . We vary M ranges from 10 to 500, and experiment with 4
types of kernel function: squared exponential kernel, Matérn (2.5), Matérn (1.5) and Matérn (0.5) kernels. For
all kernels, we fix the signal variance σ2 to 1 and the lengthscale l to 0.05 and 0.5 in two separate settings. We
run CG and PCG to solve K−1u,uv up to convergence with tolerance rate at 1e-10. We compare the fraction of
PCG iterations required for convergence over # CG iterations required for convergence, denoted as rpcg. The
results are displayed in Figure 1 (for l = 0.05) and Figure 2 (for l = 0.5).

Figure 1a - 1b and Figure 2a - 2b depict the kernel matrix Ku,u for M = 10 and M = 500 with l = 0.05 and
0.5, respectively. Figure 1c and 2c plot rpcg over M for different kernels and lengthscales. From these plots, we
make the following observations:

(1) rpcg are consistently smaller than 1, which verifies the effectiveness of the preconditioner.

Manuscript under review by AISTATS 2021

(a) Inducing point kernel matrix Ku,u with M = 10

(b) Inducing point kernel matrix Ku,u with M = 500

(c) rpcg v.s. M for different kernels.

Figure 1: Empirical analysis for preconditioner. The kernel lengthscale is 0.05.

(2) In most cases, PCG converges faster when the system size M is bigger. For example, rpcg decreases as M
increases in Figure 1c where l = 0.05. However, we note that PCG convergence can be slowed down when
the system size M exceeds certain threshold in some cases (e.g.first three plots of Figure 2c where l = 0.5).
To see why this happens, we compare the plots of kernel matrices with l = 0.5 for M = 10 and M = 500
in Figure 2a and 2b. Since the lengthscale l = 0.5 is relatively large with respect to the input domain
range, the resulting Ku,u for M = 10 is sparse enough to approach a diagonal matrix. However, when we
increase M to 500, 1 lengthscale unit covers too many inducing points, making Ku,u less “banded” and the
preconditioner less effective. This observation is also consistent with our intuition.

(3) For kernels that are less smooth, the PCG convergence speed-ups over CG are bigger given the same M , e.g.
Matérn (0.5) kernel has smaller rpcg than squared exponential kernel does under the same configuration. We
also observe that Ku,u with Matérn (0.5) kernel is more diagonal-like than Ku,u with squared exponential
kernel from the kernel matrix plots. Together with (2), these results show that when the kernel matrix is
more banded, the PCG convergence is accelerated more.

In conclusion, the PCG convergence speed depends on the “banded” property of the inducing point kernel matrix
Ku,u, which further depends on M and the smoothness of the kernel. As Ku,u approaches a banded matrix,
the preconditioner speeds up convergence drastically.

(a) Inducing point kernel matrix Ku,u with M = 10

(b) Inducing point kernel matrix Ku,u with M = 500

(c) rpcg v.s. M for different kernels.

Figure 2: Empirical analysis for preconditioner. The kernel lengthscale is 0.5.

3.2 Additional experiment results for Section 5.2

We include additional experiment results on the other 3 kernels for Section 5.2, in Table 1- 3. These results are
consistent to our conclusion in the paper.

M 103 104 105 106

HIP-GP 0.0078 0.0187 0.3484 1.4727
SVGP 0.0152 0.1516 n/a n/a

Table 1: Whitening time comparison (second) of HIP-GP v.s. SVGP with Matérn(0.5) kernel.

M 103 104 105 106

HIP-GP 0.0087 0.0192 0.3479 1.4656
SVGP 0.0142 0.1379 n/a n/a

Table 2: Whitening time comparison (second) of HIP-GP v.s. SVGP with Matérn(1.5) kernel.

Manuscript under review by AISTATS 2021

M 103 104 105 106

HIP-GP 0.0112 0.0199 0.3683 2.3433
SVGP 0.7090 0.0992 n/a n/a

Table 3: Whitening time comparison (second) of HIP-GP v.s. SVGP with squared exponential kernel.

3.3 UCI benchmark dataset

We include another experiment on the UCI 3D Road dataset (N = 278, 319, D = 3). Following the same setup
as Wang et al., 2019, we train HIP-GP with M = 36,000 and a mean-field variational family, and compare to
their reported results of Exact GP, SGPR (M = 512) and SVGP (M = 1, 024) (Table 4). With the large M ,
HIP-GP achieves the smallest NLL, and the second-smallest RMSE (only beaten by exact GPs).

RMSE NLL

HIP-GP Exact GP SGPR SVGP HIP-GP Exact GP SGPR SVGP

0.189 0.101 0.661 0.481 −0.171 0.909 0.943 0.697

Table 4: UCI 3D Road experiment (N = 278,319). Results are averaged over 3 random splits.

	The HIP-GP Algorithm
	Optimization Details
	Variational parameters
	Direct solves
	Natural gradient updates

	Kernel hyperparameters

	Additional Experiment Results
	Empirical analysis on preconditioner
	Additional experiment results for Section 5.2
	UCI benchmark dataset

