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1 Omitted proofs in Example 1 and Example 2

We first introduce the following lemma, which is due to LeCam (1973).

Lemma 1 (Le Cam’s Two Point Theorem). Let p0, p1 be two distribution over the same probability space X .
Then for any estimator Φ : X → {0, 1} we have

max
i∈{0,1}

PrX∼pi(Φ(X) 6= i) ≥ 1− ||p0 − p1||TV
2

,

where || · ||TV denotes for total variation.

Proof of the sufficiency part in Example 1:
Let P be the class of all random processes over {0, 1}∞ such that for any p ∈ P there exists a parameter
b ∈ {0, 1} and strictly monotonically increasing integer sequence M1,M2, · · · with M1 = 1 satisfying for all

n ≥ 1, XMn = XMn+2 = · · · = XMn+1−1, and X
Mn+1−1
Mn

is independent of all other random variables in the
process, and

p(XMn
= b) = 1− 1

(n+ 1)2
.

Note that a process in P is purely determined by the parameter b and sequence {Mn}n≥1. We will denote a
process to be pb if the parameter is b. Clearly, by Borel-Cantelli lemma P is e.a.s.-predictable under the loss `
in Example 1 by predicting Xn−1 at each step n. We now show that there is no nesting {Pi, i ≥ 1} of P such
that (Pi, `) is η-predictable for all η > 0 and i ≥ 1. Our approach is a proof by contradiction—should such a
decomposition exist, we construct a distribution in P that is not in

⋃
i≥1 Pi, a contradiction on our supposition

that P =
⋃
i≥1 Pi.

Let Rn be a number such that the class Pn is ηn-predictable with a sample of size Rn, where ηn will be determined
later. Wolog, we may assume Rn to be strictly increasing on n. Let p0, p1 be two distributions in P that are
associated with the sequence M1 = 1 and (Mn = Rn−1 + 1)n≥2 with parameter b = 0 and b = 1 respectively, i.e.
p0, p1 share the same partition of independent blocks but with different parameter.

Let ||pRn0 − pRn1 ||TV = 1− εn, where pRni is the distribution of pi on the first length-Rn binary strings. Observe
that the probability of any length-Rn binary string under either p0 or p1 is purely a function of the number of
blocks which are all-0 (or equivalently all-1), and therefore, so is εn, the total variation distance. Hence εn does
not depend on the sequence Rn, or ηn, and in particular we can choose ηn <

εn
2 .

By Lemma 1, we know that any prediction rule will make error with probability at least εn
2 on either p0 or p1 at

time step Rn + 1 if they both belong to Pn. Since εn/2 > ηn, we conclude that at least one of p0 or p1 cannot
be in Pn, and that the above conclusion works for all n.

But Pn ⊂ Pm for all m ≥ n. Let n be the smallest number that contains one of p0 or p1. Pn cannot contain both,
per the argument above, it follows that Pm contains that distribution for all m ≥ n. However, the argument
above implies that the distribution missing from Pn cannot be in

⋃
k≥1 Pk, contradicting the assumption that

{Pi, i ≥ 1} is a nesting of P.

The following lemmas are used in Example 2:
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Lemma 2. Let Bk be the set of all Bernoulli processes with parameters in

Sk = {r1, · · · , rk} ∪

(
[0, 1]\

∞⋃
i=1

B(ri,
1

k2i
)

)
where B(ri,

1
k2i ) is the open balls centered at ri with radius 1

k2i , r1, r2, · · · is an arbitrary enumeration of rational
numbers in [0, 1]. Then Bk is η-predictable with irrationality loss for any k ≥ 1 and η > 0.

Proof. We show that for any k ∈ N and η > 0, there exists bη such that Bk is η-predictable with sample size bη.
Let X1, · · · , Xn be an i.i.d. sample from some p ∈ Bk with E[Xi] = µ and X̄ = X1+···+Xn

n . We have Var[Xi] ≤ 1.
Chebyshev’s inequality then shows that

p
(
|X̄ − µ| ≥ ε

)
≤ 1

nε2
.

Fix ε = 1
k2k+1 . Let bη be a number large enough so that 1

bηε2
< η. Therefore for n > bη, p

(
|X̄ − µ| ≥ ε

)
is less

than η. Thus, we can conclude that Bk is η-predictable by simply predicting the irrationality of element in Sk
that is closest to X̄ at step bη, retaining the prediction perpetually thereafter.

Lemma 3. Let B be a class of Bernoulli processes with parameters in S, if B is η-predictable w.r.t. the irra-
tionality loss for some 0 < η < 1

2 , then

inf{|x− r| : x, r ∈ S and r ∈ Q, x ∈ [0, 1]\Q} > 0. (1)

Proof. By definition of η-predictability, there exists a number Nη and prediction rule Φη such that Φη makes
no errors after step Nη with probability at least 1 − η for all p ∈ B. Suppose, otherwise, that the infimum in
equation (1) is 0. We now select two sources p0, p1 from B with parameters b0, b1 respectively, such that b0 is
rational and b1 is irrational and |b0 − b1| < 1−2η

2Nη
.

We now have ||pNη0 − pNη1 ||TV < 1− 2η, where p
Nη
i is the distribution of pi restricted to the first Nη samples—

using the fact that ||pN −qN ||TV ≤ N ||p−q||TV for any distributions p, q with N -fold i.i.d. distributions pN , qN .
Now, by Lemma 1, any prediction rule (in particular Φη) will make an error at time step Nη + 1 with probability
> η for either p0 or p1. This contradicts η predictability of Φη on B.

Lemma 4. Let S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ · · · ⊂ [0, 1] be countably many sets, such that

∀k, inf{|x− r| : x, r ∈ Sk and r ∈ Q, x ∈ [0, 1]\Q} > 0. (2)

If
⋃
k∈N Sk contains all rational numbers in [0, 1], then the irrational numbers in Sk are nowhere dense in [0, 1]

for all k.

Proof. Suppose otherwise, the set of irrational numbers Ik in Sk is not nowhere dense. By definition, there exists
an interval [a, b] ⊂ col(Ik), where col denotes for closure. Since the rational numbers in [0, 1] are dense, there
exists some rational number r ∈ [a, b], and therefore r ∈ col(Ik). Since r ∈

⋃
k∈N+ Sk, there exist some k′ ≥ k

such that r ∈ Sk′ . However, we also have Sk ⊂ Sk′ . Which implies that r is the limit point of irrational numbers
in Sk′ , contradicting the assumption (2) .

2 Proof of Theorem 4

Suppose (P, `) is e.a.s.-learnable. Then for each i, we let Φi and τi be the predictor and stopping rule pair
respectively that learns with confidence 1/2i. By definition, we have that the probability Φi makes an error after
τi stops (i.e. τi = 1) is ≤ 1

2i . Let Φ0 be an arbitrary predictor.

Now, there are countably many stopping rules (one for each natural number i ≥ 0) and each such rule stops at a
finite time with probability 1, we conclude that with probability 1 all of them would have stopped simultaneously
at some finite time by a union bound.

We initialize t = 1 (t will stand for the stage). As we see more of the sample, at any stage t, we predict using the
prediction rule Φt−1, till τt halts (i.e. τt = 1). At that point, we move to stage t+ 1. For t ≥ 2, the probability
of making an error in stage t is ≤ 2−t. Invoking the Borel-Cantelli lemma, we conclude that we make an error
in finitely many stages almost surely, and the Theorem follows.



3 Proof of Corollary 1

We show that the open conjecture posed in (Dembo and Peres, 1994) is true if we assume some uniform bounds
on the density. Let H0, H1 be disjoint sets of distributions over Rd. The problem is to predict whether an
underlying distribution p ∈ H0∪H1 is in H0 or H1, using i.i.d. samples from p. Therefore the class H will be the
i.i.d. processes with marginals in H0 ∪ H1, our prediction on seeing an sample Xn of size n is Yn(Xn) ∈ {0, 1},
and the loss is `(p,Xn

1 , Yn) = 1{p 6∈ HYn}.

For any distributions p1, p2 over Rd, we consider the Kolmogorov-Smirnov distance (abbreviate as KS-distance)

|p1 − p2|∞ = sup
x∈Rd

|Fp1(x)− Fp2(x)|,

where Fpi is the CDF of pi. The following lemma is well known in the literature, see e.g. (Athreya and Lahiri,
2006, Theorem 9.1.4).

Lemma 5 (Polya’s Theorem). Let p1, p2, · · · and p be distributions over Rd with continuous CDF. Then
limn→∞ |pn − p|∞ = 0 iff pn weakly converges (converges in distribution) to p.

For any x ∈ Rd, we denote Ix be the indicator function of set
∏d
i=1(−∞,xi], where xi is the i′th coordinate of

x. Let X1, X2, · · · , Xn be i.i.d. distributions over Rd, denote the CDF of the empirical distribution as follows

∀x ∈ Rd, Fn(x) =
1

n

n∑
i=1

Ix(Xi).

We have the following lemma, which is know as Dvoretzky-Kiefer-Wolfowitz Inequality, see e.g. Massart (1990);
Kiefer and Wolfowitz (1958).

Lemma 6 (Dvoretzky-Kiefer-Wolfowitz Inequality). Let X1, X2, · · · , Xn be i.i.d. samples of distributions p over
Rd, Fn(x) is the CDF of the empirical distribution. Then there exist an constant Cd depends only on d such that

p (|Fn(x)− Fp(x)|∞ ≥ ε) ≤ Cd exp(−nε2).

Note that the tail bound given in Lemma 6 only depends on the sample size and is independent of the underlying
distribution. We now provide the following theorem, which provide an alternative proof of Theorem 2(i) in
Dembo and Peres (1994). We first introduce the following notion, which is equivalent to the Fσ-separability
introduced in (Dembo and Peres, 1994), but with a more operational interpretation.

Definition 1. Let A,B be two disjoint sets in a metric space with metric d. We say A,B are Fσ-separable if
there exist nesting A1 ⊂ A2 ⊂ · · ·A and B1 ⊂ B2 ⊂ · · ·B such that

1.
⋃
n≥1An = A and

⋃
n≥1Bn = B.

2. For all n ≥ 1, we have
inf{d(x, y) : x ∈ An, y ∈ Bn} > 0.

Theorem 1. Let H0, H1 ⊂ M1(Rd) be collections of distributions over Rd that is Fσ-separable under KS-
distance. Then (H, `) is e.a.s.-predictable.

Proof. By definition of Fσ separability, we have nesting {An}, {Bn} of H0, H1 respectively, such that

∀n ∈ N, εn
def
= inf{|p0 − p1|∞ : p0 ∈ An, p1 ∈ Bn} > 0.

We only need to show that An∪Bn is η-predictable for all η by Theorem 2 (in the main paper). By Lemma 6, we
can simultaneously make |Fn−Fp|∞ ≤ εn/4 with confidence 1−η for all p ∈ An∪Bn by choosing the sample size
large enough. By triangle inequality of KS-distance, one can classify the distributions in An ∪ Bn successfully
with probability at least 1− η.

A collection H of distributions over Rd with density functions is said to be uniformly bounded if for all ε > 0,
there exist a number Mε such that

∀p ∈ H, p(fp(x) ≥Mε) ≤ ε,
where fp is the density function of p. We have the following theorem
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Theorem 2. Let H0, H1 be collections of distributions that are absolutely continuous w.r.t. Lebesgue measure
on Rd, and H0 ∪H1 is uniformly bounded. Then (H, `) is e.a.s.-predictable, only if H0, H1 is Fσ-separable with
KS-distance.

Proof. By Theorem 2 (in the main paper), there exist nesting {An}, {Bn} of H0, H1 respectively, such that
An ∪ Bn is 1

8 -predictable. We show that there is no limit point of An in Bn or vice versa. Suppose otherwise,
there exist p1, p2, · · · ⊂ An and p ∈ Bn, such that |pn − p|∞ → 0. Let Φ be an arbitrary predictor that achieves
1
8 -predictability of An ∪ Bn with sample size n. Let Φn be the prediction function at step n. By Lemma 5, pn
weakly converges to p. Therefore, there exists a compact set S, such that p(S) ≥ 7

8 and pn(S) ≥ 7
8 for all n ∈ N.

By uniform boundedness of H0 ∪H1, there exists a number M , such that

∀p ∈ H0 ∪H1, p(fp(x) ≥M) ≤ 1

16
. (3)

By Lusin’s theorem, there exists a continuous function g and a set E ⊂ S, such that supx∈E |Φn(x)− g(x)| ≤ 1
4

and m(S\E) ≤ 1
16M , where m(·) is Lebesgue measure. Let Ω = {x : g(x) > 1

3}, we have Ω is open and {x ∈ E :
Φn(x) = 1} ⊂ Ω. By (3) and because m(S\E) ≤ 1

8M , we have p(S\E) ≤ 1
8 and pn(S\E) ≤ 1

8 for all n ∈ N. By
1
8 -predictability, we have p(Ω ∩ E) ≥ 7

8 −
1
4 = 5

8 . By weak convergence, we have lim inf pn(Ω) ≥ p(Ω), since Ω
is open. There exist some pn such that pn(Ω) ≥ 1

2 since p(Ω) ≥ 5
8 , which implies pn(Ω ∩ E) ≥ 1

2 −
1
4 = 1

4 >
1
8 .

Contradicting the 1
8 -predictability.

We have the following corollary.

Corollary 1 (Corollary 1 in the main paper). Let G : R+ → R+ be a strictly monotone increasing function
such that limx→∞G(x) → ∞, H0, H1 be collections of distributions over Rd that is continuous w.r.t. Lebesgue
measure. Suppose for all p ∈ H0∪H1, we have EX∼p[G(fp(X))] <∞. Then (H, `) is e.a.s.-predictable iff H0, H1

are Fσ-separable with KS-distance.

Proof. By breakingH0∪H1 into countably many subcollections, one may assume ∀p ∈ H0∪H1, Ex∼p[G(fp(x))] ≤
M for some constant M . We only need to show that H0∪H1 is uniformly bounded. For any p ∈ H0∪H1, define
random variable Yp = G(fp(x)). We have by Markov inequality p(Yp ≥ T ) ≤ M

T . Note that the probability is

independent of p. By letting T = M
ε , one can make the probability less than ε. Since G is monotone increasing

and goes to infinity, it is invertible on R+. We now have p(fp(x) ≥ G−1(M/ε)) ≤ ε for all p ∈ H0 ∪ H1 and
ε > 0.

Remark 1. Note that, the condition of Theorem 2(ii) of Dembo and Peres (1994) is equivalent to take G(x) =
xq−1 for some q > 1.
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