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Abstract

Using only samples from a probabilistic
model, we predict properties of the model
and of future observations. The prediction
game continues in an online fashion as the
sample size grows with new observations. Af-
ter each prediction, the predictor incurs a bi-
nary (0-1) loss. The probability model under-
lying a sample is otherwise unknown except
that it belongs to a known class of models.
The goal is to make finitely many errors (i.e.
loss of 1) with probability 1 under the gen-
erating model, no matter what it may be in
the known model class.

Model classes admitting predictors that make
only finitely many errors are eventually al-
most surely (eas) predictable.  When the
losses incurred are observable (the supervised
case), we completely characterize eas pre-
dictable classes. We provide analogous re-
sults in the unsupervised case. Our results
have a natural interpretation in terms of reg-
ularization. In eas-predictable classes, we
study if it is possible to have a universal stop-
ping rule that identifies (to any given confi-
dence) when no more errors will be made.
Classes admitting such a stopping rule are
eas learnable. When samples are generated
i.1.d., we provide a complete characterization
of eas learnability. We also study cases when
samples are not generated i.i.d., but a full
characterization remains open at this point.

1 Introduction

This paper considers a learning framework where the
learner has little prior knowledge of the environment,
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but is able to make as many observations (measure-
ments) as needed. Predictions are required on either
an unknown property of the environment or future ob-
servations, and can potentially use past observations.
These predictions incur a loss. In this setup, we fo-
cus on when a learner can ensure that its loss is finite
almost surely. This framework forms the general back-
ground for multiple lines of research, two of which we
outline here.

The first is the learning of recursive functions,
see (Zeugmann and Zilles, 2008) for a survey. Per-
haps the earliest work of this flavor is the language
identification problem of Gold (1967). Here one tries
to identify a language from a set of languages by ob-
serving information presentations of the language, and
asks when an identification would be correct after fi-
nite observations.

A typical setup for learning recursive functions starts
with a set H of functions that maps N — {0,1}. Na-
ture fixes a function h from H at the beginning. At
each time step n, the learner makes attempts to predict
h(n) using the history h(1),:--,h(n—1) thus far. Na-
ture then reveals the true value h(n) after the learner
has made the prediction. The goal is a computable
learner that makes only finitely many errors no mat-
ter what h € H is.

The second line of research involves randomized obser-
vations, and was initialized by Cover (1973). Here, the
learner’s goal is to predict the irrationality of the mean
of a random variable over [0, 1] using i.i.d. observations
of it. The prediction can be updated after every obser-
vation, but the learner is allowed only finitely many er-
rors with probability 1—and perhaps surprisingly, this
is possible in a variety of non-trivial setups, underscor-
ing the distinction between prediction and estimation.
Cover’s setup was generalized in (Dembo and Peres,
1994) to identify general properties of distributions
over R, and in continued in (Kulkarni and Tse, 1994;
Koplowitz et al., 1995; Naaman, 2016). In (Wu and
Santhanam, 2019), the authors predict upper bounds
on the next observation of i.i.d. sampling from distri-
butions over N, such that the next observation violates
the bound only finitely often with probability 1, and
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in (Santhanam and Anantharam, 2015), the authors
obtain a stopping rule that additionally indicates when
such a prediction has made the last mistake.

This paper subsumes the problem setups mentioned
above into a unified framework. Observations are
modeled as a general discrete time random process
X1, X2, -+ whose underlying probability measure (not
necessarily 4.i.d.) p belongs to a known collection P.
The learning process is a game between Nature and a
learner, where the learner attempts to predict a prop-
erty of p or of future observations. Nature fixes a ran-
dom process p € P. At each time step n, the learner
makes a prediction Y;, using X1, -+, X,_1. The pre-
diction, the next realization X,,, and potentially the
underlying process p are associated with a binary 0-1
loss ¢, where 1 indicates an error/unsatisfactory pre-
diction. The collection P together with loss £ is even-
tually almost surely predictable (e.a.s.-predictable), if
there is a strategy such that the learner makes only
finitely errors with probability 1 no matter what the
underlying p € P is.

Our contributions in this paper establish a comprehen-
sive theoretical framework for this problem setup.

First, we provide a general characterization of e.a.s.-
predictability. In particular, this characterization sub-
sumes prior known results into (e.g. (Cover, 1973; Ko-
plowitz et al., 1995; Dembo and Peres, 1994; Wu and
Santhanam, 2019)), and resolves conjectures posed
therein.

Second, for e.a.s.-predictable classes, we characterize
whether for arbitrary confidence, a stopping rule can
exist indicating that the final error is in the past. In
particular, this subsumes results in (Santhanam and
Anantharam, 2015).

Finally, we demonstrate our characterizations in the
context of estimating the singularity, rank and eigen-
values of random matrices.

As we obtain the results, we note that the results pro-
vide a natural understanding of regularization, where
the model class is restricted to accommodate the
amount of data at hand. In particular, we provide
striking examples of such regularization at work in the
context of Cover’s problem described above in Exam-
ple 2.

2 Problem Setup

Let X be a set and P be a collection of probabil-
ity measures over a fixed cylinder o-algebras over
X, We consider a discrete time random process
X = {X, }nen+ generated by sampling from a proba-
bility law p € P.

Prediction is modeled as a function ® : X* — ), where
X* denotes the set of all finite strings of sequences from
X, and ) is the set of all predictions. The loss function
is a measurable function £: P x X* x Y — {0,1}. We
consider the property we are estimating to be defined
implicitly by the subset of P x X* x ) where £ = 0,
and therefore, in a slight abuse of notation sometimes
refer to £ as a property as well.

We consider the following game that proceeds in time
indexed by NT. The game has two parties: the learner
and nature. Nature chooses some model p € P to
begin the game. At each time step n, the learner makes
a prediction Y, based on the current observation X'~
generated according to p. Nature then generates X,
based on p and X"

The learner fails at step n if £(p, X7, Y,) = 1. The
learner targets a strategy that minimizes the cumula-
tive loss in the infinite horizon, without knowledge of
the model the environment chooses at the beginning.

The loss in general can be a function of the probabil-
ity model in addition to the sample observed, and our
prediction on the sample. When the loss depends on
the probability model, there may be no direct way to
estimate the loss incurred at say, step n, from obser-
vations of the sample X {%1 even after the prediction
Y., is made. We call such setups the unsupervised set-
ting borrowing from learning theory. A special case is
the supervised setting, where we define the loss to be
a function from X* x Y to {0, 1}.

Definition 1 (np—predictability). A collection (P,¥)
is n-predictable, if there exists a prediction rule O :
X* —= Y and a sample size n such that for all p € P,

p(ZE(n X1, ®(X]7) > 0) <,

i=n

i.e. the probability that the learner makes errors after
step n is at most n uniformly over P.

Definition 2. A collection (P, ¥) is said to be eventu-
ally almost surely (e.a.s.)-predictable, if there exists a
prediction rule ®, such that for all p € P

p (i (. X7, (X7 ) < oo> =)

n=1

We need a technical definition that will help simplify
notation further.

Definition 3. A nesting of P is a collection of sub-
sets of P, {P;:i>1} such that Py C Py C ... and
UiZl Pi=P.

The following lemmas characterize immediate connec-
tions between the above definitions.
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Lemma 1. Let P be a collection of models, {P;,i > 1}
be a nesting of P. If for alln >0 and i € NT, (P;, ()
is m-predictable for some loss £. Then (P,{) is e.a.s.-
predictable.

Proof. From the definition of n—predictability, we can
choose an increasing sequence {b;,7 > 1}, and predic-
tors @, for P; respectively as follows. For all ¢ and for
all p € P;, the probability ®; makes errors after step
b; is at most 27°.

The predictor ® is then constructed from {®;,i > 1}
as follows: use predictor ®; when the length T of the
observed sample satisfies b; < T < b;11.

Let p € Pr, C P. Because the collections P; are nested,
foralli > k, p € P;. During the phase ® coincides with
®;, the probability of ® making an error is < 27%. The
result follows using the Borel-Cantelli lemma. O

Lemma 2. Let P be a collection of probability mea-
sures and let £ be a loss function. Suppose {P; : i > 1}
is a nesting of P such that for all i > 1, (P, 0) is
n-predictable for some 1 > 0.

Then there exists a relabeling of the sets in a nesting
{P] :i>1} of P such that (P}, {) is n-predictable with
sample size i. Namely, there is an estimator ®; such
that for all p € P, the probability ®; incurs non-zero
L-loss on samples with size larger than i is < 7.

Proof. Since P; is n—predictable, there exists a num-
ber n} and an estimator ®; such that for all p € P;,
the probaiblity ®; incurs non-zero £—loss on samples
larger than n} is < 7. We can therefore choose an in-
creasing sequence {n;,7 > 1} and n; > n}. Note that
each P; is n—predictable with samples size n;. For
ne < i < Ngg1, set P, = Py {Pl:i>1} is the de-
sired nesting and the lemma follows. O

3 Characterization

We first characterize e.a.s.-predictability in supervised
setting. This result is reminiscent of how practi-
tioners do regularization, where one restricts P to
match the amount of data available. When P is
e.a.s.-predictable, the implication is that such a reg-
ularization approach will settle at some point on a
complexity—more data from that point on will not
really lead to making the model more complex. While
the theorem below can be proved in multiple ways, we
provide an approach that reflects the intuition above.

Theorem 1. Consider a collection P with a loss ¢ :
X*x Y —{0,1} (i.e. the supervised setting). (P,{) is
e.a.s.-predictable iff for alln > 0, there exists a nesting
{P:n>1} of P such that for alln > 1, (P}, 0) is
n-predictable.

Proof. Suppose P is e.a.s.-predictable, we show that
P can be decomposed into a nesting of n—predictable
collections. By Definition 2, there exists predictor ®
such that for all p € P, ® makes finitely many errors
with probability 1. For n > 0, we define

P ={p € P | p(® makes errors after time n) < n},

so that for all n, P! is n—predictable by definition.
Further, by definition, Vn € N*, P C P, ;. To see
that the union of P;! over all n is P, consider the event

Ak = {Xfo | Zf(}% X?’(I)(X{lil)) > 0} .

n=~k

For all p € P, have p(A;) — 0 as k — oo. Therefore,
there must be some k such that p(Ay) < 7, and for
such a number k we have p € P;. Therefore, P =

UnEN ,P;Z

To prove that the decomposition is sufficient, suppose
that for all j € N, there exists a nesting {’P,Jl in > 1}
of P such that P! is 277 predictable. Furthermore,
from Lemma 2, we can choose a decomposition such
that P} is 277 predictable with sample size n. There-
fore, there exist predictors ®,, ; such that for all p € P},

p(®,, ; makes errors after time n) < 277.

We construct a predictor ® for P as follows. At each
time step T, let I(n,j) be the indicator that &, ;
makes no error on X! ! after time n. Let

(ki) = argmin {j+n| I ) =1} (1)
(n,j)ENXN

The prediction is defined to be <I>(X1T*1) =
®p (XTI,

We claim that the predictor ® will make only finitely
many errors with probability 1 for all models in P. Fix
some p € P. Let n; = min{n | p € P/}. Define the
event

Aj = {®n, ; makes errors after time step n;}.
We have 3°7° p(A;) <3272, 277 < oo.

Therefore, the Borel-Cantelli lemma implies that there
is a set with probability 1, such that on every semi-
infinite sequence X{° in that set, there is a J such that
®,,, 7 makes no errors after step n;. By construction
of @, for X{° in the set of probability 1 above, we will
therefore never choose an estimator ®,, ; with n+4j >
ny+J in step (1). If some @, ; withn+j <nj;+J
makes infinitely many errors, it will no longer appear
in the feasible set in (1) after some time step T > n.
Since there are only finitely many predictors ®,, ; with
n+j <ny+ J, the procedure will eventually choose
some predictor that makes finitely errors. 0
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Remark 1. As mentioned in the prelude to the theo-
rem, one could view the the decomposition of the class
in Theorem 1 as an regularization. The smaller n + j
is, the less the complexity the PJ has. Alternately,
one may view the selection of the model classes in
equation (1) as a structural risk minimization (Shalev-
Shwartz and Ben-David, 2014, Chapter 7.2) that con-
siders both the empirical losses and complexity of the
class into account.

The above characterization does not carry over for ar-
bitrary loss functions if we cannot gauge the loss from
the data. Instead, we prove the following analog.

Theorem 2. Consider a collection P with a loss
£:PxX*xY — {0,1} (i.e. the unsupervised set-
ting). (P,?) is e.a.s.-predictable if there exists a nest-
ing {P; : i > 1} of P such that for allm >0, (P, £) is
n-predictable.

Conversely, if (P,£) is e.a.s.-predictable, then for all
n > 0, there is a nesting {P;' :i > 1} of P such that
for all i, (P}, £) is n—predictable.

Proof. The sufficiency follows directly from Lemma 1.
The proof of the necessary condition is identical to the
necessity proof of Theorem 1. O

The gap in the Theorem above cannot be closed. In-
deed, the following example shows that the necessary
(respectively sufficient) condition in Theorem 2 is not
sufficient (respectively necessary).

Example 1. Let P be a class of binary (taking val-
ues 0 or 1) random processes that converge to either
0 or 1 in probability. Formally, P is the collection of
all probability measures py, b € {0,1}, defined on the
Borel o-algebra of {0,1}°, that satisfies

lim py(X, =b) = 1.

n—oo
The task of the prediction Y, is to predict the param-
eter b associated with the process, and takes values in
{0,1}. The loss £ associated with the prediction is de-
fined to be

Lpp, X1, Y,) = 1{Y,, # b}.

We now show that the condition deemed necessary in
Theorem 2 holds for (P,£). To see this, let P] be the
class of processes py, € P such that for all n > 1

po(Xp =b) = 1—n.

The n-predictability of P follows because pp(X; =
b) > 1 —n, and a predictor that predicts X; for all
time steps > i will incur loss 0 past time step i when-
ever X; = b.

We show that the collection (P,{) is, however, not
e.a.s.-predictable. To see this, suppose such a predic-
tion rule ® exists. We first observe that there exists a
number N(m) such that for all finite binary sequences
X1, Ty of length m and all b € {0,1}

D(x1,-+ T, b, -+ b) =0, (2)
whenever the number of b’s is larger than N(m). This
holds because each of the 2 - 2™ semi-infinite strings
T1,* ,Tm,b,... corresponds to a process in P that
assigns probability 1 to that string. If (2) did not hold,
® would make an infinite number of errors on one of

these processes, contradicting the e.a.s.-predictability
of ® on (P,0).

We now construct the following process pog in P that
will break ®. Let My = 0, My = N(0) + 1, and re-
cursively define M,, = N(M,_1) + 1. The process pg
18 partitioned into independent sample blocks, where
the nth block ranges from Xy, 41 to Xar, ., such that
Xmp41 =X 42 =+ =X, and

po(Xnr, 11 =0)=1— S
n
Let A,, be the event that Xpr,+1 = 1. We have A,
happens infinity often almost surely by converse Borel-
Cantelli lemma, since Y, po(An) = 31 = oo and
A, ’s are independent. By construction, ® makes er-
rors in sample block n if A, happens, hence ® makes
infinitely many errors almost surely. But clearly py €
P, contradicting the e.a.s.-predictability of ®.

To see that the sufficient condition of Theorem 2 is not
necessary, consider the processes we constructed above
with M,, arbitrary and p(Xas,+1 =b) =1 — 5. The
e.a.s.-predictability follows by Borel-Cantelli lemma
but the sufficient condition of Theorem 2 does not hold
for any decomposition of P (using a diagonalization
argument).

Nevertheless, we can provide conditions that are both
necessary and sufficient for e.a.s.-predictability for sev-
eral natural unsupervised settings.

Theorem 3. Let P be a model collection of i.i.d. mea-
sures over X°°, { is a loss function that only depends
on the prediction and underlying source but not sam-
ples, i.e. £:PxY — {0,1}. If|Y) is finite, then (P, L)
is e.a.s.-predictable iff there exists a nesting {Pn }n>1
of P such that for all n >0, (Pn,{) is n-predictable.

Proof. Applying Theorem 2 to (P,{), we know that
if the universal nesting exists, then (P,/) is e.a.s.-
predictable. Theorem 2 also guarantees that if (P, ¢) is
e.a.s.-predictable, then for all n > 0, there is a nesting
{P"} where P is n—predictable.

?
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We prove the theorem by showing that if there exists
some 1 > 0 for which there is a nesting {P;} where
(P;,£) is n-predictable, then this nesting is also uni-
versal for all n > 0, i.e. (Py,¥) is also n-predictable
for all n > 0.

To do so, we show that if (P, £) is (ITl\ —e¢)-predictable
for any € > 0 then it is n-predictable for all n > 0.
Suppose N be the sample size such that a predictor ®
makes no error past N with probability > 1 — ﬁ + €.

For any n < ﬁ —elet M = 21%(;’/2) and consider
a sample of size MN. We split this sample into M
blocks of size N each, and apply the predictor ® to
each block, obtaining a prediction Y; € Y for the i'th
block. Our prediction for the sample of size M N is an
element of ) that repeats most often in Y7,---,Ya,.

By Hoeffding bound with probability > 1 — 7, any el-
ement of ) that incurs loss 1 against the underlying
distribution will appear at most %I —€/2 times among
Y1,...,Yy. But at least one element of ) appears
more than 1/|Y| among Y7, ..., Yy, and any such ele-
ment must incur 0 loss. The corollary follows. O

We give another example, which illustrated how The-
orem 2 can be used to derive the previously known
results.

Example 2. The task is to predict whether the pa-
rameter p of an ii.d. Bernoulli(p) process is rational
or not using samples from it.

Therefore our predictor
®:{0,1}" — { rational , irrational }.

In (Cover, 1973), Cover showed a scheme that pre-
dicted accurately with only finitely many errors for
all rational sources, and for a set of irrationals with
Lebesgue measure 1. Here we show a more transpar-
ent version of Cover’s proof as well as subsequent re-
finements in Koplowitz et al. (1995) using Theorem 2
above and an argument evocative of reqularization.

Define the loss {(p, X7, Y,) = 0 iff Y,, matches the
wrrationality of p. Note that the setting is what we
would call the “unsupervised” case and that there is
no way to judge if our predictions thus far are right or
wWrong.

Let r1,19,- -+ be an enumeration of rational numbers
in [0,1]. Let B(p,e) be the set of numbers in [0,1]
whose {1 distance from p is < €. For all k, let

Sp = ([o, B, ]:2)) U{re,- i)

be the set that excludes a ball centered on each rational
number, but throws back in the first k rational num-
bers. Note that the Lebesgue measure of Sy is 1 — %

Now Sy contains exactly k rational numbers, the rest
being irrational. Moreover, Sy contains no irrational
number within distance < 27%/k from any of the in-
cluded rationals. Hence, the set By of Bernoulli pro-
cesses with parameters in Sy is n-predictable for all
n > 0.

From Theorem 2, we can conclude that the collection

B Uren Br is e.a.s.-predictable. Note that every

rational number belongs to S = |J,cn Sk, and the set
of irrational numbers in S has Lebesque measure 1,
proving (Cover, 1978, Theorem 1).

Conversely, let S C [0,1] and B be the Bernoulli vari-
ables with parameters in S. We show that if B is e.a.s.-

predictable for rationality of the underlying parameter,
then S = Uy Sk such that

inf{|r—z| : r,z € Sk, r is rational, x is irrational} > 0.

Since B is e.a.s.-predictable, Theorem 2 yields that for
any n > 0, the collection B can be decomposed as B =
Uy B where each By, is n-predictable and Yk, By C
Bit1. Let Sk be the set of parameters of the sources
in By. Intuitively, n—predictability of By implies that
we must have

inf {|u —v| : u,v € Sk, u rational, v irrational} > 0,

or else we would not be able to universally attest to ra-
tionality with confidence 1 —n using a bounded number
of samples. See Supplementary Material for a formal

proof.

Suppose we want S to contain all rational numbers
in [0,1]. Then it follows (see supplementary mate-
rial for a proof) that the subset of irrational num-
bers of Sy must be nowhere dense. Therefore, the set
of irrationals in S is meager or Baire first category
set (Rudin, 2006, Chapter 2.1), completing the result
in (Koplowitz et al., 1995).

While Theorem 2 may look rather innocuous, it pro-
vides a partial resolution to an open problem in Dembo
and Peres (1994). Let #; and H2 be disjoint classes
of distributions over R?. Let H be the class of all
i.i.d. random processes with marginal distributions
from H; U Ha. Dembo and Peres (1994) considered
the problem of identifying whether the marginal of a
i.4.d.random process in H comes from H; or Hy by ob-
serving samples from it. The prediction domain now
is ¥ = {1,2} and loss is ¢(p, X7",Y,,) = 1{p € Hy, }.
Dembo and Peres (1994) showed that if the distribu-
tions in H1 U H, have a density and there exists some
q > 1 such that the ¢g-th norm of the density is finite,
then (H,¥) is e.a.s.-predictable iff the distributions in
H; and Hs are F,-separable (see Supplementary ma-
terial for definition) under any metric consistent with
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weak convergence topology. Dembo and Peres (1994)
ask whether the condition ¢ > 1 can be removed. We
give a positive answer to this problem as follows.

Corollary 1. Suppose there exists a monotonically in-
creasing function G : RT — RY with lim, ., G(z) =
oo such that for any distribution p € Hi U Ho with
density fp(x), we have Ex,[G(fp(X))] < co. Then
(H,0) is e.a.s.-predictable iff the distributions in H,
and Ho are F; separable under weak convergence topol-

0gy.

The proof and a discussion of the Corollary above is
in the Supplementary material.

4 Capturing the final error

While e.a.s.—predictability is an attractive setup when
considering rich model classes, we would like to see
if an estimator that makes finitely many errors has
finished making the errors. Namely, can we obtain a
stopping rule that identifies the last error? Recall that
a stopping rule is a function 7 : X* — {0, 1}, such that
7(y) < 7(x) if y is a prefix of x. We interpreted 7 =0
as the waiting period, and 7 = 1 after the rule has
stopped waiting.

Definition 4. A collection (P,{) is said to be even-
tually almost surely (e.a.s.)-learnable, if for any con-
fidence n > 0, there exists a universal prediction rule
®,, together with a stopping rule T,, such that for all
peP

p (ié(p, X1, @ (XTH)T(XT) > 0) <n,
k

and
. N
p(nlggoT”(Xl) = 1) =1.
Clearly, e.a.s.-learnability implies e.a.s.-predictabililty.
However, the converse is not true, see (Wu and San-
thanam, 2019) for an example. We leave the the proof
of the theorem below to the supplementary material.

Theorem 4. Any e.a.s.-learnable (P,{¢) is e.a.s.-
predictable.

To characterize e.a.s.-learnability, we define identifia-
bility as follows.

Definition 5. LetU be a collection of probability mea-
sures over X°°,V CU. The class V is said to be iden-
tifiable in U if for any n > 0 there exist stopping rule
Ty, such that

1. p(le 7 (XT) = 1) —1forpeV;

2. p (nILrI;oT”(X{L) = 1) < forp e U\V.

Example 3. Let U be the collection of all i.i.d. pro-
cesses with marginal distributions over [0,1], and let
V C U be the set of distributions whose marginal mean
is not equal to t for some fized t € [0, 1].

We show V is identifiable inU. To see this, let €, = %
Consider the following stopping rule. At stage n, we

obtain a sample of size %ZH/") and check whether

the empirical mean is fwithin"en distance of t. If not,
we stop, else we continue to stage n + 1.

We show that this stopping rule identifies V in U us-
ing Definition 5. Suppose the underlying process has
marginal mean equal to t. By Hoeffding bound, with
probability at most /2™, the empirical mean will be
outside distance €, to t. Therefore, the stopping rule
stops with probability at most n by a union bound. If
the marginal mean does not equal t, since €, — 0, the
probability that the empirical mean will be within dis-
tance €, tot is at most 5. By Borel-Cantelli lemma,
this happens only finitely many times since ) 5% < 00,
and the stopping rule stops almost surely.

We now provide the following characterization of
e.a.s.-learnability.

Theorem 5. Let P be collection of probability mea-
sures. Then (P,f) is e.a.s.-learnable if for all m > 0
there exists a countable decomposition P = |J,,~1 PJ!
such that for all n, B

1. (P1,0) is n-predictable,

2. Py is identifiable in P.

Moreover, the condition is necessary if the measures
in P areii.d. over X*°.

Proof. We first show that the stated conditions on an
collection P and loss £ are sufficient to guarantee that
P is e.a.s.-learnable. Namely, for all n > 0, we will find
an estimator ® and a stopping rule 7 such that for all
p € P, the probability ® incurs non-zero loss after 7
stops is < 7.

Now the conditions stated imply that for all n > 0,
there is an identifiable nesting P = | J,,c Pn and a se-
quence of numbers {m,, : n > 1} such that each P, is
#-predictable with sample size m,,. Since P, is iden-
tifiable, there is a stopping rule o, that stops after a
finite time on P\P,, with probability at most n/2"*!
and stops finitely almost surely on P,,.

We will assume without loss of generality that o,, only
stops on sequences of length > m,,.

The stopping rule 7 for (P,£) stops if for some n, o,
has stopped. Let N be the smallest such number. The
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prediction for (P, ¢) is now the n/2—predictor for Py,
which we call ¢ .

For all n, define
A, ={X{°: 0, stops on X{'}.

We claim that:

1. The stopping rule 7 stops with probabilty 1. This
is because p € Py for some k, we have o stops
with probability 1.

2. The probability that 7 stops but @ incurs non-
zero loss is < 7. The probability that 7 stops
but p ¢ Py is < > 2 p(A;) < n/2. Finally,
since Py is /2—predictable with sample size my,
the probability that @ predicts incorrectly after
sample size my (which we are guaranteed is the
case since we assumed oy only stops on sequences
with length> my) is < n/2. The claim follows by
union bound.

Now, suppose (P, ¢) is learnable, and P are i.i.d. mea-
sures on X*°. For any n > 0, consider the stopping
rule 7, /5 and the estimate ®, /, that learns (P, /). Let

T, = {Xloo cTy2(XT) = 1}

be the set of sequences on which 7 has stopped at or
before step n. Now for all n, let

Po={peP:p(T,) >1—-n/2}.

Clearly, we have P,, C Pp41 and that |J,,~, Pn = P.
For all n, and for all p € P,, ®,,, incurs non-zero
loss on samples on length n with probability < 7/2
by construction, namely, P, is n—predictable by the
union bound.

We will now show that P,, are identifiable in P to wrap
up the theorem.

For any assigned confidence §, we construct a stop-
ping rule 75 that stops after a finite time with prob-
ability 1 when the underlying process is from P,, and
with probability at most & on processes from P\P,,.
To do so, we choose an arbitrary sequence {e,,} with
em — 0 as m — oo. The stopping rule is partitioned
into phases. At phase m we estimate p(7T},) with con-
fidence 1 — z‘fn and error bounded by e,,/4, by con-
sidering independent sample blocks of length n. If the
estimate is larger than 1 — /2 + e, we stop, other-
wise we continue to phase m + 1. Now, if we have
p(Ty) > 1 —n/2, then there exists some number M
such that p(T,) > 1 —n/2 + 2e,, for all m > M.
Therefore, for all m > M, with probability at most
4/2™ we will not stop at phase m. By Borel-Cantelli
lemma, with probability 1 we will stop in a finite time.

A similar argument yields that if p(T;,) < 1—7/2, then
we stop with probability at most J. O

We now provide an example that shows that the con-
dition in Theorem 5 is not necessary even for Markov
processes with 2 states.

Example 4. We consider the Markov process with
state space {0,1}. Let P be the class that contains the
single state 1 process pg, and processes p. with transi-
tion probability p.(1|0) = p(0]1) = € for all € € (0,1).
We assume the initial state of p. to be uniformly sam-
pled from {0,1}.

We define the loss £(p, X7, Y,) = 0 if X1 = 1 or
X1 =0 but Ik < n, Xy =1, the loss is 1 otherwise.
Note that, the loss only depends on the samples X7" but
independent of the prediction Y, . Thus the prediction
does not affect the loss.

We now observe that the class is e.a.s.-learnable. One
simply stops if the initial state is 1, else we wait until
we see 1.

We now show that the decomposition of Theorem &
does not exist for (P, ). Suppose otherwise, we have
a decomposition {Pp }n>1 such that each (Py,¢) is 1/4-
predictable. We know that for all n > 1 there exists a
number €, such that for all p. € P, we have € > €,.
Otherwise, we will not see state 1 in the sample before
a bounded time step if the initial state is O (which hap-
pens w.p. 1/2), thus violating the 1/4-predictability of
Pn. We now assume py € Py, for some k. We show
that Py, is not identifiable in P. Taking the parameter
n = 1/4 in Definition 5, we know that any T must stops
on the all 1 sequence at some point Ny, since py € Py.
Now, taking any process pe that is not in Py with € < e
and small enough so that (1 — €)No > 3/4, we have T
stops on p. with probability at least 3/8 > 1/4, contra-
dicting identifiability.

Note that the reason why construction of Example 4 is
possible is because the number of states of the process
is not known a-priori. Indeed, with arguments similar
to the necessity part of Theorem 5 in the i.i.d. case,
we can show that if P is a collection of irreducible fi-
nite Markov processes with fixed number of states then
the necessary condition in Theorem 5 still holds. We
should also emphasize that the stopping rule derived
from the sufficient condition of Theorem 5 is not meant
to be optimal. For specific problems, there will often
be more natural stopping rules.

5 Applications

We now provide some interesting concrete applications
of the e.a.s.-predictability framework. To begin with,



Prediction with Finitely many Errors Almost Surely

we first prove the following theorem, which is a direct
corollary of Theorem 2.

Theorem 6. Let P the set of all i.i.d. processes with
marginal distributions over [0,1]% for some d > 1.
For all A C [0,1]%, we define loss La(p, X1, Y,) =
H{I{Ex,[X] € A} # Y.}, where the prediction Y,
tries to decide whether Ex..,[X] € A or not. We have
(P,€4) is e.a.s.-predictable if A is closed in [0, 1]<.

Proof. Let Cp, = {x € [0,1] : d(x, A) > L}. We have
U,,>1 Cm = [0,1]%\ 4, since A is closed. Let P4 be the
processes in P with marginal mean in A and P,, be
the processes with marginal mean in C,,. Define P/, =
PaUPp. We have P, C Py, .1 and P = U,,>; Prn-
To apply Theorem 2, we have to show that (P;,,¢4) is
n-predictable for all n > 0. This can be easily achieved
by simply checking whether the empirical mean is close
to A or Cp,. Since d(4,Cy,) > L, one will be able to
find bounded sample size so that we will make the right
decision with arbitrary high confidence. O

For any function f : [0,1]¢ — {0,1}, we will be able
identify a set Ay = {x € [0,1] : f(x) = 1}. Let
Ay,--+ A, C [0,1]? be finitely many sets such that
(P,24,) is e.a.s.-predictable for all 1 < ¢ < n. Let
g : [0,1]¢ — {0,1} be an arbitrary function, denote
f(x) =914, (x), -+ ,14,(x)). It is easy to show that
(P,L4,) is also e.a.s.-predictable.

We now consider the following problem setup. Let
X be a d x d random matrix such that each entry
X(4, j) is a Bernoulli random variable. We denote E[X]
to be a (deterministic) matrix that takes expectation
entry-wise on X. Let Xy,Xs,--- be i.i.d. realization
of X, which are binary matrices. We will try to iden-
tify the properties of E[X] by observing the samples
X1,Xg, +-. Clearly, we can associate properties of
E[X] with subsets of [0, 1]9*¢. We will denote P to be
the class of all 4.i.d. Bernoulli random matrices pro-
cess. We say a property of E[X] is e.a.s.-predictable if
(P,£4) is e.a.s.-predictable where A C [0,1]9%? is the
subset corresponding to the property.

Theorem 7. The singularity of E[X] is e.a.s.-
predictable.

Proof. Note that the determinant is a continuous func-
tion w.r.t. the entries of the matrix. Thus subsets in
[0,1]%*? corresponding to the determinant being 0 is
closed. The theorem follows by Theorem 6. O

Theorem 8. To determine if E[X] has rank k is
e.a.s.-predictable for all k.

Proof. Note that to check whether a matrix has rank
k, one only need to check the maximum non-singular

square submatrix is of dimension k. Thus the property
can be expressed as function of finite singularity test.
By Theorem 7 we know that the property is still e.a.s.-
predictable. O

Note that the realizations Xi,--- ,X, will have full
rank with high probability even when the entries are
Bernoulli(1) (i.e. E[X] has rank 1). Theorem 8 shows
that one still be able to infer the rank of E[X] from
Theorem 9. To determine if E[X] has eigenvalue of
multiplicity more than 1 is e.a.s.-predictable.

Proof. For any matrix A, consider the characteristic
polynomial py of A. We know that the coefficients
of pa are polynomials of the entries of A. We now
only need to check if GCD(p4,p)y) = 1, where p/, is
the derivative of p4. Note that this can be done by
checking the resultant of p4, p'4 is zero. Since resultant
is continuous functions of the coefficients, the theorem
follows using Theorem 6. O

While one should expect most of properties of matrix
to be e.a.s.-predictable, we have the following open
problem.

Problem 1 (Open Problem). Is determining whether
a matriz is diagonalizable e.a.s.-predictable?

6 Discussion

At first glance, it may not be clear what guaranteeing
finitely many errors over an infinite horizon implies for
finite sized samples. But, as we discussed in Section 3,
the e.a.s.-predictability implies that one would be able
to decompose the class into uniformly predictable sub-
classes. This provides us a natural regularization when
dealing with finite sized samples. Depending on the
sample we have at hand, we would only work with the
subclass of sample complexity that matches our sam-
ple size. As we obtain more and more samples, we will
then loosen the restrictions. e.a.s.-predictability guar-
antees that such a strategy would eventually succeed
for any model in the class. In many cases, e.g. su-
pervised setting, e.a.s.-predictable classes are the only
situation where we can hope for a consistent regular-
ization that leads to eventual success in the worst case.

The more restricted (yet more practical) e.a.s.-
learnability setup, provides a generalization to
the classical uniform sample complexity guarantees.
Rather than using the sample size as a means to de-
termine convergence properties, e.a.s.-learnability can
be interpreted as allowing arbitrary functions of the
sample (not just the sample size) to determine conver-
gence properties.
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