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1 MISSING PROOFS

Lemma 1. For an arbitrary hyperspherical sector S in B(R, x),

|S ∩ ∂B(r, x)|
|∂B(r, x)|

=
|S ∩ ∂B(R, x)|
|∂B(R, x)|

=
VS(R)

VB(R)
=

1

2
Isin2(φ)(

d− 1

2
,

1

2
), (1)

where |A| is the volume of a set A ∈ Rd, ∂B(r, x) represents the surface of B(r, x).

Lemma 2. If q ∼ N (0, σ2Id), Ψ(R; q) = Gamma( R
2

2σ2 ; d2 , 1),

Proof.

Ψ(R; q) =

∫
||z||2<R

q(z)dz

=

∫
||z||2<R

(2πσ2)−d/2e−
zT z
2σ2 dz

=

∫ R/σ

0

(2π)−d/2e−
r2

2 dr

=

∫ R/σ

0

rd−1

2d/2−1Γ(d2 )
e−

r2

2 dr

=

∫ R2

2σ2

0

u
d
2−1e−u

Γ(d2 )
du

= Gamma(
R2

2σ2
;
d

2
, 1),

Lemma 3. For an arbitrary continuous distribution q and angle φ, there exists a sector S∗ on the ball B(R, x)
with its colatitude angle equal to φ, which satisfies

q(S∗)

q(B(R, x))
=
VS∗(R)

VB(R)
=

1

2
Isin2(φ)(

d− 1

2
,

1

2
).

Proof. First of all, a sector S(a) is fixed by its central point a ∈ ∂B(R, x) and the colatitude angle φ. We can

check all possible sectors by going though all central points on ∂B(R, x). Consider the integral of q(S(a))
q(B(R,x)) with

all possible sectors ∫
a∈∂B(R,x)

q(S(a))

q(B(R, x))
da

=
1

q(B(R, x))

∫
a∈∂B(R,x)

∫ R

0

q(S(a)) ∩ ∂B(r, x))drda
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=
1

q(B(R, x))

∫
a∈∂B(R,x))

∫ R

0

∫
z∈S(a)∩∂B(r,x)

q(z)dzdrda

=
1

q(B(R, x))

∫ R

0

∫
a∈∂B(R,x)

∫
z∈S(a)∩∂B(r,x)

q(z)dzdadr

=
1

q(B(R, x))

∫ R

0

∫
z∈∂B(r,x)

∫
a∈S(R z

||z||2
)∩∂B(R,x)

q(z)dadzdr

=
1

q(B(R, x))

∫ R

0

∫
x∈∂B(r,x)

|S(R
z

||z||2
) ∩ ∂B(R, x)|q(z)dzdr

Notice |S(R z
||z||2 )∩∂B(R, x)| = 1

2Isin2(φ)(
d−1

2 , 1
2 )|∂B(R, x)| is the volume of the hyperspherical sector S(R z

||z||2 )

on the surface of the ball, which is only depend on the colatitude angle φ and unrelated to z and r, therefore we
have ∫

a∈∂B(R,x)

q(S(a))

q(B(R, x))
da

=
1

q(B(R, x))

∫ R

0

∫
z∈∂B(r,x)

|S(R
z

||z||2
) ∩ ∂B(R, x)|q(z)dzdr

=
1

q(B(R, x))
∗ 1

2
Isin2(φ)(

d− 1

2
,

1

2
)|∂B(R, x)|

∫ R

0

∫
z∈∂B(r,x)

p(x)dzdr

=
1

2
Isin2(φ)(

d− 1

2
,

1

2
)|∂B(R, x)|

Thus the average of q(S(a))
q(B(R,x)) on ∂B(R, x) is

1

|∂B(R, x)|

∫
a∈∂B(R,x)

q(S(a))

q(B(R, x))
da =

1

2
Isin2(φ)(

d− 1

2
,

1

2
),

which indicates there must exist a sector S∗ with colatitude angle φ such that q(S∗)
q(B(R,x)) = VS∗ (R)

VB(R) (because

q(S(a)) is continuous with a). Notice the volume of the sector is only related to the l2 norm of δ.

1.1 Proof of proposition 2

Proposition 2. When R > Ψ−1(g(x); q), there exists an perturbation δ, which fixes a hyperspherical sector S1

in B(R, x) := {z| ||z − x||2 < R} (Equation 1.1 left) and a classifier h(x) = cx1(x∈S′1) such that

p({z|h(x+ z) = cx}) = q(S′1) = g(x), (2)

and

q(S1)

q(B(R, x))
≤ VS1(R)

VB(R)
. (3)

For brevity we set q(S) := Pz∼q(z ∈ S) for a set S ⊂ X.

Proof. Since R > Ψ−1(g(x); q), we have Ψ(R; q) > g(x). First we can select the colatitude angle φ such that
1
2Isin2(φ)(

d−1
2 , 1

2 ) = 1− g(x)
Ψ(R;q) , then according to Lemma 3, we can select a sector S1 with this colatitude angle,

which satisfies q(S1)
q(B(R,x)) =

VS1 (R)

VB(R) . In this case

1− g(x)

Ψ(R; q)
=

1

2
Isin2(φ)(

d− 1

2
,

1

2
) =

VS1
(R)

VB(R)
=

q(S1)

q(B(R, x))
.

Notice q(B(R, x)) = Ψ(R; q), we have q(S1) = Ψ(R; q)− g(x) and g(x) = q(S′1). Obviously the sector S1 satisfies
Equation 2 and Equation 3 in preposition 2. Therefore we can select the corresponding perturbation δ and
classifier h.
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Figure 1: The classifier h and disturbance δ we choose.

1.2 Proof of proposition 4

Proposition 4. When d ∈ [103, 107] and ε ∈ [10−6, 1],√
1− I−1

ε (
d− 1

2
,

1

2
) <

5√
d

(4)

Proof.
√

1− I−1
ε (d−1

2 , 1
2 ) is too complicate to be analyzed theoretically, luckily we have numerical approaches

to evaluate it and compare it with 5√
d
. As

√
1− I−1

ε (d−1
2 , 1

2 ) decreases with ε, we only need to show√
1− I−1

10−6(d−1
2 , 1

2 ) < 5√
d
. On Equation 1.2 we plot log10( 5√

d
−

√
1− I−1

10−6(d−1
2 , 1

2 )) with respect to log10(d),

and the plot shows that the difference between 5√
d

and
√

1− I−1
10−6(d−1

2 , 1
2 ) is always larger than 0.

Figure 2: Numerical evaluation of 5√
d
−
√

1− I−1
10−6(d−1

2 , 1
2 ).
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1.3 Proof of proposition 5

Proposition 5. For any distribution q ∈ Q := {q|q(z) = q(−z)}, there exist an perturbation δ which fix a
hyperspherical sector S1 in B(Rx, x) (Figure 1.3 left) and a classifier h(x) = cx1(x∈S′1)∨(x∈S′2) such that

q(S′1) = g≤Rx(x),

q(S′2) >
1

2
(1−Ψ(Rx; q)) ≥ g>Rx(x),

q({z|h(x+ z) = cx}) = q(S′1) + q(S′2) ≥ g(x),

and

q(S1)

q(B(Rx, x))
≤ VS1(R)

VB(R)

Proof. Since g≤Rx(x) := Pz∼q({z|h′(x+ z) = cx}∩{||z||2 ≤ Rx}) ≤ Ψ(Rx; q), we can choose the colatitude angle

φ such that 1
2Isin2(φ)(

d−1
2 , 1

2 ) = 1− g≤Rx (x)

Ψ(Rx;q) . Analogously to the proof of proposition 2, we can select a sector S1

such that g(x) = q(S′1) and q(S1)
q(B(Rx,x)) ≤

VS1 (R)

VB(R) .

Based on the definition of Rx, g>Rx(x) < 1
2 (1−Ψ(Rx; q)). Notice S′2 in figure 1.3 covers more than half of the

space outside B(x,Rx) and q satisfies q(z) = q(−z)∀z ∈ Rd,

q(S′2) = P(x+ z ∈ S′2) >
1

2
P(x+ z ∈ Rd/B(Rx, x)) =

1

2
(1−Ψ(Rx; q))

Thus q(S′2) > 1
2 (1−Ψ(Rx; q)) ≥ g>Rx(x). Therefore we can select the corresponding perturbation δ and classifier

h.

x
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2

Figure 3: The classifier h and perturbation δ we choose. The classifier h we chose is 1(x∈S′1)∨(x∈S′2)

.

1.4 Proof of corollary 3

Corollary 3. (lp smoothing with spherical symmetric distribution) If q is a spherical distri-
bution i.e. q(z) = q(||z||2), Proposition 2 and Proposition 5 hold for any perturbation δ, we can choose
δ = ( b√

d
, b√

d
, b√

d
, ..., b√

d
) and classifier h = 1x∈S′1 or h = 1x∈(S′1∪S′2) such that the lp certified radius

rg(x) <
5

d1− 1
p

Ψ−1(
g(x)

1− 5 ∗ 10−7
; q)

or rg(x) < Rx
5

d1− 1
p
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(a) σ = 1, d = 3 · 32 · 32, g(x) varies (b) σ = 1/
√
d, g(x) = 0.999, d varies (c) g(x) = 0.999, d = 3 · 32 · 32, σ varies

Figure 4: Our first upper bound (blue), Kumar et al. (2020)’s i.i.d. bound (red),Kumar et al. (2020)’s generalized
Gaussian bound (purple), Hayes (2020)’s bound (green), and the certified radius by Cohen et al. (2019) (orange).
We choose g(x) = 0.999 for the second and the third case because in practice, most g(x) values are close to 1.
Our upper bound is better in most cases. Hayes (2020)’s upper bound is below the certified radius since it
bounds the divergence-based radius which is not tight.

Proof. We only provide the proof under the condition of Proposition 2, the proof with Proposition 5 is analogously.

Firstly, if q is a spherical distribution, for an arbitrary hyperspherical sector S1 with colatitude angle φ,

q(S1)

q(B(R, x))
=

∫ R
0
q(S1 ∩ ∂B(r, x))dr∫ R
0
q(∂B(r, x))dr

=

∫ R
0
|S1 ∩ ∂B(r, x)|q(r)dr∫ R
0
|∂B(r, x)|q(r)dr

=

∫ R
0

1
2Isin2(φ)(

d−1
2 , 1

2 )|∂B(r, x)|q(r)dr∫ R
0
|∂B(r, x)|q(r)dr

=
1

2
Isin2(φ)(

d− 1

2
,

1

2
) =

VS1
(R)

VB(R)
.

Therefore we can select the sector S1 with the perturbation δ = ( b√
d
, b√

d
, b√

d
, ..., b√

d
), where q(S′1) = g(x). So

rg < ||δ||p =
b

d
1
2−

1
p

=
||δ||2
d

1
2−

1
p

.

According to Corollary 1, ||δ||2 is upper bounded by 5√
d
Ψ−1( g(x)

1−5∗10−7 ; q), Hence

rg(x) <
5

d1− 1
p

Ψ−1(
g(x)

1− 5 ∗ 10−7
; q)

2 EXPERIMENTAL SETTINGS

We train the ResNet110 on CIFAR-10 with 50000 training samples and 10000 test samples. We apply SGD
optimizer with momentum as 0.9 and the learning rate as 0.1. We also use a learning rate scheduler, which
reduce the learning rate to one tenth of its current value every 30 epochs. The total training steps are 90 epochs.
For the robust training with noise augmentation, we follow Cohen et al. (2019)’s method, which add a random
noise from N (0, σ2Id) to each training sample. The rest settings are the same as normal training.

3 ADDITIONAL EXPERIMENTS

In additional experiments we will repeat the three experiments Figure 4, Figure 5 and Figure 6 in our work with
Kumar et al. (2020)’s i.i.d. bound and generalized Gaussian bound separately.
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(a) ResNet110 without robust training on CIFAR10 (b) ResNet110 with robust training on CIFAR10

Figure 5: Comparison of different upper bounds and the certified radius for a random test sample from CI-
FAR10 with respect to σ. In (a) the original classifier is a ResNet110 without robust training and σ is
from a linear search space of [0.01, 0.1]. In (b) the original classifier is a ResNet110 with robust training and
σ ∈ {0.01, 0.02, 0.12, 0.25, 0.5, 1.0}.

(a) ResNet110 without robust training on CIFAR10 (b) ResNet110 with robust training on CIFAR10

Figure 6: Average of difference between upper bounds and certified radius over 100 random samples from
CIFAR10 with respect to σ. In (a) the original classifier is a ResNet110 without robust training and σ is
from a linear search space of [0.01, 0.1]. In (b) the original classifier is a ResNet110 with robust training and
σ ∈ {0.01, 0.02, 0.12, 0.25, 0.5, 1.0}.
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