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Abstract

Randomized smoothing is currently the most
competitive technique for providing provable
robustness guarantees. Since this approach
is model-agnostic and inherently scalable we
can certify arbitrary classifiers. Despite its
success, recent works show that for a small
class of i.i.d. distributions, the largest [, ra-
dius that can be certified using randomized
smoothing decreases as O(1/dY/?~1/?) with
dimension d for p > 2. We complete the pic-
ture and show that similar no-go results hold
for the ls norm for a much more general fam-
ily of distributions which are continuous and
symmetric about the origin. Specifically, we
calculate two different upper bounds of the I,
certified radius which have a constant multi-
plier of order ©(1/d'/?). Moreover, we extend
our results to I, (p > 2) certification with
spherical symmetric distributions solidifying
the limitations of randomized smoothing. We
discuss the implications of our results for how
accuracy and robustness are related, and why
robust training with noise augmentation can
alleviate some of the limitations in practice.
We also show that on real-world data the gap
between the certified radius and our upper
bounds is small.

1 INTRODUCTION

Most classifiers are vulnerable to adversarial examples
(Akhtar and Mian/||2018; [Hao-Chen et al.| 2020]). Slight
perturbations of the data are often sufficient to ma-
nipulate their predictions. This lack of robustness is
problematic, even in scenarios without adversaries, be-
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cause real-world data can be noisy or anomalous. Since
heuristic defenses can be easily broken (Carlini and
Wagner, |2017; [Tramer et al., |2020), a more promis-
ing direction is towards deriving adversarial robustness
certificates which provide provable guarantees and are
by definition unbreakable.

Probabilistic approaches based on randomized
smoothing (Cohen et al. [2019; |Li et al., 2019), in-
spired by connections to differential privacy (Lecuyer
et all [2019), tend to outperform deterministic ap-
proaches based on e.g. linear relaxations (Zhang et al.|
2020b), MILPs (Tjeng et al., 2019)), or Lipschitz
constant estimation (Zhang et all |2019). The biggest
advantage of randomized smoothing techniques is
that we can use them to certify arbitrary classifiers.
These approaches are model-agnostic and scalable
since they boil down to randomly perturbing the
input and recording the class corresponding to the
“majority vote” on the randomized samples. Given
any base classifier f(-) we can build a “smoothed”
classifier ¢g(-) that has comparable accuracy to f but
is amenable to (probabilistic) robustness guarantees.

Despite its success, randomized smoothing has several
limitations. Since it does not make any assumptions
about f it does not explicitly exploit any of f’s prop-
erties such as smoothness. Moreover, we need a large
number of samples (e.g. > 10%) to provide any mean-
ingful guarantees. An even more fundamental limi-
tation is that this approach suffers from the curse
of dimensionality: Kumar et al.| (2020)) have recently
shown that for a small class of i.i.d. distributions, the
largest [, radius that can be certified using randomized
smoothing decreases as O(1/d"/?~1/?) with dimension
d for p > 2. Here the I, certified radius r with respect
to a classifier g and a sample x is defined as the largest
radius r such that for all perturbations ¢ with ||6]], <
the prediction stays the same, i.e. g(z + ) = g(z).

In this paper we show that similar no-go results hold
more broadly, completing the picture in two different
ways. First, we show that for the I3 norm — which is
commonly studied w.r.t. adversarial robustness — the
curse of dimensional applies for a much more general



Completing the Picture: Randomized Smoothing Suffers from the Curse of Dimensionality

. Cubical distributions Spherical symmetric distributions .
] 1
1 Il 2l ol ||Z||g) 2-norm Uniform ‘I
1 Ve ¥4 & exp(—

' —— = exp(— ) b <x(1_‘_”1“;),& o (2] 1, < 2) [
' b '
1
1 1
1 . 1
' Infinity-norm Generalized Hzl13” =113 .
' Uniform Gaussian Gaussian < exp(= b ) H
' xI(l]zll, <4 distributions ~ N(0,6%I) '
1
' '
' Laplace distribution Izl P :
' 4
A Izl o exp(— Our [, Bound '
: 3 exp(—&) es eXP(‘T) ! 1
1 b Kumar’s /, Bound '
L] L]

K " . e Our [, Bound N

*. Cross polytope distributions i.i.d continuous distributions )

Figure 1: Popular families of smoothing distributions, each box refers to a certain family of distributions. All of
these distributions are continuous and symmetric about the origin and thus covered by our (I norm) bound.

family of smoothing distributions. Second, we extend
our results to [, norm (p > 2) certification with spheri-
cal symmetric distributions. On[Fig. 1| we show a Venn
diagram of the different families of distributions cov-
ered by our upper bounds, and the relations to previ-
ous work. Our main contributions are:

e We derive two upper bounds on the certified Iy ra-
dius for randomized smoothing with any continuous
and origin-symmetric distribution that have a con-
stant multiplier of order ©(1/d'/2).

e We derive an upper bound with a multiplier of order
O(1/d*~'/?) on the I, (p > 2) certified radius for
smoothing with spherical symmetric distributions.

We emphasize that ”origin-symmetric” and ”continu-
ous” are two common properties of all smoothing dis-
tributions that have been studied so far[l

We also discuss the implications of our theoretical re-
sults for how accuracy and robustness are related, and
why robust training with noise augmentation (Salman
et al. [2019) can alleviate some of the limitations in
practice. On CIFAR-10 we show that the gap between
the certified radius and our upper bounds is small.

Result Summary. We show that for an arbitrary
continuous and origin-symmetric distribution ¢, i.e.
Vz, q(z) = q(—=2), the certified Iy radius r4(z) of an
arbitrary sample x is bounded by

5 o1 g9(z) )
role) < 7g¥ <1_5107q /
or 1°g(3c)<R:vi

Vd

where g(z) = maxccc P.uq(f(x + 2) = ¢) is the prob-
ability of the majority class when using the distribu-
tion ¢ and the base classifier f, R, is a dominating

1Using asymmetric smoothing distributions is sub-
optimal since the adversary might exploit the asymmetry.

radius which we define as the minimum radius r s.t.
P.wq(f(z+2) =cz | ||2]]2 > 1) < 0.5, and

U(r;q) := /Z|2<T q(z)dz.

Furthermore, for ¢ ~ N(0,021;) we can compute in

closed-form U1 (z;q) = U\/2Gamma_1(x; 4.1).

2 RELATED WORK

There are mainly three general approaches to calcu-
late the certified radius for the smoothed classifier. The
divergence-based method (Li et all |2019; [Dvijotham
et al., 2020) provides a loose lower bound on the cer-
tified radius, while the method based on the Neyman-
Pearson lemma (Cohen et al., [2019) and the method
based on functional optimization (Zhang et al., 2020a)
both certify a tight lower bound of the radius. For the
latter two methods, the main idea is to relax the prob-
lem by optimizing over the set of all classifiers whose
expectation under the smoothing distribution matches
the expectation of the base classifier. Solving for the
worst-case classifier yields a tight lower bound. For
example, for Gaussian smoothing the worst-case clas-
sifier is linear with a decision boundary orthogonal to
the adversarial perturbation.

In this paper we study the problem of finding the best
possible radius which can be achieved using random-
ized smoothing, i.e. we derive an upper bound. [Hayes
(2020)) and [Zheng et al.| (2020) upper bound the radius
resulting from the divergence-based method. |Zheng
et al.| (2020) study a non-standard notion of certi-
fied robustness and provide only indirect evidence for
the hardness of the problem. Hayes| (2020]) prove that
the certified radius r < (—o®log(2+/g(z)(1 — g(x))))%
for p = 1,2 using generalized Gaussian distributions,
given the prediction score g(z) of a sample z. However,
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since the divergence-based radius is not tight, their up-
per bounds are actually below the certified radius, i.e.

below the tight lower bound (see [Fig. 4J).

Kumar et al.| (2020) and [Yang et al.| (2020a)) upper
bound the (tight) certified radius resulting from the
worst-case classifier optimization problem. We also fol-
low this approach. [Kumar et al.| (2020) show an upper

bound of r < T4 /ﬁ,p > 2 with i.i.d distribu-

1_
2d2

P
tions and r < d%‘lfl (4/log ﬁ),p > 2 for generalized
P

Gaussian distributions. To apply |Yang et al.[ (2020al)’s
upper bound, which is on the order of O(d'/P~1/2), the
smoothing distribution has to satisfy certain restrictive
conditions which do not always hold, i.e. even simple
Gaussian distributions with a large o are excluded.
Zhang] (2020) and Blum et al.| (2020) show that any
smoothing distribution for I, (p > 2) must have a large
component-wise magnitude, which similarly shows the
limitations of smoothing for certification.

Since most certificates focus on the common norms
such as lg, l1, 2, and [, studying the best achievable
performance of randomized smoothing on these norms
is important. Moreover, the smoothing distributions in
Kumar et al.| (2020) and Hayes| (2020) are limited to
a small family, but we expect a more universal bound
which can cover most smoothing distributions. We fo-
cus on defending against [, attack with a general fam-
ily of smoothing distributions. Our upper bounds are
tighter and more general. We further extend our re-
sults to I, (p > 2) certification with spherical symmet-
ric distributions which have not been covered before.

3 PRELIMINARIES

A classification task consists of a sample space X =
R4, a finite target space C' = {cy, 2, ..., cx }, and a clas-
sifier f: X — C. In randomized smoothing we choose
a distribution ¢ with probability density function ¢(z).
For an arbitrary data point z € R, the prediction c,
of the smoothed classifier on z is

= = ]P) ~ = .
¢p = argmax (2, ¢) = argmax P o (f(z + 2) = ¢)

A smoothed classifier is [, robust on sample x within
radius r if and only if

argmaxg(xz +9,¢) = ¢y, V||0]]p, <
ceC

To reduce the complexity of the problem, we consider
glx+9) =g(x+0,¢cp) =Prg(f(x+24+0) =cy). In
this setting, if g(z +6) > %, (z 4 ) is correctly clas-
sified with the perturbation §. This is tight for binary
classification and sound for more than two classes.

Evaluating g(z + §) for all § is computationally in-
tractable. So we find a worst-case classifier f* € F,
where F is the set of all functions bounded in [0, 1],
by solving the following optimization problem

f*=arg ]{peir}PZNq(f’(x +2+68)=cy)
sit. Poog(f'(x+2) = c) = g(2).

The minimum g(z 4+ 6) =P,q(f*(x + 2+ J) = ¢;) is
a lower bound of g(z + §). By solving

(1)

1
rg(z) =maxr s.t. g(z+9) > X Yo, <7, (2)

r>0
we obtain the [, certified radius of sample point z.

Selecting any classifier h € F which satisfies the con-
straint P,q(h(z+ 2) = ¢;) = g(z) and a perturbation
8, if Pog(h(z + 2+ 0) = ¢;) < 3, the I, certified ra-
dius ry(z) computed in [Eq. 2| has to be less than [|d]|,,
which yields a valid upper bound (Kumar et al.l2020).

The idea is to select h and ¢ such that the upper bound
can be easily evaluated for a large family of distribu-
tions. Next, we introduce the high-dimensional spher-
ical sector and construct h and § based on the special
properties of hyperspherical sectors.

Missing proofs are delegated to Sec. 1 in the appendix.

4 BOUNDING THE [, RADIUS

Definition 1. A hyperspherical sector is a part of an
lo hypersphere defined by a conical boundary with apex
at the center of the sphere.

We denote the colatitude angle ¢ as the angle between
the rim of the hyperspherical cap and the direction to
the middle of the cap when viewed from the center of

the hypersphere (Fig. 2| left).

Definition 2. Define the probability mass of distribu-
tion q inside an ly ball with radius r by

U(riq) = / RS (3)

the inverse function of ¥(r;q) is denoted by $~1(-;q).
Proposition 1 (Li (2011)). The volume of a hyper-
spherical sector with colatitude angle ¢ in a d-dim Iy
ball with radius r is

1 d—11
Vi(r) = §Ism‘2(¢)(T, 5)%(7‘)7 (4)
where Vi, (1) is the volume of a ly ball with radius r and
I (a b) _ focc ta_l(lft)b_l

Blo.b) 18 a reqularized incomplete
beta function.
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Figure 2: Illustration of the chosen perturbation ¢, and
the chosen classifier h(z) = c;1(zes7)-

Proposition 2. When R > ¥~1(g(z);q), there ex-
ists a perturbation § and a hyperspherical sector Si,
whose symmetric axis is along the perturbation §, in

B(R,x) :={z|||z — z||]2 < R} left) and a clas-
sifier h(z) = c;1(zes;) such that
p{zh(z +2) = ez }) = q(S1) = g(z),  (5)

() Va(R)
(BR.) = ValR) ©)

For brevity we set q(S) :=P,q(2+x € 5) for S C X.

Note that, for the construction of h we assume w.l.o.g.

that ¢, = 1. From we have

Lo 9@ aS)  _ Vs(R)
V(Riq)  a(B(R,x)) ~ Va(R) 7)
1 d-11, 1 d—1 1

.y — o1 (20,
2 eln2(¢)( 9 72) 9 17%( 9 2)

Let Qs := {q | q¢(2) = q(—2)} be the set of contin-
uous and origin-symmetric distributions. Q. includes
all distributions studied so far in the context of ran-
domized smoothing for continuous data. Randomized
smoothing certificates for discrete data (Lee et al.|
2019; [Bojchevski et al. |2020]) are out of our scope.

Proposition 3. For any distribution q € Qgs,
P.uq(h(z + 2+ 0) = ¢;) < & for a classifier h and
a perturbation & constructed as in[Proposition 3

Proof. The blue region in (right) illustrates the
probability mass of £ + § + 2,2z ~ ¢. According to
q(z) = q(—2), wehave P,y (x+d+2) = Pyy(r+0—2),
where x + 0 + z and 4+ § — z are in the two different
subspaces Aj, Ao generated by separating the sample
space with a hyperplane 67z = 67z + ||5]|3.

Notice that z — 2(z + 6) — z is a bijection between
the two sample spaces, thus the probability mass of
z+ 60+ 2 on Ay and A, should be same. From the
selection of classifier h, there exists one subspace Ao

in which all sample points are not classiﬁed as the

class of x by h (right blue part in [Fig. 2). Therefore
(33 + 5) <1- Pl+6+Z(A1) 2 O

Theorem 1. For any distribution q € Q.s, when R >
U—1(g(x),q), the certified radius of any sample x w.r.t.
the smoothed classifier is upper bounded by

_ d—11
7“9(90)<||f5|2SR\/1—12(1 w (55 ()

‘I'(R q)

where 171452, 1) ds the inverse of I.(%52, 1).

Proof. From [Eq. 7] we have

1 d—11 g(z)
51 115113 (777) -+
21-5 22 U(R;q)
10113 & -1 d—11
1- > s
< R 2 Lo ey (750 3)
[16]13 1 d—11
B2 cq g - =
R? = %bdﬁﬂ(2 ')

d—1 1
Sll2 < —I! 5. O
< | ||2—R\/ 2(1- ,Ln( 2 2

Proposition 4. Whend € [103,107] and € € [1079,1],

\/1—16%";1,;) < % (9)

Corollary 1. Let 2(1 — \Pg(m‘) )=

1075, we have R =

(R;q)
U (=81 ) and
5 _ €T
ro() < 2w (— 20 (o)

Vvd 1-5%10-7’

We call it ”distribution-based” as W is based on q.

Proof. From [Eq. 8 we have
8l < Ryf1—1I71 —_— ).
ol < ¢ e (D)
Since 2(1 — \I,g(gi)q)) = 107% according to

d—1 1 5
1-1" — o)< —.
¢ mh Lﬂ(Q Q) Vd

Therefore ry(z) < %‘1’71(%»(]) O

Trade-off Discussion. Whether there exists a funda-
mental trade-off between accuracy and robustness is an
active open question (Tsipras et al., [2019; Yang et al.|
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2020b)). We discuss the influence of different smoothing
distributions on robustness and accuracy. If we want
to maintain the accuracy of our classifier, the distri-
bution g should concentrate around the origin with a
constant distance. According to[Eq. 10 the certified ra-
dius will be of order O(1/+/d). In order to improve the
robustness of the smoothed classifier, ¥~1(-; q) should
be Q(v/d). In this case the probability mass of ¢ will be
pushed away from the origin, which might lead to poor
accuracy of the smoothed classifier. For example, con-
sider Gaussian smoothing, where the radius is given by
o®~1(g(z)). Here reducing o tends to increase the pre-
diction score g(z) but does not necessarily improve the
radius since we also multiply by . However, we cannot
assert that there is a trade-off between accuracy and
robustness. Robust training with noise augmentation
(Cohen et al., |2019; [Salman et al., [2019) can improve
both clean accuracy and robustness at the same time
(compared to standard training) since the classifier can
learn to correctly classify noisy instances.

In conclusion, we encourage to use a large value of o,
and develop more powerful training technique to main-
tain the clean accuracy. For example, using consistency
regularization (Jeong and Shin, 2020)) the clean ac-
curacy on MNIST with ¢ = 0.25 or ¢ = 0.50 are
both 99.2%. Relatedly, prepending a custom-trained
denoiser (Salman et al) 2020) to the classifier can
somewhat mitigate the effect of the input noise.

5 ALTERNATIVE BOUND FOR I,

Next, we derive a data-dependent upper bound which
accounts for the predictions around an instance x.

Definition 3. Given a sample point x, a classifier f,

and r > 0, the smoothed classifier can be written as
9(x) = g<r(x) + g>r(z), where

g<r(@) = Pong({2[f(x + 2) = co } O {[[2]l2 < 7})
go>r(2) = Peng ({2 f(x + 2) = co } O {[[2]l2 > 7})

Definition 4 (Dominating radius). Given a sample
point x, a classifier f and a smoothing distribution q,
we can calculate the dominating radius R, of x

Ry= inf (11)
9>r(z) <1
T—U(riq) 2

The intuition behind this definition is: As the radius
increases, the prediction of points outside the ball
B(xz,r) will be less influenced by the prediction of z.
If fjﬁ'&i}) < 1, we can say that z can hardly influ-
ence the prediction of the points outside the ball. This
radius depends mainly on the original classifier f and
the smoothing distribution ¢ via gs,(z).

Figure 3: The chosen classifier h(x) = ¢z 1(zes7)v(zesy)
and perturbation §.

Proposition 5. For any distribution q € Q.s, there
exists a perturbation § and a hyperspherical sector S1,

whose symmetric azis is along 6, in B(R,, )
left) and a classifier h(x) = cz1(zes1)v(zesy) such that

4(55) = g2 (2),
0(85) > 3 (1~ W(Rez0) > o (),
d({elh(a +2) = e2}) = a(S) +a(Sh) > g(a),

and

a(51) Vs (R)
q(B(Ry,z)) — V(R)

From here we have

_9<r(@) _ a(S) Vs (R)
\II(RQE;Q) Q(B(R:ml')) - VB(R) (12)
d—11 d—11
= Lo (5 5) = ()

Corollary 2. For any distribution ¢ € Qcs, if

‘(,]f(;l (z)) < 1-5-1077, the certified radius of any sample

x w.r.t. the smoothed classifier is bounded by

re(z) < Ry (13)

g

Proof. From we have

ol < By J1=1 7 ) (P50 5)-
- 22

ince 20— 35 > 107, fom

d—11 )
-1
\/1 =1 @ (T? 5) < —=. (14)

S|

20~ SRy

Therefore ry4(z) < R, O

E
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5.1 Estimating R,

Since we cannot compute R, in closed form, we design

an algorithm for estimating it. Our[Algorithm IJmainly

consists of two steps: a) calculating a table of £ >‘1j((:21)

values for different radii , and b) selecting the smallest

g 7($)
2l <05,

radius r with

In step a) we first draw N samples from N(0,021,)
and calculate the I3 norm of each sample. Then we
add the noise to the original sample and feed them
into the original classifier f. The output will be an
one-hot encoded vector. Next we create a linear search
space for R,, and a count table count[l,c] where [
is the length of the linear search space and c is the
number of classes. For each sample, if its I, norm is
larger than r of the search space, we add the one

hot prediction of this sample to countr,:]. In this
count|[r,c;]
way, >~ (countr,:]) an

g>r(m)
1-¥(r,q)

compute a probabilistic upper bound for these quan-
tities using the Clopper-Pearson confidence interval
(Clopper and Pearson, [1934) with a union confidence
level @ = 0.01. Because of the dependency among the
counts, we apply Bonferroni correction (Bonferroni)
1936)) and use a confidence level of ﬁ for each single

d count[0,c,]—count|r,c,]
>~ (count[0,:]—count[r,:])

and \I,S(:«(;)) respectively. We

are the ap-

proximations of

count[s, :]. We need an upper bound for the approach

g>r(x)
1=V (r,q)"

to be sound since R, is positively related to

In step b) we find the smallest r in the search space
with CP(count[s,y],> count[s,:],a) < 0.5 where
CP(-, -, a) returns the Clopper-Pearson upper bound.

Improved Upper Bound. We also notice a gap be-
tween the second upper bound (Eq. 13 and the cer-
tified radius on [Fig. 5| in our experiments. In [Eq. 14}

% is a loose bound of /1 — IQ_(i_gng m)(%’ ). It

Y (Rz;q)
possible to compute gS(R‘T (x)) with our |[Algorithm 1
Therefore we will also use the following improved up-

Y(Raz3q
per bound to compare with the certified radius

d-—11
2 72

)- (15)

R, [1-17} (
)

9<Rr., (®)
2(1‘ T (Rad)

6 EXTENSION TO [, (p > 2)

Similar to [Kumar et al.| (2020)), we extend our result
to I, robustness certification. Unlike them however,
our result applies to spherical symmetric distributions.
The spherical symmetric family and the exponential
family in [Kumar et al.| (2020)) are two important dis-
tribution families, and the Gaussian distribution is the
only intersection between them (see also .

Algorithm 1: Estimating R,

Input: input point z; target y; original classifier
f; max length L; number of samples N;
standard deviation o; weight function W;
search step a; number of classes c;
confidence level «;

sample 21, 29, ..., zy from N(0,0%1,);

compute Il norm of samples 7; = ||z;||2;

compute search space for R,: S = range(0, L, a);

create a count table: count[s, ¢] = 0;

fori=1: N do

compute one-hot predictions p; = f(x + 2;);

for j,s in enumerate(S) do

if r; > s then
| count[s,:] += p;;
end

end

end

for s € S do

g2 = fi&,((zs)) = CP(count/[s, y],

>_ count[s, :], 5757);

g1 = %75 = CP(count[0, y] — count[s, y],

> (count[0, :] — count[s,:])], ﬁ)’
if go < 0.5 then
| return s,gi;
end

end
return L, g1;

Corollary 3. If q is a spherical distribution i.e.
q(2) = q(||z||2), |Proposition 2 and|Proposition 5| hold

for any perturbation §. Therefore, we can choose § =
b

(%’%’%"“’ﬁ) and classifier h = c;l(zesy) or
h = cylpesiusy) such that the 1y, certified radius is
5 —1 g9(z) .
ro() < dlﬁq’ (1—5*10—7"] ’
5
or r4(x) < Rp—
9( ) dl_;

However, if ¢ is not spherical symmetric distributed,

q(]q;((i})m)) < “/,s;((]};) might not hold for this choice of §

and the radius is not necessarily of order O(1/ dlfi).

7 LIMITATIONS

Our results apply to randomized smoothing certificates
which are functions of only g(x). Better certificates
may be possible if more information is available to the
certification algorithm (Dvijotham et al., 2020). How-
ever, we suspect that similar curse of dimensionality
effects are still present for high dimensional problems.
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—— Our Upper Bound (Eq. 10)
Kumar's Bound

Hayes' Bound 8
Certified Radius

0.4

Dimension
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Figure 4: Our first upper bound (blue),

Kumar et al.| (2020))’s bound (orange), (2020)’s bound (green),

and the certified radius by |Cohen et al.|

2019) (red). We choose g(z) = 0.999 for the second and the third case

because in practice, most g(z) values are close to 1. Our upper bound is better in most cases. (2020)’s
upper bound is below the certified radius since it bounds the divergence-based radius which is not tight.

8 EXPERIMENTS

Since there is a closed form of the certified radius
re(z) = 0@ *(g(z)) for smoothing with a Gaussian,
q ~ N(0,021;) (Cohen et al.l 2019)), we conduct three
experiments with Gaussian smoothing to compare our
bounds with the existing methods. Since both the i.i.d
and the generalized Gaussian bounds in [Kumar et al.|
(2020)) are applicable for the Gaussian distribution, for
a fair comparison we show the minimum of their two
bounds in each case. In Sec. 3 of the appendix we plot
the two bounds by Kumar et al. (2020)) separately as
a reference in relation to the rest.

8.1 Evaluating our first upper bound for
different parameters

In this experiment we evaluate our first upper bound

derived in [Sec. 4] together with [Kumar et al.| (2020))’s
and 2020

’s bounds, and the certified radius.
For ¢ ~ N(0,0%1;) we have that

2

U(R;q) = / g(2)d> = Gamma( 2 &
lellz<R

Z1
207 2 )

where Gamma(-; ¢, 1) is the cumulative density func-

)9
tion of a Gamma distribution with shape g and rate
1. See Lemma 2 of Sec. 1 in the appendix. Therefore,

UL(z;q) = a\/ZGamma_l(x; 41).

There are three parameters o,d, and g(z) which con-
trol the value of the first upper bound. We mainly
focus on the l5 radius, because the I, bound of
and ours are exactly given by the respec-
tive 5 bounds multiplied by the same factor d*/?=1/2,
Since the results for [, radius look the same as the
results for [5 radius, we show experiments only for [5.

shows our first upper bound and the certified ra-
dius r4(z). In if we keep o and d as constants,

our upper bound is strictly larger than the real radius,
and the difference between them decreases when g(x)
increases. Note for values of g(z) = 1, which are most
relevant in practice, the gap is relatively small.

Next, we evaluate how large dimensions affects the cer-
tified radius while maintaining high clean accuracy. In
this case the smoothing distribution should be con-
centrated around the origin. We set o = 1/+/d, so the
probability mass is concentrated around the R? unit

ball. [Fig. 4(b)| shows that both the upper bound and

real radius decrease quickly as the dimension increases.

Finally, in we show that if we push the prob-
ability mass away from the origin, while keeping g(x)
and d invariant, the certified radius grows linearly with
o. This is actually the effect of robust training: main-
taining large g(x) while increasing o. However, for a
large enough o, the smoothed classifier starts behav-
ing like a constant classifier. This means that in prac-
tice we cannot maintain a large value for g(z) for all
instances, even with robust training. This is further
evidence for the curse of dimensionality, since ¢ has to
scale with d to obtain meaningful guarantees.

In all plots on[Fig. 4 Hayes| (2020))’s bound is below the
certified radius since it bounds the divergence-based
radius which is not tight. Our bound outperforms

(2020))’s bound in most cases.

8.2 OQur second upper bound on real data

Since our second upper bound is data dependent,
via the R, term , we evaluate it on
real data. Specifically, in this experiment we train a
ResNet110 on CIFAR10 with and without noise aug-
mentation. See Sec. 2 in the appendix for more details
about the training and the hyperparameters.

We calculate R, for different test instances with dif-
ferent values of ¢ on both ResNet models. We com-
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Figure 5: Comparing different upper bounds and the certified radius w.r.t. ¢ for a random CIFAR10 test sample,
and ResNet110 models without (a) and with (b) robust training. With robust training we can certify larger radii
since the model remains accurate for larger o. Our upper bounds have the smallest gap to the certified radius.
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(a) ResNet110 without robust training on CIFARI0
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(b) ResNet110 with robust training on CIFARI0
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Figure 6: The mean and standard deviation of the difference between different upper bounds and the certified
radius over 100 random samples from CIFARI0 with respect to o. In (a) o is from a linear search space of
[0.01,0.1], while in (b) o € {0.01,0.02,0.12,0.25,0.5,1.0}. Both of our upper bounds outperform the competitors.

pare the second upper bound with the certified ra-
dius from |Cohen et al| (2019). We draw 10° sam-
ples from N(0,0%1,) and calculate g<,(x) and g, (z)
with the Monte Carlo method. We then compute their
Clopper-Pearson upper bounds with confidence level
a = 0.01 and use these value for computing R,.
This means that these upper bounds are probabilis-
tic and hold with probability 1 — a. The pseudo-code

is shown in Our code is available at
https://github.com/YihanWu95/smoothing.

One Random Test Sample. We first use one ran-
dom instance from the test set to compare different
upper bounds. In this way we can closely examine how
the certified radius and the upper bounds change with
different values of the variance o.

illustrates the relation of o and the certified ra-
dius on models with and without robust training. For
the normally trained model we use different o from
0.01 to 0.1. As shows, when ¢ increases, the
radius will firstly increase and then drop down to 0.
Zero radius indicates g(z) < 0.5, i.e. x is not correctly
classified. If we train the model with noise augmenta-
tion, we are able to increase the certified radius while

keeping = corrected classified for larger o (Fig. 5(b)).

We also observe that (2020))’s bound is again

lower than the certified radius in both plots, and our
second bound is comparable to w
’s bound. Besides, the error between our im-
proved upper bound and the real radius is
surprisingly small. Similar results hold for other ran-
dom test samples as we show in the next experiment.

Average Over 100 Random Test Samples. As the
result from random sample cannot convincingly show
which bound is better, in this experiment we select
100 test samples randomly and calculate the mean and
the standard deviation of the difference between the
upper bounds and the certified radius. Note, the y-
axis of the plots show (upper bound — certified radius)
instead of the absolute value of the difference, because

the divergence bound by (2020) is smaller than

the certified radius (hence the difference is negative).

On we can see that our improved upper bound
outperforms the other bounds, and the gap
to the certified radius is close to zero for all values of
0. The standard deviation tends to increase with o for
most bounds, and is on average smaller for our bounds.
This shows that we cannot hope for a significantly bet-
ter certificate without making additional assumptions.
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9 CONCLUSION

In this work, we show that the limitations of high-
dimensional randomized smoothing extend to large
family of continuous and origin-symmetric distribu-
tions for [y adversarial robustness. Without a ro-
bust training procedure, the lo certified radius of the
smoothed classifier could be of order O(1/v/d). While
noise augmentation partially alleviates the issue, it
does not overcome it. We purpose two upper bounds
of the Iy certified radius, which indicate the smooth-
ing distribution must not be concentrated at the origin
and should assign a large probability mass to samples
at distance of order Q(v/d) to avoid the curse of di-
mensionality. However, this may lead to poor clean
accuracy. Our upper bounds outperform the existing
bounds for Gaussian smoothing, and the gap between
our bounds and the certified radius is small. We also
adapt our result to spherical symmetric distribution
for I, robustness. When p > 2, the worst case [, certi-
fied radius with spherical symmetric distributions is of
order O(l/dlf%). We complete the picture and show
that the curse of dimensionality applies broadly.

Future work. Extending our upper bounds for [,
(p > 2) to continuous and origin-symmetric distribu-
tions, and other tasks such as regression, is a viable
future direction. Upper bounding the certified radius
when additional information is available (e.g. second-
order constraints) can help us better understand the
limitations of randomized smoothing.
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