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A Table of Notations

The notations in this work are summarized in Table 1.

Table 1: Table of notations in this work.
Symbol Description

Data
xlk The kth labeled training example
xui The ith unlabeled training example

Labels
yk Actual label of xlk
ỹi Initialized proximal label of xui
ŷi Updated proximal label of xui
ỹi,j The jth entry of ỹi (Same for ŷi,j)
ỹ Proximal labels of the unlabeled mini-batch ỹ = {ỹi : i = 1, · · · , Bu} (Seen as a vector)
ỹt Proximal labels of the unlabeled mini-batch at the tth step1

ỹi,t The ith proximal label of ỹt
Functions

f(·;θ) Convolutional Neural Network parameterized by θ
Φ(·, ·) Non-negative function that measures discrepancy of distributions
L(·, ·;θ) Loss function of the data-label pair when the model parameter is θ
G(θ;D) Validation loss on the dataset D when the model parameter is θ
∇xg, Jxg The gradient or Jacobian function of a generic function g w.r.t. x

Parameters
θt Model parameters at the tth step
θ̃t Model parameters after the pseudo-update at the tth step (i.e., Eq. (4) in the main text)
θt,l The lth entry of θt (Same for θ̃t,l)

Gradients
∇θt Gradients of the pseudo-update at the tth step
∇θ̂t Gradients of the actual update at the tth step
∇θlt Gradients of labeled mini-batch at the tth step
∇ỹi Gradients of the proximal label ỹi
∇ỹ Gradients of proximal labels ∇ỹ = {∇ỹi : i = 1, · · · , Bu} (Seen as a vector)

Configurations
αt, βt Regular learning rate and meta learning rate at the tth step
N l, Nu Numbers of labeled examples and unlabeled examples
Bl, Bu batch sizes for labeled examples and unlabeled examples

1For a bit abuse of notations, the subscript t or τ of ỹ specify the current step number, while subscript (i, j) of indicates
the jth entry of the ith proximal label. The step subscript is ommited when there is no ambiguity.
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B Convergence Analysis of Semi-Supervised Learning with Meta-Gradient

Lemma 1. Let

G(θ;Dl) =
1

N l

N l∑
k=1

L(xlk,yk;θt) (1)

be the loss function of the labeled examples. Assume

(i) the gradient function ∇θG is Lipschitz-continuous with a Lipschitz constant L0; and

(ii) the norm of the Jacobian matrix of f w.r.t. θ is upper-bounded by a constant M , i.e.,

‖Jθf(xui ;θ)‖ ≤M, ∀ i ∈ {1, · · · , Nu} . (2)

If the labeled data loss is considered as a function of the pseudo-targets ỹ = {ỹi : i = 1, · · · , Bu}, i.e., H(ỹ) =

G(θ̃t+1(ỹ)), then the gradient function ∇ỹH is also Lipschitz-continuous and its Lipschitz constant is upper-
bounded by 4α2

tM
2L0.

Proof. Recall the SGD update formula

θ̃t+1 = θt −
αt
Bu

Bu∑
i=1

∇θL(xui , ỹi;θt), (3)

and we have
∂θ̃t+1,l

∂ỹi,j
= − αt

Bu
∂2L

∂ỹi,j∂θl
(xui , ỹi;θt). (4)

Then, we expand the partial derivative of each entry ỹi,j :

∂H

∂ỹi,j
=

1

N l

N l∑
k=1

∑
l

∂L
∂θl

(xlk,yk; θ̃t+1)
∂θ̃t+1,l

∂ỹi,j

=− αt
BuN l

N l∑
k=1

∑
l

∂L
∂θl

(xlk,yk; θ̃t+1)
∂2L

∂ỹi,j∂θl
(xui , ỹi;θt)

=− αt
BuN l

N l∑
k=1

∇>θ L(xlk,yk; θ̃t+1) · ∇θ
∂L
∂ỹi,j

(xui , ỹi;θt)

=− αt
Bu
∇>θG(θ̃t+1) · ∇θ

∂L
∂ỹi,j

(xui , ỹi;θt).

(5)

Then, for arbitrary ỹ1 and ỹ2,

∂H

∂ỹi,j

∣∣∣∣
ỹ=ỹ1

− ∂H

∂ỹi,j

∣∣∣∣
ỹ=ỹ2

=
αt
Bu

(
∇>θG(θ̃2t+1) · ∇θ

∂L
∂ỹi,j

(xui , ỹ
2
i ;θt)−∇>θG(θ̃1t+1) · ∇θ

∂L
∂ỹi,j

(xui , ỹ
1
i ;θt)

)
=
αt
Bu

(
∇>θ

∂L
∂ỹi,j

(xui , ỹ
2
i ;θt) ·

(
∇θG(θ̃2t+1)−∇θG(θ̃1t+1)

)
+

∇>θG(θ̃1t+1) ·
(
∇θ

∂L
∂ỹi,j

(xui , ỹ
2
i ;θt)−∇θ

∂L
∂ỹi,j

(xui , ỹ
1
i ;θt)

))
,

(6)

where θ̃rt+1 = θ̃t+1(ỹr), r = 1, 2. As the MSE loss is used for unlabeled data, we have ∂L
∂ỹi,j

(xui , ỹi;θt) =

−2(fj(x
u
i ;θt)− ỹi,j). Here, fj denotes the jth entry of f . Therefore,

∂H

∂ỹi,j

∣∣∣∣
ỹ=ỹ1

− ∂H

∂ỹi,j

∣∣∣∣
ỹ=ỹ2

= −2αt
Bu
∇>θ fj(xui ;θt) ·

(
∇θG(θ̃2t+1)−∇θG(θ̃1t+1)

)
,

∇ỹi
H(ỹ1)−∇ỹi

H(ỹ2) = −2αt
Bu

Jθf(xui ;θt) ·
(
∇θG(θ̃2t+1)−∇θG(θ̃1t+1)

)
.

(7)



By taking the norm, we have∥∥∇ỹi
H(ỹ1)−∇ỹi

H(ỹ2)
∥∥ ≤ 2αt

Bu
‖Jθf(xui ;θt)‖

∥∥∥∇θG(θ̃2t+1)−∇θG(θ̃1t+1)
∥∥∥ . (8)

By assumptions, we have

‖Jθf(xui ;θt)‖ ≤M,∥∥∥∇θG(θ̃2t+1)−∇θG(θ̃1t+1)
∥∥∥ ≤ L0

∥∥∥θ̃2t+1 − θ̃1t+1

∥∥∥ . (9)

Considering ∥∥∥θ̃2t+1 − θ̃1t+1

∥∥∥ =
αt
Bu

∥∥∥∥∥
Bu∑
i=1

(
∇θL(xui , ỹ

2
i ;θt)−∇θL(xui , ỹ

1
i ;θt)

)∥∥∥∥∥
≤ αt
Bu

Bu∑
i=1

∥∥∇θL(xui , ỹ
2
i ;θt)−∇θL(xui , ỹ

1
i ;θt)

∥∥
=

2αt
Bu

Bu∑
i=1

∥∥Jθf(xui ;θt) · (ỹ1
i − ỹ2

i )
∥∥

≤ 2αt
Bu

Bu∑
i=1

‖Jθf(xui ;θt)‖
∥∥ỹ1

i − ỹ2
i

∥∥
≤ 2αtM

∥∥ỹ1 − ỹ2
∥∥ ,

(10)

thus we have ∥∥∇ỹi
H(ỹ1)−∇ỹi

H(ỹ2)
∥∥ ≤ 4α2

tM
2L0

Bu
∥∥ỹ1 − ỹ2

∥∥ ,
∥∥∇ỹH(ỹ1)−∇ỹH(ỹ2)

∥∥ ≤ Bu∑
i=1

∥∥∇ỹi
H(ỹ1)−∇ỹi

H(ỹ2)
∥∥ ≤ 4α2

tM
2L0

∥∥ỹ1 − ỹ2
∥∥ . (11)

Therefore, ∇ỹH is Lipschitz-continuous with a Lipschitz constant Lt ≤ 4α2
tM

2L0.

Theorem 1. Assume the same conditions as in Lemma 1. If the regular learning rate αt and meta learning rate
βt satisfy α2

tβt < (4M2L0)−1, then each SGD step of Alg. 1 will lead to the decrease of the validation loss G(θ),
regardless of the selected unlabeled examples, i.e.,

G(θt+1) ≤ G(θt), for each t. (12)

Moreover, the equality holds if and only if ∇ỹ = 0 for the selected unlabeled batch at the tth step.

Proof. According to the Lagrange Mean Value Theorem, there exists ξ ∈ (0, 1), such that

H(ŷ) = H(ỹ) +∇>ỹH(ỹ + ξ(ŷ − ỹ)) · (ŷ − ỹ). (13)

Recall the update formula of the pseudo-targets, i.e., ŷ = ỹ − βt∇ỹ. Then, by the Lipschitz-continuity of ∇ỹH,
we have

H(ŷ) = H(ỹ)− βt∇>ỹH(ỹ − ξβt∇ỹ) · ∇ỹ
= H(ỹ)− βt∇>ỹH(ỹ) · ∇ỹ − βt

(
∇>ỹH(ỹ − ξβt∇ỹ)−∇>ỹH(ỹ)

)
· ∇ỹ

≤ H(ỹ)− βt∇>ỹH(ỹ) · ∇ỹ + β2
tLt‖∇ỹ‖22 (By (11))

= H(ỹ)− (βt − β2
tLt)||∇ỹ||2 (Since ∇ỹ = ∇ỹH(ỹ))

≤ H(ỹ). (Since βt < L−1t )

(14)

Therefore, G(θt+1) = H(ŷ) ≤ H(ỹ) = G(θt).

Moreover, as long as α2
tβt < (4M2L0)−1 is satisfied, the equality holds if and only if ∇ỹ = 0.
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Theorem 2. Assume the same conditions as in Lemma 1, and

inf
t

(
βt − 4α2

tβ
2
tM

2L0

)
= D1 > 0, inf

t
αt = D2 > 0. (15)

We further assume that the unlabeled dataset contains the labeled dataset, i.e., Dl ⊆ Du. Then, Alg. 1 achieves
E
[
‖∇θG(θt)‖2

]
≤ ε in O(1/ε2) steps, i.e.,

min
1≤t≤T

E
[
‖∇θG(θt)‖2

]
≤ C√

T
, (16)

where C is a constant independent of the training process.

Proof. According to (13) in the proof of Theorem 1, we have

G(θt+1) ≤ G(θt)− (βt − β2
tLt) ‖∇ỹt‖

2 ≤ G(θt)− (βt − 4α2
tβ

2
tM

2L0) ‖∇ỹt‖2 . (17)

Therefore,
G(θt)−G(θt+1) ≥ (βt − 4α2

tβ
2
tM

2L0) ‖∇ỹt‖2 ≥ D1 ‖∇ỹt‖2 . (18)

By taking the expectation, we have

E1∼t [G(θt)]− E1∼t [G(θt+1)] ≥ D1E1∼t

[
‖∇ỹt‖2

]
. (19)

Here, E1∼t indicates the expectation is taken over the selected mini-batches of the first t steps. Next, we show
E1∼t [G(θt)] = E1∼t−1 [G(θt)], which is intuitive as the value of θt only relies on the selected batches of the first
t− 1 steps. We rigorously prove it with conditional expectation:

E1∼t [G(θt)] = E1∼t−1 [Et [G(θt)|1 ∼ t− 1]] = E1∼t−1 [G(θt)] . (20)

Here, the first equality comes from the law of total expectation, while the second comes from the fact that G(θt)
is deterministic given the selected batches of the first t− 1 steps. Besides, when t = 1, (19) is adapted to

G(θ1)− E1 [G(θ2)] ≥ D1E1

[
‖∇ỹ1‖2

]
, (21)

where G(θ1) is the loss of the initialized model parameters so the expectation is omitted. Then, by taking a
summation over the first T steps, we have

D1

T∑
t=1

E1∼t

[
‖∇ỹt‖2

]
≤ G(θ1)− E1∼T [G(θT+1)] ≤ G(θ1). (22)

Therefore, there exists τ ∈ {1, · · · , T}, s.t.

E1∼τ

[
‖∇ỹτ‖2

]
≤ G(θ1)

D1T
. (23)

Then, we attempt to build a relationship between ∇ỹτ and ∇θG(θτ ). Similar to Eq. (5), we have

∇ỹi,τ = − ατ
Bu
∇2
ỹi,θ
L(xui , ỹi;θτ ) · ∇θG(θτ ) =

2ατ
Bu

Jθf(xui ;θτ ) · ∇θG(θτ ). (24)

Therefore,

‖∇ỹτ‖2 =

Bu∑
i=1

∇>ỹi,τ · ∇ỹi,τ =
4α2

τ

(Bu)2
∇>θG(θτ ) ·

(
Bu∑
i=1

J>θ f(xui ;θτ ) · Jθf(xui ;θτ )

)
· ∇θG(θτ ). (25)

Now consider the potential unlabeled batches {Bk : k = 1, · · · , N l} of the τ th step. Since, Dl ⊆ Du, we can
assume xlk ∈ Bk, k = 1, · · · , N l and these batches are sampled with non-zero probabilities {pk : k = 1, · · · , N l}.



Let p = mink pk > 0, and we have

E1∼τ

[
‖∇ỹτ‖2

]
= E1∼τ−1

[
Eτ
[
‖∇ỹτ‖2

]]
= E1∼τ−1

[
4α2

τ

(Bu)2
∇>θG(θτ ) · Eτ

[
Bu∑
i=1

J>θ f(xui ;θτ ) · Jθf(xui ;θτ )

]
· ∇θG(θτ )

]

≥ E1∼τ−1

 4α2
τ

(Bu)2
∇>θG(θτ ) ·

 N l∑
k=1

pk J
>
θ f(xlk;θτ ) · Jθf(xlk;θτ )

 · ∇θG(θτ )


≥ 4pD2

2

(Bu)2
E1∼τ−1

∇>θG(θτ ) ·

 N l∑
k=1

J>θ f(xlk;θτ ) · Jθf(xlk;θτ )

 · ∇θG(θτ )

 .

(26)

Note that similar to Eq. (20), the inner expectation is also conditioned on the selected batches of the first τ − 1
steps, which is equivalent to that conditioned on θt.

By applying the chain rule, we have

∇θG(θ) =
2

N l

N l∑
k=1

J>θ f(xlk;θ) ·
(
f(xlk;θ)− yk

)
. (27)

Since both f(xlk;θ) and yk are distributions on the category space, there exists a constant R > 0, s.t.∥∥f(xlk;θ)− yk
∥∥ ≤ R. Therefore,
N l∑
k=1

J>θ f(xlk;θτ ) · Jθf(xlk;θτ )

� 1

R2

N l∑
k=1

J>θ f(xlk;θτ ) · (f(xlk;θτ )− yk) · (f(xlk;θτ )− yk)> · Jθf(xlk;θτ )

� 1

N lR2

 N l∑
k=1

J>θ f(xlk;θτ ) · (f(xlk;θτ )− yk)

 ·
 N l∑
k=1

J>θ f(xlk;θτ ) · (f(xlk;θτ )− yk)

>

=
N l

4R2
∇θG(θτ ) · ∇>θG(θτ ).

(28)

Here, the symbol � indicates certain matrix relationship where A � B means A−B is a positive semidefinite
matrix.

We prove the first inequality in (28) with simplified notations. Suppose v is a vector and A is a matrix of proper
dimension. Then, we show that if ‖v‖ ≤ R, then R2A>A � A>vv>A. For an arbitrary vector u of proper
dimension, we have

u>A>vv>Au =
∥∥v>Au∥∥2 ≤ ‖v‖2 ‖Au‖2 ≤ R2 ‖Au‖2 = R2u>A>Au. (29)

By definition, R2A>A − A>vv>A is positive semidefinite. The second inequality in (28) comes from the
Cauchy-Schwartz inequality that E

[
A>A

]
� E

[
A>
]
E [A] for any random matrix A.

With (26) and (28), it is easy to show that

E1∼τ

[
‖∇ỹτ‖2

]
≥ pD2

2N
l

(Bu)2R2
E1∼τ−1

[
‖∇θG(θτ )‖4

]
≥ pD2

2N
l

(Bu)2R2

(
E1∼τ−1

[
‖∇θG(θτ )‖2

])2
. (30)

Again, the second inequality comes from the Cauchy-Schwartz inequality. Incorporating with (23), we have

E1∼τ−1

[
‖∇θG(θτ )‖2

]
≤ C√

T
, where C =

BuR

D2

√
G(θ1)

pN lD1
. (31)

which concludes this proof.
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C Implementation Details

Our implementation is based on the PyTorch (Paszke et al., 2019) library and the proposed algorithm is evaluated
on the SVHN (Netzer et al., 2011), CIFAR (Krizhevsky et al., 2009), and ImageNet (Russakovsky et al., 2015)
datasets.

Evaluation on the SVHN and CIFAR datasets. As the standard evaluation protocol, 1k category-balanced
labels are used for supervision out of the 73,257 training examples of the SVHN dataset. For the CIFAR-10
(resp. CIFAR-100) dataset, the number of labeled examples is 4k (resp. 10k) out the 50k training examples. For
the backbone architectures, the Conv-Large architecture is the same as the one in previous work (Laine and
Aila, 2017; Miyato et al., 2018; Tarvainen and Valpola, 2017; Athiwaratkun et al., 2019; Wang et al., 2019). The
detailed configurations are summarized in Table 2. For the ResNet (He et al., 2016) architecture, we adopt the
ResNet-26-2x96d Shake-Shake regularized architecture with 12 residual blocks as in Gastaldi (2017). The same
architecture is used in prior SSL methods (Tarvainen and Valpola, 2017; Athiwaratkun et al., 2019). We follow a
common practice of data augmentation, i.e., zero-padding of 4 pixels on each side of the image, random crop
of a 32 × 32 patch, and random horizontal flip, for the CIFAR datasets, and omit the random horizontal flip
for SVHN. The meta learning rate βt is always set equal to the regular learning rate αt. We train from scratch
for 400k iterations with an initial learning rate of 0.1, and decay the learning rate by a factor of 10 at the end
of 300k and 350k iterations. We use the SGD optimizer with a momentum of 0.9, and the weight decay is set
to 10−4 for the CIFAR datasets, and 5× 10−5 for SVHN. The batch size is 128 for both labeled and unlabeled
data. The shape parameter γ of the Beta distribution is set to 1.0 for the CIFAR datasets, and 0.1 for SVHN, as
suggested by Wang et al. (2019).

Evaluation on the ImageNet dataset. The large-scale ImageNet benchmark contains 1.28M training images
of 1k fine-grained classes. We evaluate on the ResNet-18 (He et al., 2016) backbone with 10% labels. The standard
data augmentation strategy (Simonyan and Zisserman, 2015; He et al., 2016; Xie et al., 2017) is adopted: image
resize such that the shortest edge is of 256 pixels, random crop of a 224× 224 patch, and random horizontal flip.
The overall batch size is 512, and the same optimizer as the aforementioned one is employed with a weight decay
of 10−4. We train for 600 epochs in total, and decay the learning rate from 0.1 according to the cosine annealing
strategy (Loshchilov and Hutter, 2017). The shape parameter γ is set to 1.0.

Table 2: Conv-Large (Tarvainen and Valpola, 2017) Architecture.

Layer
Configurations

Output Size
#Filters Kernel Size Stride #Paddings

Convolution 128 3 1 1 32× 32

Convolution 128 3 1 1 32× 32

Convolution 128 3 1 1 32× 32

MaxPooling 128 2 2 0 16× 16

Dropout Drop probability = 0.5 16× 16

Convolution 256 3 1 1 16× 16

Convolution 256 3 1 1 16× 16

Convolution 256 3 1 1 16× 16

MaxPooling 128 2 2 0 8× 8

Dropout Drop probability = 0.5 8× 8

Convolution 512 3 1 0 6× 6

Convolution 256 1 1 0 6× 6

Convolution 128 1 1 0 6× 6

AvgPooling 128 6 1 0 1× 1

Linear 128→ 10 1× 1
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