
Supplementary Materials: Understanding the wiring evolution in
differentiable NAS

1 Evolution details of DARTS and DSNAS

1.1 DSNAS (single-level optimization)
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Figure 1: Evolution of the wiring topology with the largest probability in DSNAS. Edges are dropped in the
beginning. Final cells show preference towards width.

Figure 2: Evolution of pα on each edge in DSNAS. 4, 7, 8, 11, 12, 13 are intermediate edges where None dominates
others. This domination is manifested as the width preference. The rest are input edges, where None only
dominates in the beginning. Other operations then become the most likely ones, exhibiting the growth tendency.

1.2 DARTS (bi-level optimization)
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Figure 3: Evolution of the wiring topology with the largest probability in DARTS. Most edges are dropped in the
beginning, all edges are dropped after 50 epochs of training.

Figure 4: Evolution of pα with epochs on each edge in DARTS with bi-level optimization. Different from those
with single-level optimization, all edges are gradually dropped with training going on. At the end of the evolution,
None has the largest probability on all edges.

2 Unifying differentiable NAS

2.1 DARTS

Different from SNAS, DARTS (Liu et al., 2018) utilizes an attention mechanism to construct the parent network.

To align with (4), we show that with Ẑki,j =
exp(αk

i,j)∑
m exp(αm

i,j)
:
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∂Ẑi,j

]c
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∂Ẑi,j
∂αi,j
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where as in (4) [·]c denotes · is a cost function independent from the gradient calculation w.r.t. α.



2.2 ProxylessNAS

ProxylessNAS (Cai et al., 2018) inherits DARTS’s learning objective, and introduce the BinnaryConnect technique
to empirically save memory. To achieve that, they propose the following approximation:

∂L
∂αi,j

=
∂L
∂Ẑi,j

∂Ẑi,j
∂αi,j

≈
∑
k

[
∂L
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=
∂Ẑi,j
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C(Zi,j),

where as in (4) [·]c denotes · is a constant for the gradient calculation w.r.t. α. Obviously, it is also consistent
with (4).

3 Cost mean when stacking 8 cells in DSNAS

Figure 5: Cost mean statistics for each operation (x-axis) on each edge (y-axis) (a) at initialization and (b) near
θ’s convergence of by stacking 8 minimal cells. Operation 0: none, Operation 1: skip connect, Operation 2:
max pool 3x3, Operation 3: avg pool 3x3, Operation 4: sep conv 3x3, Operation 5: dil conv 3x3, Operation 6:
dil conv 5x5, Operation 7: sep conv 5x5.

Figure 6: Cost mean statistics for each operation (x-axis) on each edge (y-axis) (a) at initialization and (b) near
θ’s convergence by stacking 8 original cells as in DARTS and SNAS. Operation 0: none, Operation 1: skip connect,
Operation 2: max pool 3x3, Operation 3: avg pool 3x3, Operation 4: sep conv 3x3, Operation 5: dil conv 3x3,
Operation 6: dil conv 5x5, Operation 7: sep conv 5x5.

4 Proof of Thm. 1

Theorem 1. A path does not distribute cost from its output edge after passing one intermediate edge.

C(Zs0,2) =
∂Lθ
∂X2

3

∂X2
3

∂X0
2

X0
2 = 0.

Proof. For each intermediate edge, three operations (ReLU, Conv/pooling, BN) are sequentially ordered as shown
in Fig. 8. To prove Thm. 1, we analyse the effect of each operation on the cost assignment in the intermediate
edge. Let X0

2 ∈ RB×Cin×Win×Hin denotes the input of Conv operation on edge 41, X ∈ RB×Cout×Wout×Hout

denotes the Conv operation output, W ∈ RCout×Cin×K×K is the filter weight in the Conv operation. The full
proof consists of three following steps.

1We do not consider ReLU operation (before Conv) here, since ReLU operation obviously satisfies the proof. Thm. 1
can be easily generalized to pooling operations.
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Figure 7: A minimal cell is a cell with 2 intermediate nodes (orange), two input nodes and one output node (blue).
Edges connecting input nodes and intermediate nodes (edge0 − edge3) are called input edges; edges between
two intermediate nodes are intermediate edges (edge4); others are output edges which are skip-connections and
concatenated together.
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Figure 8: Stacking order of ReLU, Conv/pooling and BN operations on edge 4.

Step 1: By expanding C(Zs0,2) at path (4-3-2-0), we have:
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Step 2: Utilizing the linear property of Conv operation, we can simplify the above equation as:
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Proof of Step 2: To derive Eq.(2), we first calculate the gradient w.r.t Conv input X0
2 (black-underlined part).

Note that win (wout), hin (hout), cin (cout) and b denote the index of width, height, channel and batch dimensions
of Conv input (output), and K is the Conv filter width and height.[
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Based on Eq.(3), we can simplify the left part of Eq.(2) by doing an element-wise calculation on the width
(w), height (h), channel (c) and batch (b) dimensions.
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where the second equality holds by changing the order of indexes win, hin, wout, hout. Using the linear property
of Conv operation, the red-underlined part in the forth equality can be derived due to:

Xbcoutwouthout =
∑
cin

wout+K
hout+K∑
win=wout
hin=hout

Wcoutcin(win−wout)(hin−hout)[X
0
2 ]bcinwinhin

. (5)

Step 3: We have shown Conv/pooling operations does not change the cost value in the intermediate edge, so
next we analyse the effect of batch normalization (Ioffe and Szegedy, 2015) on the cost assignment. Exploiting
the property of batch normalization (Ioffe and Szegedy, 2015), we have:
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3

∂X2
3
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∂Lθ
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X = 0. (6)

Proof of Step 3: Similar as step2, we compute the gradient w.r.t. the Batch Normalization input X (black-
underlined part). Before we start, we first show the batch normalization process as below:

µc =
1

BD

∑
b,d

Xb,c,d, σ2
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1

BD
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(Xb,c,d − µc)2 ,
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σ2
c

, [X2
3 ]b,c,d = γc ∗ [X̂2

3 ]b,c,d + βc.

(7)

where X and X2
3 denote the input and output of BN operation, µc and σ2

c are the mean and variance statistics
of c-th channel. Note that d denotes the spatial size Width×Height. Then, the gradients with respect with the
output Xb,c,d (black-underlined part) are calculated based on chain rule:
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where the gradients with respect to the mean µc (∂Lθ

∂µc
) and variance σ2

c (∂Lθ

∂σ2
c

) are shown as below:
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where the orange-colored term is strictly 0 due to the standard Gaussian mean property
∑
b,d

[X̂2
3 ]b,c,d
BD = 0.
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After getting the specific form of the black-underlined part, we can directly derive Eq.(6) by doing an
element-wise calculation:
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where the orange-underlined term is strictly 0 due to the standard Gaussian mean property∑
b,d

[X̂2
3 ]b,c,d
BD = 0, the last equality also holds due to standard Gaussian variance property

∑
b,d

[X̂2
3 ]

2
b,c,d

BD = 1.

This result is consistent with (Tian, 2018), in which batch normalization is proved to project the input gradient to
the orthogonal complement space spanned by the batch normalization input and vector 1. Note that this result
can be generalized to arbitrary back-propagation path involving intermediate edges and other normalization
methods, like instance normalization (Ulyanov et al., 2016), layer normalization (Ba et al., 2016). See Appx.8.

One exception from the proof above is the skip operation, in which no BN is added. Let X0
2 ∈ RB×Cin×Win×Hin

denotes the input of skip operation on edge 4. We have

∂Lθ
∂X2

3

∂X2
3

∂X0
2

X0
2 =

∂Lθ
∂X2

3

X2
3 . (11)

where X2
3 = X0

2 . Obviously, if skip is sampled on edge 4, it does not block the cost assignment as in Thm 1.
However, the influence of the skip operation on edge 4 can be ignored since the cost magnitude is much smaller
than other operations.

5 Validation of Cor. 1.2

Figure 9: (a) Averaged cost on each edge of the second last cell. (b) Averaged cost on each edge of the last
cell.The cost sum of edges in (a) is 0, but it is not 0 in (b).



6 Proof of Thm. 2

Theorem 2. Cost at output edges of the last cell has the form CZ = Lθ − Hθ. It is negatively related to
classification accuracy. It tends to be positive at low accuracy, negative at high accuracy.

Cross
Entropy

Batch 
Normalization

Adaptive
AvgPool2d(1)

Linear Softmax
𝑋" 𝑌𝑋$ 𝑋%

𝑋
ReLu+Conv
or Pooling

Operation

Figure 10: Post-processing the output from the last cell for loss.

Proof. Negatively related: We can first prove that for the last cell’s output edges cost of one batch M with
sampled architecture Z has an equivalent form:

CZ =
∑
b,c,d

∂Lθ
∂[X4]b,c,d

[X4]b,c,d

=
1

BD

∑
b,c,d,n

[−wcnb
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=
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∑
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=
1

B

∑
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∑
q

exp(Ybq))− log(
∑
q

exp(Ybq))]

=
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B

∑
b
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)∑
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+
∑
n

exp(Ybn)∑
q exp(Ybq)

log
exp(Ybn)∑
q exp(Ybq)

]

= Lθ −Hθ,

(12)

where nb is the corresponding b-th image class label, Lθ = − 1
B log

exp(Ybnb
)∑

q exp(Ybq)
is Eq.3, Hθ is the entropy of

network output, wch is the weight parameter in the linear layer, [Xp]b,c = 1
D

∑
d[X4]b,c,d is an element of the

output from the adaptive average pooling, Ybn =
∑
c[Xp]b,cwcn is an element of the output of the last linear

layer. Obviously, the cost sum is positively correlated to the loss, thus negatively correlated to the accuracy. The
black-underlined part is derived by chain rule:

∂Lθ
∂[X4]b,c,d

=
∑
n

∂Lθ
∂Ybn

∂Ybn
∂[Xp]b,c

∂[Xp]b,c
∂[X4]b,c,d

=
1

BD

∑
n

[−wcnb
+

exp(Ybn)∑
q exp(Ybq)

wcn]. (13)

We conduct experiments and record on CZ , Lθ and Hθ for a single minimal cell by fixing α and and uniformly
sampling networks in DSNAS, updating θ for 150 epochs (Fig. 11). We also fix α and update θ for 50 epochs in
DARTS (Fig. 12). The results validate this proof. Their dynamical trends also validate Eq. 5.2 and Remark 1.

Fig. 13 shows the result on the search set of DARTS. Note that the search set if a set of data used to train α,
held-out from the training of θ. Curves in this figure illustrate our analysis in Remark 4. The loss decelerates its
decreasing compared with the loss in training set (Fig. 12), while the entropy keeps decreasing.

Positive at low accuracy: Exploiting normalization and weight initialization, we have:

Eθ0 [CZ > 0],
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Figure 11: CZ , Lθ, Hθ in DSNAS. X-axis is the epoch number, y-axis on the left is for Lθ and Hθ and the right
is for CZ . Note that the unit for CZ is magnified to show its trend.

Figure 12: CZ , Lθ, Hθ in DARTS in training set. X-axis is the epoch number, y-axis on the left is for Lθ and
Hθ and the right is for CZ . Note that the unit for CZ is magnified to show its trend.

Figure 13: CZ , Lθ, Hθ in DARTS in search set. X-axis is the epoch number, y-axis on the left is for Lθ and Hθ
and the right is for CZ . Note that the unit for CZ is magnified to show its trend.

Note that in our derivation, we follow the commonly used parameter initialization method. With [Xp]b,c ∼ N (0, ·),
wc,n ∼ N (0, ·) at the initialization point, we have y1, y2 ∼ N (0, ·) and Ey1,y2∼N (0,·)[y1 exp (y1 + y2)] > 0, thus we
can prove Eθ0 [CZ > 0].

Negative at high accuracy: With operation parameters updated towards convergence, the probability of b-th



image being classified to the correct label nb increases towards 1. Since Ybnb
= max {Ybn}, we have

CZ ∝
∑
n

[−Ybnb
+

exp(Ybn)∑
q exp(Ybq)

Ybn]

≤
∑
n

[−Ybnb
+

exp(Ybn)∑
q exp(Ybq)

Ybnb
] = 0.

Fig. 14, Fig. 15 and Fig. 16 show the comparison of Lθ and Hθ in the training set and the search set, which
validate this proof. Note that the increase of the negative cost for correct classification in later epochs is mainly
because the probability of b-th image being classified to the correct label nb increases towards 1.

Figure 14: CZ , Lθ, Hθ in DSNAS for (a) correct classification and (b) wrong classification.

Figure 15: CZ , Lθ, Hθ in DARTS for (a) correct classification and (b) wrong classification in training set

Figure 16: CZ , Lθ, Hθ in DARTS for (a) correct classification and (b) wrong classification in search set

7 Details for empirical study in Sec. 5.3

In Sec. 5.3, we introduced our empirical study to illustrate the distinctive role of intermediate edges. Here
we provide more details to help readers understand our design of ablation. Fig. 17 shows the cost of edges in
simplified cell (Fig. 8(a)), averaged over operations. The variation here is mainly different operation combination
on edges, including fixing to one operation. Ones can see that edge(1, 2) always has the largest cost. Fig. 18
shows experiments on modified cell (Fig. 8(b)), where edge(1, 3) is deleted. When we still sample operation on
edge(0, 1), the cost on edge(1, 2) is still larger than edge(0, 1) and edge(0, 2), as shown in Fig. 18(a)&(b). This is
only altered by also fixing the operation on edge(0, 1). In sum, the existence of edge(1, 3) and the sampling on
edge(0, 1) are two major factors causing the discrimination towards the intermediate edge.
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Interestingly, even though in DARTS None is excluded and a post-hoc derivation scheme that select edges with
top-k α is designed, intermediate edges are barely chosen. This can be explained by the observations here. Since
the cost on intermediate edges are positive most of the time, their α must be smaller than other edges.

Figure 17: Averaged cost on each edge by (a) sampling none/skip/pool/conv on edge(0, 1), edge(0, 2),
edge(1, 2), (b) sampling none/skip/pool/conv on edge(0, 1), edge(0, 2) and sampling none/skip/pool on
edge(1, 2), (c) sampling none/skip/pool/conv on edge(0, 1), edge(0, 2) and sampling none/conv on edge(1, 2),
(d) sampling none/skip/pool/conv on edge(0, 2), edge(1, 2) and sampling none/conv on edge(0, 1), (e) sam-
pling none/skip/pool/conv on edge(0, 2), edge(1, 2) and sampling none/pool/skip on edge(0, 1), (f) sampling
none/skip/pool/conv on edge(1, 2) and fixing operation on edge(0, 1), edge(0, 2). For almost all cases, edge(1, 2)
has the greatest cost.

Figure 18: Averaged cost on each edge by deleting edge(1, 3) and (a) sampling none/skip/pool/conv on edge(0, 1),
edge(0, 2), edge(1, 2), (b) sampling none/skip/pool/conv on edge(0, 2), edge(1, 2) and sampling skip/pool/conv
on edge(0, 1), (c) sampling none/skip/pool/conv on edge(0, 2), edge(1, 2) and fixing operation on edge(0, 1), (d)
sampling none/skip/pool/conv on edge(0, 2) and sampling none/pool/conv on edge(1, 2) and fixing operation on
edge(0, 1). Only in (c) and (d) edge(1, 2) has the lowest cost. The cost on edge(0, 1) being close to zero here also
validates our proof of Thm. 1 in Appx. 4.



8 Further discussion

8.1 Other Normalization Methods

Ones may wonder if the inductive bias discussed in the work could be avoid by shifting to other normalization
units, i.e. instance normalization (Ulyanov et al., 2016), layer normalization (Ba et al., 2016). However, they seem
no option than BN. The cost of instance normalization (affine-enabled) and layer normalization (affine-enabled)
is the same as that of batch normalization. As an example, we show that layer normalization still satisfies Thm.
1. The proof of instance normalization is similar.

Proof: The layer normalization process is shown as below:

µb =
1

CD

∑
c,d

Xb,c,d, σ2
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CD
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b
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(14)

Similarly, we have:
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(15)

where the orange-underlined term is strictly 0 due to the standard Gaussian mean property∑
c,d

[X̂2
3 ]b,c,d
CD = 0, the last equality also holds due to standard Gaussian variance property

∑
c,d

[X̂2
3 ]

2
b,c,d

CD = 1.

Interestingly, the cost mean statistic collected on different edges by using affine-disabled instance normalization
are exactly zero, and they will still be zero after training. Fig. 19 shows the cost mean statistic.

Figure 19: Cost mean statistics for each operation (x-axis) on each edge (y-axis) by using affine-disabled instance
normalization.

We can derive the cost function C(Zsi,j) by using affine-disabled instance normalization. Based on the path (4-3-0)
(or (4-3-1), (4-3-2)), we write the cost function explicitly on edge2 (edge3, edge4). The cost function on edge2
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(edge3, edge4) is derived to be zero for all operations.

C(Zsi,j) =
∑
b,c,d

∂Lθ
∂[X3

4 ]b,c,d
[X0

3 ]b,c,d

=
1

D

∑
b,c

∂Lθ
∂[Xp]b,c

∑
d

[X0
3 ]b,c,d

= 0

(16)

where
∑
d[X

3
4 ]b,c,d = 0 (instance normalization property).

The cost on edge0 (edge1) can be derived similarly and follows the same conclusion as edge2 (edge3, edge4).

8.2 Stacking order in operations

Another consideration could be to change the order of Conv, BN and ReLU units in operations. In our proposed
framework, we can show that both theoretically and empirically, same phenomenon would occur.

Fig. 20 shows the cost mean statistic on different edges by using Conv-ReLU-BN or Pooling-BN order in the
minimal cell structure.

Figure 20: Cost mean statistics for each operation (x-axis) on each edge (y-axis) (a) at initialization and (b) near
convergence of θ by using Conv-ReLU-BN order. Operation 0: none, Operation 1: skip connect, Operation 2:
max pool 3x3, Operation 3: avg pool 3x3, Operation 4: sep conv 3x3, Operation 5: dil conv 3x3, Operation 6:
dil conv 5x5, Operation 7: sep conv 5x5.

Fig. 21 shows the cost mean statistic on different edges by using Conv-BN-ReLU or Pooling-BN order in the
minimal cell structure.

Figure 21: Cost mean statistics for each operation (x-axis) on each edge (y-axis) (a) at initialization and (b) near
convergence of θ by using Conv-BN-ReLU order. Operation 0: none, Operation 1: skip connect, Operation 2:
max pool 3x3, Operation 3: avg pool 3x3, Operation 4: sep conv 3x3, Operation 5: dil conv 3x3, Operation 6:
dil conv 5x5, Operation 7: sep conv 5x5.

The proof in Appx.4 and Appx.6 are also valid after the change of order, since the order of ReLU operation does
not make a difference.
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