
A Detailed Information for Numerical Results

We provide the details of deep k-NN and mean and standard deviation information of figures in this section.

A.1 Deep k-NN

We follow the implementation of Papernot and McDaniel (2018) for the structures of the two neural networks as
in Table 1:

Dataset Network structure
MNIST conv2d(1,16,3), conv2d(16,32,3), fc(32*7*7,32), fc(32,10)

CIFAR-10 conv2d(3,16,3), conv2d(16,16,3), conv2d(16,32,3), conv2d(32,32,3), fc(32*8*8,128), fc(128,10)

Table 1: CNN structure Summary

For both MNIST and CIFAR-10, we train the neural network using Adam optimizer with default learning rate,
and use the output of all but the last fully-connected layer as features for k-NN. The number of neighbors is set
to be 6. The number of epochs in training is 1 for MNIST and 50 for CIFAR-10.

A.2 Section 4.1.1 Figure 1

See Table 2.

n Data ω =0.02 ω =0.05 ω =0.1 ω =0.2 ω =0.5
64 clean 0.0686(0.0181) 0.0688(0.0181) 0.0693(0.0179) 0.0707(0.0177) 0.0787(0.0161)

perturbed 0.069(0.0196) 0.072(0.0198) 0.0699(0.0195) 0.0735(0.0188) 0.0875(0.0153)
128 clean 0.0519(0.0198) 0.052(0.0198) 0.0525(0.0199) 0.0546(0.0197) 0.0668(0.0182)

perturbed 0.0513(0.0166) 0.0543(0.0147) 0.052(0.0168) 0.0562(0.0136) 0.0735(0.0168)
256 clean 0.0388(0.0112) 0.0389(0.011) 0.0395(0.0108) 0.0422(0.0105) 0.0564(0.0094)

perturbed 0.0384(0.0106) 0.0377(0.0105) 0.0391(0.0092) 0.0429(0.0087) 0.0619(0.0106)
512 clean 0.0274(0.0076) 0.0276(0.0075) 0.0285(0.0075) 0.0309(0.0072) 0.0478(0.0064)

perturbed 0.0276(0.0083) 0.0261(0.0064) 0.0303(0.0094) 0.0325(0.0064) 0.0533(0.0069)
1024 clean 0.0201(0.006) 0.0204(0.0062) 0.0214(0.0061) 0.0245(0.0059) 0.0438(0.0055)

perturbed 0.0199(0.0062) 0.0211(0.0066) 0.0225(0.0075) 0.0266(0.0067) 0.0496(0.007)
2048 clean 0.0139(0.0038) 0.014(0.0036) 0.0149(0.0037) 0.0187(0.0036) 0.0399(0.0038)

perturbed 0.014(0.0036) 0.014(0.0034) 0.0155(0.0041) 0.0205(0.0044) 0.0428(0.0049)

Table 2: Mean and Standard Error of Regret for Figure 1

A.3 Section 4.1.1 Figure 2

See Table 3.

d ω/
√
d =0.02 ω/

√
d =0.05 ω/

√
d =0.1 ω/

√
d =0.2 ω/

√
d =0.5

5 0.052(0.0199) 0.0525(0.0198) 0.0554(0.0197) 0.0642(0.0184) 0.1004(0.0176)
10 0.0796(0.02) 0.0797(0.0198) 0.0807(0.02) 0.0847(0.0198) 0.1035(0.0226)
15 0.0835(0.0125) 0.0836(0.0125) 0.0842(0.0121) 0.0868(0.0116) 0.0992(0.0118)
20 0.0929(0.0148) 0.093(0.0146) 0.0934(0.0143) 0.0947(0.0141) 0.1032(0.0142)
50 0.1038(0.0105) 0.1039(0.0104) 0.1038(0.0102) 0.1045(0.0107) 0.1087(0.0131)
100 0.1095(0.0143) 0.1096(0.0149) 0.1098(0.0152) 0.1101(0.0148) 0.113(0.0154)

Table 3: Mean and Standard Error of Regret for Figure 2



A.4 Section 4.1.2 Figure 3

Abalone: See Table 4.

clean perturbed
ω mean std mean std
0 0.2192 0.0101 0.2192 0.0101
0.5 0.2322 0.0122 0.2373 0.0128
1 0.2567 0.0136 0.2598 0.0127
1.5 0.2761 0.0149 0.2726 0.0129
2 0.2837 0.0139 0.2801 0.0139
2.5 0.2980 0.0130 0.2877 0.0118
3 0.3042 0.0150 0.2932 0.0140

Table 4: Mean and Standard Error of Regret for Abalone dataset in Figure 3

HTRU2: See Table 5

clean perturbed
omega mean std mean std
0 0.0225 0.0019 0.0229 0.0022
0.5 0.0263 0.0022 0.0259 0.0022
1 0.0337 0.0033 0.0288 0.0025
1.5 0.0439 0.0049 0.0316 0.0024
2 0.0561 0.0067 0.0357 0.0031
2.5 0.0697 0.0072 0.0390 0.0030
3 0.0835 0.0087 0.0419 0.0030

Table 5: Mean and Standard Error of Regret for HTRU2 dataset in Figure 3

A.5 Section 4.3.1 Figure 4

See Table 6.

n Method d = 2 d = 3 d = 4 d = 5 d = 10
64 pre-1nn 0.0485(0.0294) 0.0524(0.0392) 0.0747(0.0293) 0.0922(0.0329) 0.2199(0.0396)

knn 0.0484(0.0275) 0.0477(0.0427) 0.0558(0.0342) 0.065(0.0361) 0.1531(0.0433)
128 pre-1nn 0.0351(0.029) 0.0431(0.0319) 0.0534(0.0282) 0.0722(0.026) 0.1859(0.0239)

knn 0.0367(0.0296) 0.0417(0.0326) 0.0378(0.0252) 0.0409(0.016) 0.0902(0.0264)
256 pre-1nn 0.0275(0.026) 0.0222(0.0221) 0.027(0.0128) 0.0508(0.0237) 0.1615(0.0149)

knn 0.0282(0.0258) 0.0174(0.0182) 0.0222(0.0178) 0.0277(0.0219) 0.0614(0.0161)
512 pre-1nn 0.0169(0.0179) 0.0124(0.0126) 0.0201(0.0134) 0.0306(0.0136) 0.1381(0.017)

knn 0.013(0.0151) 0.0096(0.0145) 0.0114(0.0146) 0.014(0.0117) 0.0383(0.0147)
1024 pre-1nn 0.0077(0.0155) 0.0086(0.0118) 0.0125(0.0132) 0.0207(0.0114) 0.1208(0.0153)

knn 0.0103(0.0175) 0.0076(0.0098) 0.0065(0.0105) 0.01(0.0092) 0.0223(0.0103)
2048 pre-1nn 0.0076(0.0108) 0.0037(0.0078) 0.0071(0.0098) 0.0123(0.0078) 0.1023(0.0127)

knn 0.0073(0.0086) 0.0019(0.0076) 0.0055(0.0082) 0.0035(0.0066) 0.0106(0.0076)
4096 pre-1nn 0.0025(0.008) 0.0016(0.008) 0.005(0.0081) 0.0098(0.0087) 0.0864(0.013)

knn 0.0018(0.0082) 0.0023(0.0073) 0.0024(0.0057) 0.0022(0.0053) 0.0063(0.0064)

Table 6: Mean and Standard Error of Regret for Figure 4

A.6 Section 4.3.2 Figure 5

See Table 7.



knn pre-1nn
n mean std mean std
128 0.2781 0.0248 0.3160 0.0193
256 0.2079 0.0158 0.2455 0.0139
512 0.1584 0.0092 0.1852 0.0093
1024 0.1201 0.0052 0.1406 0.0051
2048 0.0915 0.0036 0.1068 0.0033
4096 0.0704 0.0021 0.0824 0.0025

Table 7: Mean and Standard Error of Regret for Figure 6

A.7 Section 4.3.2 Figure 6

See Table 8.

knn pre-1nn
n mean std mean std
128 0.2650 0.0174 0.2771 0.0189
256 0.2478 0.0166 0.2588 0.0166
512 0.2360 0.0131 0.2465 0.0148
1024 0.2285 0.0130 0.2387 0.0116
2048 0.2212 0.0099 0.2306 0.0110

Table 8: Mean and Standard Error of Regret for Figure 7

A.8 Additional Real-Data Experiments

In Credit data set, there are 30000 samples (25% as testing data) with 23 attributes. For HTRU2 and Credit
data set, the mean and standard error of error rates in the 50 repetitions are summarized in Table 9. From Table
9, using k-NN we obtain slightly smaller error rate on average.

Data Set k-NN Pre-1NN
Credit 0.1888(0.0041) 0.1900(0.0040)

HTRU2 0.0214(0.0021) 0.0221(0.0021)

Table 9: Mean and Standard Deviation of Error Rate using k-NN and Pro-processed 1NN (Pre-1NN) in HTRU2
and Credit. The error rate of pre-processed 1NN is always greater than that of k-NN.

B Comparison between Random Perturbation and Non-random Perturbation

We use the following adversarial attack as the non-random perturbation:

x̃ =


argmin
z∈B(x,ω)

η(z) if η(x) > 1/2

argmax
z∈B(x,ω)

η(z) if η(x) ≤ 1/2
. (1)

When ω → 0, if η is differentiable, the length o attack converges to ω as well.

The proposed attack scheme (1) is also called as “white-box attack” as the adversary has the knowledge of η(x).
On the other hand, unlike the “white-box attack” mentioned in Wang et al. (2017), the perturbation and attack
we focus on are independent with the training samples.

Theorem S. 1. Under [A.1] to [A.3], if testing data is adversarially attacked and 1/
√
k, ζ � ω, then

Regret(k, n, ω) =
B1

4k
+

1

2

∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

(
b(x0)2ζ(x0)2 + 2ω2‖η̇(x0)‖2

)
dVold−1(x0) +Rem, (2)



where Rem := O(ω/
√
k + ωζ) + o((1/k) ∨ (ζ + ω)2).

From Theorem 1, one can see that the regret under adversarial attack is larger than the one under random
perturbation if the ω2 term is dominant.

C Relaxing Noise Distribution in Theorem 1

In Theorem 1, we assume the noise uniformly distributed on the sphere of a L2 with radius ω. However, as will
be shown in the next section, we only utilize the distribution information of the noise at the last step of proof. F
or general distribution of noise δ, we have the following result:

Theorem S. 2. Under the same conditions as in Theorem 1. If ω → 0 in n such that P (‖δ‖ > ω) = o(ω3), then
Theorem 1 holds as well.

We connect the two ω’s in Theorem S.2 and Theorem 1 using an example. Denote ω0 as radius of L2 ball in
Theorem 1, and assume ω0n

γ → 0 for some constant γ > 0. Take δ ∼ N(0, ω0Σ) and the largest eigenvalue of Σ
is finite. Then for some c > 0, we have P (‖δ‖ > c

√
d log nω0) = o((

√
d log nω0)3), i.e. the ω in Theorem S.2 in

this case becomes c
√
d log nω0.

D Proof of Regret Analysis in Section 2 and 3

Sketch of Proof of Theorem 1 A sketch of proof is presented below.

Denote δ as the random perturbation, i,e., δ = x̃− x. Denote X1(x) to Xk(x) be the k unsorted neighbors of x in
the training samples and Yi(x) be the Y value for the corresponding Xi(x). Similarly define Ri(x) be the distance
from x to Xi(x). When no confusion is caused, we drop the argument x and use Xi, Yi and Ri for abbreviation.
The idea of proof follows Samworth (2012), and there are total 4 steps in our proof:

Step 1: Given a fixed (unobserved) testing sample x and conditional on the perturbation random variable δ, we

obtain the mean and variance of η̂k,n(x+δ). In particular, for any x0 satisfying η(x0) = 1/2, let xt0 = x0 + t η̇(x0)
‖η̇(x0)‖

and ε→ 0 such that (1/k,R2
1(x+ δ), ω) are in O(ε), denoting R1 = R1(x+ δ), we have

E[η̂k,n(xt0 + δ)|δ] = η(x0) + t‖η̇(x0)‖+ δ>η̇(x0) + b(x0)R2
1 +O(ε2),

V ar(η̂k,n(xt0 + δ)|δ) =
1

4k
+O(ε2/k).

Step 2: Use tube theory (Gray, 2012) to construct a tube for some S. The remainder of regret outside the tube is
of O(ε3) for some ε, and Regret can be approximated as∫

S

∫ ε

−ε
t‖Ψ̇(x0)‖E

[
P (η̂k,n(xt0 + δ) < 1/2)− 1{t<0}

]
dtdVold−1(x0).

Step 3: Use Berry-Esseen Theorem to transform the probability P (η̂k,n(xt0 + δ) < 1/2|δ) to a Gaussian probability.

Φ

(
E(1/2− η̂k,n(x0 + δ))√
V ar(η̂k,n(xt0 + δ))

∣∣∣∣δ
)
. (3)

Step 4: Plug in the mean and variance of η̂k,n from Step 1 into (3), integrate in the formula in Step 2 on the
tube over t. Finally, take expectation w.r.t. δ.

D.1 Theorem 1

This section contains the proof of Theorem 1 and Theorem S.1. The two proofs are similar, so for proof of
Theorem S.1, we only present the part where the proof is different from Theorem 1.

Recall that R1(x) to Rk(x) as the unsorted distance from the nearest k neighbors to testing data point x, and
Rk+1(x) as the distance from the exact (k+ 1)-th nearest neighbor to x itself. Similar as Chaudhuri and Dasgupta



(2014), conditional on the distance of the (k + 1)-th neighbor, the first k neighbors are i.i.d. random variables
distributed within B(x,Rk+1(x)).

In addition to f1, f2, and Ψ, we further denote f̄(x) as the density of X.

Proposition 3 (Lemma S.1 in Sun et al. (2016)). For any distribution function G with density g,∫
R
[G(−bu− a)− 1{u<0}]du = −1

b

{
a+

∫
R
tg(t)dt

}
,∫

R
u[G(−bu− a)− 1{u<0}]du =

1

b2

{
a2

2
+

1

2

∫
R
t2g(t)dt+ a

∫
R
tg(t)dt

}
.

Now we start our proof of Theorem 1.

D.1.1 Formal Proof

Proof of Theorem 1. Step 1 : For the scenario of random perturbation, δ is a random variable uniformly distributed
on sphere B(xt0, ω), we first evaluate E(η̂k,n(xt0 + δ)) and V ar(η̂k,n(xt0 + δ)) for given x0 and δ.

E[η̂k,n(xt0 + δ)|δ] = E(Y1(xt0 + δ)|δ)

=E
(
η(xt0 + δ) + (X1 − xt0 − δ)>η̇(xt0 + δ) + 1/2(X1 − xt0 − δ)>η̈(xt0 + δ)(X1 − xt0 − δ)

∣∣∣∣δ)+ rem,

where rem is a remainder term due to the Taylor’s expansion. Given δ and R1(x0
t + δ) = ‖X1 − xt0 − δ‖, the

distribution of X1 is on the sphere of B(x0
t +δ,R1). Denote the density of this distribution as f̄(x|xt0+δ,R1(xt0+δ)).

Also define f̄ ′(x|xt0 + δ,R1(xt0 + δ)) as the gradient of f̄(x|xt0 + δ,R1(xt0 + δ)). For simplicity, rewrite R1(xt0 + δ) as
R1. Then based on (A.1) and (A.3) for the smoothness of f̄ and η, rewrite f̄(x|xt0 + δ,R1) as a Taylor expansion
at xt0 + δ, and we have

E((X1 − xt0 − δ)>η̇(xt0 + δ)|δ,R1)

=

∫
∂B

(x− xt0 − δ)>η̇(xt0 + δ)f̄(x|xt0 + δ,R1)dx

=

∫
∂B

(x− xt0 − δ)>η̇(xt0 + δ)

[
f̄(xt0 + δ|xt0 + δ,R1)

+f̄ ′(xt0 + δ|xt0 + δ,R1)>(x− xt0 − δ)

+
1

2
(x− xt0 − δ)>f̄ ′′(xt0 + δ|xt0 + δ,R1)(x− xt0 − δ)

+O(‖x− xt0 − δ‖32)

]
dx

=

∫
∂B

(x− xt0 − δ)>η̇(xt0 + δ)f̄ ′(xt0 + δ|xt0 + δ,R1)>(x− xt0 − δ)dx+ o

= tr

(
η̇(xt0 + δ)f̄ ′(xt0 + δ|xt0 + δ,R1)>

∫
∂B

(x− xt0 − δ)(x− xt0 − δ)>dx
)

+O(R4
1),

where
∫
∂B

denotes integration over sphere ∂B(xt0 + δ,R1) the first-order and third-order terms becomes 0.

In addition,

tr

(
1

2
η̈(xt0 + δ)E

(
(X1 − xt0 − δ)(X1 − xt0 − δ)>|R1

))
= tr

(
1

2
η̈(xt0 + δ)

∫
∂B

(x− xt0 − δ)(x− xt0 − δ)>f̄(x|xt0 + δ,R1)dx

)
= tr

(
1

2
η̈(xt0 + δ)

∫
∂B

(x− xt0 − δ)(x− xt0 − δ)>f̄(xt0 + δ|xt0 + δ,R1)dx

)
+tr

(
1

2
η̈(xt0 + δ)

∫
∂B

(x− xt0 − δ)(x− xt0 − δ)>(x− xt0 − δ)>f̄ ′(xt0 + δ|xt0 + δ,R1)dx

)
+O(R4

1).



The term rem in E(η̂k,n) can be tackled in a similar manner and rem = O(R4
1). Hence taking

b(x) =
1

f̄(x)d


d∑
j=1

[η̇j(x) ˙̄fj(x) + η̈j,j(x)f̄(x)/2]

 ,

we have

E(η̂k,n|δ,R1) = η(xt0 + δ) + b(xt0 + δ)R2
1 +O(R4

1)

= η(x0) +
t

‖η̇(x0)‖
η̇(x0)>η̇(x0) + δ>η̇(x0) +O(t2 + ω2)

+b(x0)R2
1 +R2

1

t

‖η̇(x0)‖
η̇(x0)>ḃ(x0) +R2

1δ
>ḃ(x0) +O(R4

1)

= η(x0) + t‖η̇(x0)‖+ δ>η̇(x0) + b(x0)R2
1 +O(t2 + ω2 +R4

1).

Denote tk,n(xt0 + δ) = ER2
1, using arguments in Lemma 1 and Theorem 2 of Xing et al. (2018), take ad =

2dΓ(1 + 1/2)d/Γ(1 + d/2), we obtain

tk,n(xt0 + δ) =
1

a
2/d
d f̄(xt0 + δ)2/d

(
k

n

)2/d

+ o(t2k,n(xt0 + δ))

= tk,n(x0) +O

(
t

(
k

n

)2/d
)

+O

(
ω

(
k

n

)2/d
)

+ o(t2k,n(xt0 + δ)).

Further denote µk,n,ω(xt0, δ) = η(x0) + t‖η̇(x0)‖+ δ>η̇(x0) + b(x0)tk,n(x0), we obtain

E(η̂k,n|δ) = µk,n,ω(xt0, δ) +O(t2 + ω2 + t2k,n) = µk,n,ω(xt0, δ) +O(ε2k,n,ω).

In terms of V ar(η̂k,n(xt0, δ)), fixing Rk+1, the k neighbors are i.i.d. random variables in B(xt0 + δ,Rk+1),

V ar(Y1|Rk+1, δ) = E(Y1|Rk+1, δ)(1− E(Y1|Rk+1δ)) =
1

4
+O

(
ε2k,n,ω

)
,

when R2
k+1 = O(tk,n(x0)). Moreover, as Chaudhuri and Dasgupta (2014) and Belkin et al. (2018) mentioned, the

probability of Rk+1 � tk,n(x0) is an exponential tail, hence the overall variance becomes

V ar(Y1|δ) =
1

4
+O

(
ε2k,n,ω

)
.

This also implies that
|
√
V ar(Y1|δ)−

√
1/4| = O(εk,n,ω).

Step 2: Our aim is to quantify the following quantity:∫
Rd

Ψ(x)

(
P

(
k∑
i=1

1

k
Yi ≤

1

2

)
− 1{η(x)<1/2}

)
dx,

which equals to ∫
R

Ψ(x)

(
P

(
k∑
i=1

1

k
Yi ≤

1

2

)
− 1{η(x)<1/2}

)
dx,

where R is the support of X. Taking εk,n,ω ≥ −sk,n log sk,n, we have∫
Rd

Ψ(x)

(
P

(
k∑
i=1

1

k
Yi ≤

1

2

∣∣∣∣δ
)
− 1{η(x)<1/2}

)
dx

=

∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

[
P (η̂k,n(xt0 + δ) < 1/2)− 1{t<0}

]
dtdVold−1(x0) + r1. (4)



The result in (4) adopts tube theory Gray (2012) to transform the integration from Rd to R×S. Denote the map

φ
(
x0, t

η̇(x0)
‖η̇(x0)‖

)
= xt0, then the pullback of the d-form dx is given at (x0, tη̇(x0)/‖η̇(x0)‖) by

det

(
φ̇

(
x0, t

η̇(x0)

‖η̇(x0)‖

))
dtdVold−1(x0).

For r1, it is composed of four parts: (1) the integral outside Sεk,n,ω , (2) the difference between Ψ(t) and t‖Ψ̇(x)‖,
(3) the difference between Sεk,n,ω and the tube generated using S, and (4) the remainder of det

(
φ̇
(
x0, t

η̇(x0)
‖η̇(x0)‖

))
:

r1

=

∫
Rd\Sεk,n,ω

(
P

(
k∑
i=1

1

k
Yi ≤

1

2

∣∣∣∣δ
)
− 1{η(x)<1/2}

)
dP (x) +O(ε3k,n,w)

+

∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

(
P (η̂k,n(xt0 + δ) < 1/2)− 1{t<0}

) [
det

(
φ̇

(
x0, t

η̇(x0)

‖η̇(x0)‖

))
− 1

]
dtdVold−1(x0)

:=r11 + r12 +O(ε3k,n,w).

(5)

For r11 in r1:

0 ≥
∫
Rd\Sεk,n,ω∩{x|η(x)<1/2}

(
P

(
k∑
i=1

1

k
Yi ≤

1

2

∣∣∣∣δ
)
− 1{η(x)<1/2}

)
dP (x)

=

∫
Rd\Sεk,n,ω∩{x|η(x)<1/2}

(
P

(
k∑
i=1

1

k

(
Yi −

1

2

)
− E

(
Y1 −

1

2

)
≤ −E

(
Y1 −

1

2

) ∣∣∣∣δ
)
− 1{η(x)<1/2}

)
dP (x)

= −
∫
Rd\Sεk,n,ω∩{x|η(x)<1/2}

P

(
k∑
i=1

1

k

(
Yi −

1

2

)
− E

(
Y1 −

1

2

)
> −E

(
Y1 −

1

2

) ∣∣∣∣δ
)
dP (x).

From the definition of εk,n,ω, we know that for any δ, inf
x∈Rd\Sεk,n,ω

|EY (x̃ω) − 1/2| ≥ c1εk,n,ω for some c1 > 0.

Using Berstein inequality, we have an upper bound as∫
Rd\Sεk,n,ω∩{x|η(x)<1/2}

P

(
k∑
i=1

1

k
(Yi −

1

2
)− E(Y1 −

1

2
) > −E(Y1 −

1

2
)

∣∣∣∣δ
)
dP (x)

≤ O(exp(−c2kε2k,n,ω)) = o(1/k3/2),

for c2 > 0.

Similar result can be obtained for Rd\Sεk,n,ω ∩ {x|η(x) > 1/2}.

For r12 in r1, ∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

(
P (η̂k,n(xt0 + δ) < 1/2)− 1{t<0}

)
[
det

(
φ̇

(
x0, t

η̇(x0)

‖η̇(x0)‖

))
− 1

]
dtdVold−1(x0)

=

∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

(
P (η̂k,n(x0 + δ) < 1/2)− 1{t<0}

)
[
det

(
φ̇

(
x0, t

η̇(x0)

‖η̇(x0)‖

))
− 1

]
dtdVold−1(x0)

+

∫
S

∫ εk,n,ω

−εk,n,ω
t‖φ̇(x0)‖

[
t
η̇(x0)>

‖η̇(x0)‖
∂

∂x0

(
P (η̂k,n(x0 + δ) < 1/2)− 1{t<0}

)]
[
det

(
φ̇

(
x0, t

η̇(x0)

‖η̇(x0)‖

))
− 1

]
dtdVold−1(x0) + o

= O(ε3k,n,ω).



Finally r1 = O(ε3k,n,ω).

Step 3: we continue the derivation of∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

(
P (η̂k,n(xt0 + δ) < 1/2)− 1{t<0}

)
dtdVold−1(x0).

Since given δ and Rk+1, η̂k,n is obtained from k i.i.d. samples (though for some samples their weight is 0), by
non-uniform Berry-Esseen Theorem,∫

S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖ERk+1

(
P (η̂k,n(xt0 + δ) < 1/2)− 1{t<0}|δ,Rk+1

)
dtdVold−1(x0)

=

∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

(
Φ

(
kE(1/2− Y1)√
kV ar(Y1)

∣∣∣∣δ
)
− 1{t<0}

)
dtdVold−1(x0) + r2

+

∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

(
ERk+1

Φ

(
kE(1/2− Y1|Rk+1)√
kV ar(Y1|Rk+1)

∣∣∣∣δ
)
− Φ

(
kE(1/2− Y1)√
kV ar(Y1)

∣∣∣∣δ
))

dtdVold−1(x0).

where ∣∣∣∣∣P (η̂k,n(xt0 + δ) < 1/2|Rk+1, δ)− Φ

(
kE(1/2− Y1|Rk+1)√
kV ar(Y1|Rk+1)

∣∣∣∣δ
)∣∣∣∣∣ ≤ c3√

k

1

1 + k3/2 |E1/2− Y1|Rk+1|3
,

hence

r2 ≤
∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖ c3√

k

1

1 + k3/2 |E1/2− Y1|Rk+1|3
dtdVold−1(x0) = O

(
1

k3/2

)
.

We can also obtain that∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

(
ERk+1

Φ

(
kE(1/2− Y1|Rk+1)√
kV ar(Y1|Rk+1)

∣∣∣∣δ
)
− Φ

(
kE(1/2− Y1)√
kV ar(Y1)

∣∣∣∣δ
))

dtdVold−1(x0)

= O(ε3k,n,ω).

Step 4: Finally we integrate on Gaussian probabilities:∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

(
Φ

(
kE(1/2− Y1)√
kV ar(Y1)

∣∣∣∣δ
)
− 1{t<0}

)
dtdVold−1(x0)

=

∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

Φ

− t‖η̇(x0)‖√
s2
k,n

− (b(x0)tk,n(x0) + δ>η̇(xt0))√
s2
k,n

− 1{t<0}

 dtdVold−1(x0)

+r3

=

∫
S

∫
R
t‖Ψ̇(x0)‖

Φ

− t‖η̇(x0)‖√
s2
k,n

− (b(x0)tk,n(x0) + δ>η̇(x0))√
s2
k,n

− 1{t<0}

 dtdVold−1(x0)

+r3 + r4

=
1

2

∫
S

1

4k

‖Ψ̇(x0)‖
‖η̇(x0)‖2

s2
k,ndVold−1(x0) +

∫
S

‖Ψ̇(x0)‖
2‖η̇(x0)‖2

(b(x0)tk,n(x0) + δ>η̇(x0))2dVold−1(x0) + r3 + r4.

The last step follows Proposition 3. For the small order terms,

r3 =

∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

(
Φ

(
kE(1/2− Y1)√
kV ar(Y1)

∣∣∣∣δ
)

−Φ

− t‖η̇(x0)‖√
s2
k,n

− (b(x0)tk,n(x0) + δ>η̇(xt0))√
s2
k,n

)dtdVold−1(x0)

= O(ε3k,n,ω).



Through definition of εk,n,ω we have

r4 = o(1/k3/2).

Finally we take expectation on δ:

Eδ
∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

(b(x0)tk,n(x0) + δ>η̇(x0))2dVold−1(x0)

=

∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

Eδ(b(x0)tk,n(x0) + δ>η̇(x0))2dVold−1(x0)

=

∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

(
b(x0)2t2k,n(x0) + 2b(x0)tk,n(x0)Eδ(δ>η̇(x0)) + Eδ(δ>η̇(x0))2

)
dVold−1(x0)

=

∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

(
b2(x0)t2k,n(x0) +

‖η̇(x0)‖2

d
ω2

)
dVold−1(x0).

D.2 Theorem 3

Proof of Theorem 3. When |η(x)− 1/2| > Cω for some large constant C > 0, g and g̃ will always be the same,
thus

P (g̃(x̃) 6= Y )− P (g(x) 6= Y ) (6)

= Eδ

[∫
S

∫ Cω

−Cω
t‖Ψ̇(x0)‖

(
1{η̃(xt0+δ)<1/2} − 1{t<0}

)
dtdVold−1(x0)

]
+O(ω4). (7)

Moreover,

η̃(x̃) = E(η(x)|x̃ is observed) = η(x̃) + b(x̃)ω2 +O(ω3). (8)

As a result,

η̃(xt0 + δ) = η(x0) + t‖η̇(x0)‖+ η̇(x0)>δ + b(x0)ω2 +O(tω2) +O(ω3). (9)

Plugging in η̃(xt0 + δ) into regret, we obtain that

P (g̃(x̃) 6= Y )− P (g(x) 6= Y ) (10)

= Eδ

[∫
S

∫ Cω

−Cω
t‖Ψ̇(x0)‖

(
1{η̃(xt0+δ)<1/2} − 1{t<0}

)
dtdVold−1(x0)

]
+O(ω4) (11)

= Eδ

[∫
S

∫ Cω

−Cω
t‖Ψ̇(x0)‖

(
1{t<−η̇(x0)>δ/‖η̇(x0)‖−b(x0)ω2} − 1{t<0}

)
dtdVold−1(x0)

]
+O(ω4) (12)

= E

[∫
S
‖Ψ̇(x0)‖

∫ 0

−η̇(x0)>δ/‖η̇(x0)‖−b(x0)ω2

tdtdVold−1(x0)

]
+O(ω4) (13)

=

∫
S
‖Ψ̇(x0)‖ω

2

2d
dVold−1(x0) +O(ω4). (14)

From this derivation, the dominant terms in the denominator and numerator of the quantity

P (Y 6= ĝn(x̃))− P (Y 6= g̃(x̃))

P (Y 6= ĝ′n(x̃))− P (Y 6= g̃(x̃))
(15)

are both Θ(n−4/(d+4)) when k’s are chosen to be optimal respectively. Note that the multiplicative constants
for numerator and denominator are both determined by δ and density of X, and converges to each other when
ω → 0. As ω → 0 when n→∞, the difference on the densities vanishes, thus (15) converges to 1.



D.3 Theorem S.1

Proof of Theorem S.1. The proof is similar with Theorem 1. Since the format of r1 to r4 are unchanged, one
can show that they are small order terms in Theorem 3 as well. What is changed in the proof of Theorem 3 is
µk,n,ω(x):

When t < 0, we have

µk,n,ω(xt0) = η(x0) + t‖η̇(x0)‖+ ω‖η̇(x0)‖+ b(x0)tk,n(x) + o,

while for t > 0,

µk,n,ω(xt0) = η(x0) + t‖η̇(x0)‖ − ω‖η̇(x0)‖+ b(x0)tk,n(x) + o.

Therefore,∫
S

∫ εk,n,ω

−εk,n,ω
t‖Ψ̇(x0)‖

(
Φ

(
kE(1/2− Y1)√
kV ar(Y1)

)
− 1{t<0}

)
dtdVold−1(x0)

=

∫
S

∫
R
t‖Ψ̇(x0)‖

Φ

− t‖η̇(x0)‖ − sign(t)ω‖η̇(x0)‖√
s2
k,n

− b(x0)tk,n(x0))√
s2
k,n

− 1{t<0}

 dtdVold−1(x0) + o

=

∫
S

∫
R
t‖Ψ̇(x0)‖

Φ

− t‖η̇(x0)‖+ ω‖η̇(x0)‖√
s2
k,n

− b(x0)tk,n(x0))√
s2
k,n

− 1{t<0}

 dtdVold−1(x0) + r5 + o

=
1

2

∫
S

1

4k

‖Ψ̇(x0)‖
‖η̇(x0)‖2

s2
k,ndVold−1(x0) +

1

2

∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

(
b(x0)ER1(x)2 + ω‖η̇(x0)‖

)2
dVold−1(x0) + r5 + o.

The remainder r5 is not a small order term, but we can show that it is positive, and calculate its rate.

r5 = O

(
B1

4k
+

∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

(
b(x0)ER1(x)2 + ω‖η̇(x0)‖

)2
dVold−1(x0)

)
.

For r5,

r5 =

∫
S

∫ +∞

0

t‖Ψ̇(x0)‖Φ

− t‖η̇(x0)‖ − ω‖η̇(x0)‖√
s2
k,n

− b(x0)tk,n(x0)√
s2
k,n

 dtdVold−1(x0)

−
∫
S

∫ +∞

0

t‖Ψ̇(x0)‖Φ

− t‖η̇(x0)‖+ ω‖η̇(x0)‖√
s2
k,n

− b(x0)tk,n(x0)√
s2
k,n

 dtdVold−1(x0)

=

∫
S

∫ +∞

−2ω

(t+ 2ω)‖Ψ̇(x0)‖Φ

− t‖η̇(x0)‖+ ω‖η̇(x0)‖√
s2
k,n

− b(x0)tk,n(x0)√
s2
k,n

 dtdVold−1(x0)

−
∫
S

∫ +∞

0

t‖Ψ̇(x0)‖Φ

− t‖η̇(x0)‖+ ω‖η̇(x0)‖√
s2
k,n

− b(x0)tk,n(x0)√
s2
k,n

 dtdVold−1(x0)

=

∫
S

∫ ∞
0

2ω‖Ψ̇(x0)‖Φ

− t‖η̇(x0)‖+ ω‖η̇(x0)‖√
s2
k,n

− b(x0)tk,n(x0)√
s2
k,n

 dtdVold−1(x0)

+

∫
S

∫ 0

−2ω

(t+ 2ω)‖Ψ̇(x0)‖Φ

− t‖η̇(x0)‖+ ω‖η̇(x0)‖√
s2
k,n

− b(x0)tk,n(x0)√
s2
k,n

 dtdVold−1(x0)

:= A+B.



From the format of A and B, we know that they are positive. When tk,n(x0) and 1/
√
k both � ω, A is an

exponential tail (so we just ignore it) and for B we have:

B =

∫
S
‖Ψ̇(x0)‖ω2dVold−1(x0) +O(ωtk,n(x0) + ω/

√
k).

D.4 Theorem 4

Proof of Theorem 4. First, it is easy to know that ω = O((1/n)1/d) since the nearest neighbor has an average
distance of O((1/n)1/d).

Second, there is a difference between pre-processed 1NN and random perturbation: in pre-processed 1NN, the
nearest neighbor distributes approximately uniformly around x, while the other neighbors should have a distance
to x larger than the nearest neighbor. However, this difference only affects the remainder term of regret, i.e.,
assuming whether or not the other neighbors are uniformly distributed in the ball B(x,Rk+1) does not affect our
result.

As a result, taking expectation on the direction of δ,

E
∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

(b(x0)tk,n(x0) + δ>(x0)η̇(x0))2dVold−1(x0)

=

∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

E(b(x0)tk,n(x0) + δ>(x0)η̇(x0))2dVold−1(x0)

=

∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

(
b2(x0)t2k,n(x0)

)
dVold−1(x0) + Θ(ω2).

When n−1/d � n−2/(4+d), i.e. d > 4, the dominant part of regret becomes n−2/d.

E Regret Convergence under General Smoothness Condition and Margin
Condition

E.1 Model and Theorem

In this section, we will relax the conditions on the distribution of X and smoothness of η, and as a consequence,
we only obtain the rate of the regret (without explicit form for the multiplicative constant). Technically, we will
adopt the framework of Chaudhuri and Dasgupta (2014), and the following assumptions on the smoothness of η
and the density of X are used instead of conditions [A.1]-[A.3].

B.1 Let λ be the Lebesgue measure on Rd. There exists a positive pair (c0, r0) such that for any x ∈ X ,

λ(X ∩B(x, r)) ≥ c0λ(B(x, r)),

for any 0 < r ≤ r0.

B.2 The support of X is compact.

B.3 Margin condition: P (0 < |η(x)− 1/2| < t) ≤ Btβ .

B.4 Smoothness of η: there exist some α > 0 and cr > 0, such that |η(x+ r)− η(x)| ≤ ‖r‖α for any x and r ≤ cr.

B.4’ Smoothness of η: there exist some α > 0 and cr > 0, such that |η(x+ r)− η(x)| ≤ ‖r‖α for any x and r ≤ cr.

B.5 The density of X is finite and bounded away from 0.

Remark 1. In Chaudhuri and Dasgupta (2014), the assumption of smoothness is made on |E(η(x′)|x′ ∈
B(x, r))−η(x)|, which is a weaker assumption compared with our B.4. However, under either random perturbation
or adversarial attack, given a direction δ to obtain x̃, the assumption in Chaudhuri and Dasgupta (2014) cannot
be simply applied.



The following theorem provide a general upper bound of regret for both perturbed and attacked data:

Theorem S. 4 (Convergence of Regret). Under [B.1] to [B.5], if for some δ > 0, k/nδ →∞, taking

k � O(n2α/(2α+d) ∧ (n2α/dω−2αβ)1/(2α/d+β+1)),

the regret becomes

Regret(n, ω) = O
(
ωα(β+1) ∨ n−α(β+1)/(2α+d)

)
,

where n−α(β+1)/(2α+d) is the minimax rate of regret in k-NN.

Theorem 4 also reveals a sufficient condition when k-NN is consistent, i.e regret finally converges to 0: for both
perturbed and attacked data, when ω = o(1), k-NN is still consistent using these two types of corrupted testing
data.

Theorem S. 5 (Minimax Rate of Regret). Let ĝn be an estimator of g, let Pα,β be a set of distributions which
satisfy [B.1] to [B.3], [B.4’], and [B.5], when α ≤ 1, there exists some C > 0 such that

sup
P∈Pα,β

P (ĝn(X̃) 6= Y )− P (g(X) 6= Y ) ≥ C(ωα(β+1) ∨ n−
α(β+1)
2α+d ). (16)

The constant C depends on α, β, d only.

Theorem 5 reveals that, for any estimator of g, under either random perturbation or adversarial attack, the regret

in the worst case is larger than C(ωα(β+1) ∨ n−
α(β+1)
2α+d ). Theorem 4 and 5 together shows that the kNN estimator

reaches the optimal rate of regret.

E.2 Proofs

Proof of Theorem S.4. Let p = k/n. Denote Rk,n(x) = P (ĝk,n(x) 6= Y |x) and R∗(x) = P (g(x) 6= Y ), and
ERk,n(x)−R∗(x) as the excess risk. Define

X+
p,∆,ω = {x ∈ X |η(x) >

1

2
,∀x′ ∈ B(x, ω), η(x′ + r) ≥1

2
+ ∆,∀‖r‖ < r2p(x)},

X−p,∆,ω = {x ∈ X |η(x) <
1

2
,∀x′ ∈ B(x, ω), η(x′ + r) ≤1

2
−∆,∀‖r‖ < r2p(x)},

with r2p as the distance from x to its 2pnth nearest neighbor, and the decision boundary area:

∂p,∆,ω = X \ (X+
p,∆,ω ∪ X

−
p,∆,ω).

Given ∂p,∆,ω, X+
p,∆,ω, and X−p,∆,ω, similar with Lemma 8 in Chaudhuri and Dasgupta (2014), the event of

g(x) 6= ĝk,n(x) can be covered as:

1{g(x)6=ĝk,n(x)} ≤ 1{x∈∂p,∆,ω}

+1{ max
i=1,...,k

Ri(x̃)≥r2p(x)}

+1{|η̂k,n(x)−η(x′+r)|≥∆}.

When η(x′ + r) > 1/2 for all ‖r‖ ≤ r2p(x), and x ∈ X+
p,∆, assume η̂k,n(x) < 1/2, then

η(x′ + r)− η̂k,n(x′) > η(x′ + r)− 1/2 ≥ ∆.

The other two events are easy to figure out.

By Chaudhuri and Dasgupta (2014) and Belkin et al. (2018), P ( max
i=1,...,k

Ri(x) ≥ r2p(x)) is of O(exp(−ck2)) for

some c > 0, hence it becomes a smaller order term if for some δ > 0, k/nδ →∞.



In addition, from the definition of regret, assume η(x) < 1/2,

P (ĝ(x) 6= Y |X = x)− η(x)

= η(x)P (ĝ(x) = 0|X = x) + (1− η(x))P (ĝ(x) = 1|X = x)− η(x)

= η(x)P (ĝ(x) = g(x)|X = x) + (1− η(x))P (ĝ(x) 6= g(x)|X = x)− η(x)

= η(x)− η(x)P (ĝ(x) 6= g(x)|X = x) + (1− η(x))P (ĝ(x) 6= g(x)|X = x)− η(x)

= (1− 2η(x))P (ĝ(x) 6= g(x)|X = x),

similarly, when η(x) > 1/2, we have

P (ĝ(x) 6= Y |X = x)− 1 + η(x) = (2η(x)− 1)P (ĝ(x) 6= g(x)|X = x).

As a result, the regret can be represented as

Regret(k, n, ω) = E (|1− 2η(X)|P (g(X) 6= ĝk,n(X))) .

For simplicity, denote p = k/n. We then follow the proof of Lemma 20 of Chaudhuri and Dasgupta (2014).
Without loss of generality assume η(x) > 1/2. For perturbation δ ∈ Rd, define

∆0 = sup
x,δ,‖r‖<r2p(x)

|η(x+ δ + r)− η(x)| = O(ωα) +O((k/n)α/d),

∆(x) = |η(x)− 1/2|,

then we have

η(x+ δ + r) ≥ η(x)−∆0 =
1

2
+ (∆(x)−∆0),

hence x ∈ X+
p,∆(x)−∆0,ω

.

From the definition of Rk,n and R∗, when ∆(x) > ∆0, we also have

ERk,n(x)−R∗(x)

≤ 2∆(x)

[
P (r(k+1) > v2p) + P

( k∑
i=1

1

k
Y (Xi)− η(x′ + δ + r) > ∆(x)−∆0

)]

≤ 2∆(x)P

( k∑
i=1

1

k
Y (Xi)− η(x′ + δ + r) > ∆(x)−∆0

)
+ o

= 2∆(x)Eδ

[
P

( k∑
i=1

1

k
Y (Xi)− η(x′ + δ + r) > ∆(x)−∆0

∣∣∣∣δ)
]

+ o

Considering the problem that the upper bound can be much greater than 1 when ∆(x) is small, we define
∆i = 2i∆0, taking i0 = min{i ≥ 1| (∆i −∆0)2 > 1/k}, using Berstein inequality, it becomes

ERk,n(X)−R∗(X) = E(Rk,n(X)−R∗(X))1{∆(X)≤∆i0
}

+E(Rk,n(X)−R∗(X))1{∆(X)>∆i0
}

≤ 2∆i0P (∆(X) ≤ ∆i0) + exp(−k/8)

+c2E
[
∆(X)1{∆i0<∆(X)} exp(−c1k(∆(x)−∆0)2)

]
≤ 2∆i0P (∆(X) ≤ ∆i0) + exp(−k/8)

+c2E
[
∆(X)1{∆i0

<∆(X)} exp(−c1k(∆(x)−∆0)2)
]
.



When i0 = min{i ≥ 1| (∆i −∆0)2 > 1/k}, the exponential tail will diminish fast, leading to

E
[
∆(X)1{∆i0

<∆(X)} exp(−c1k(∆(x)−∆0)2)
]

=

∞∑
i=i0

E
[
∆(X)1{∆i<∆(X)<∆i+1} exp(−c1k(∆(x)−∆0)2)

]
≤

∞∑
i=i0

∆β+1
i+1 exp(−c1k(∆i −∆0)2)

=

∞∑
i=i0

∆β+1
0 2(i+1)(β+1) exp(−c1k∆2

0(2i − 1)2)

≤ c3∆β+1
0 .

Recall that ∆i0 > ∆0 and ∆2
i0
> 1/k, hence when ∆2

i0
= O(1/k), we can obtain the minimum upper bound

ERk,n(X)−R∗(X) = O(∆β+1
0 ) +O

((
1

k

)(β+1)/2
)
.

Proof of Theorem S.5. The proof is similar as Audibert and Tsybakov (2007) using technical details in Audibert
(2004) for Assouad’s method. There are two scenarios we will consider. Define C0, C1 and C2 as some suitable
constants, we will first show for any ω ≥ 0,

sup
P∈Pα,β

P (ĝn(X̃) 6= Y )− P (g(X) 6= Y ) ≥ C1n
−α(β+1)

2α+d . (17)

Further, when ω > C0n
− 1

2α+d , our target is to show that

sup
P∈Pα,β

P (ĝn(X̃) 6= Y )− P (g(X) 6= Y ) ≥ C2ω
α(β+1). (18)

Case 1 : when ω ≤ C0n
− 1

2α+d , the basic idea is to construct a distribution of x and two distributions of y|x such
that, the Bayes classifiers from these two distributions of y|x reverse with each other, but through sampling
n points, we cannot distinguish which distribution these n samples chosen are from. For example, given n
samples from a normal distribution, statistically we cannot determine whether data are sampled from a zero-mean
distribution, or a distribution with mean 1/

√
n, thus any estimator based on data (either using clean testing data

or corrupted testing data) can make a false prediction.

Assume X distributed within a compact set in [0, 1]d. For an integer q ≥ 1, consider the regular grid as

Gq :=

{(
2k1 + 1

2q
, ...,

2kd + 1

2q

)
: ki ∈ {0, ..., q − 1}, i = 1, ..., d

}
. (19)

For any point x, denote nq(x) as the closest grid point in Gq, and define X ′1, ...,X ′qd as a partition of [0, 1]d such

that x and x′ are in the same X ′i if and only if nq(x) = nq(x
′). Among all the X ′i ’s, select m of them as X1, ...,Xm,

and X0 := [0, 1]d\ ∪mi=1 Xi.

Take zi as the center of Xi for i = 1, ...,m. When x ∈ B(zi, 1/4q), set the density of x as ε/λ[B(zi, 1/4q)] for
some ε > 0, and the density of x in Xi\B(zi, 1/4q) is set to be 0. Assume x uniformly distributes in X0.

Let u : R+ → R+ be a nonincreasing infinitely differentiable function starting from 0 and satisfying α-smoothness
condition. Moreover, u is 1 in [1/2,∞). Denote ψ and φ as

ψ(x) := Cψu(‖x‖), (20)

and
φ(x) := q−αψ(q(x− nq(x))). (21)



Through the above construction, if we take η(x) = (1 + φ(x))/2 or η(x) = (1− φ(x))/2, and let m = O(qd−αβ),
then when αβ ≤ d, β margin condition is also satisfied.

The construction above will also be applied in Case 2 (with difference on the choice of q, ε, u).

Now we apply Assouad’s method to find the lower bound of regret. Denote Pjk as a distribution such that
η(x) = (1 + φ(x))/2 when k = 0, x ∈ Xj , and η(x) = (1 − φ(x))/2 when k = 1, x ∈ Xj , then we have for any
estimator ĝ(x, Zn) with Zn = (Xn, Yn) as data,

sup
k=0,1

EX,Zn,Pjk1{ĝ(X,Zn)6=g(X)}1{X∈Xj} (22)

≥ 1

2
EX,Zn,Pj01{ĝ(X,Zn) 6=g(X)}1{X∈Xj} +

1

2
EZn,Pj11{ĝ(X,Zn) 6=g(X)}1{X∈Xj} (23)

=
1

2
EX,Zn,Pj01{ĝ(X,Zn) 6=0}1{X∈Xj} +

1

2
EZn,Pj11{ĝ(X,Zn) 6=1}1{X∈Xj} (24)

=
1

2
EX1{X∈Xj}E

[
EZn,Pj01{ĝ(x,Zn)6=0} + EZn,Pj11{ĝ(x,Zn) 6=1}

∣∣∣∣X = x

]
(25)

=
1

2
EX1{X∈Xj}E

[∫
1{ĝ(x,Zn) 6=0}dPj0(Zn) +

∫
1{ĝ(x,Zn) 6=1}dPj1(Zn)

∣∣∣∣X = x

]
(26)

≥ 1

2
EX1{X∈Xj}E

[∫
1{ĝ(x,Zn) 6=0} + 1{ĝ(x,Zn)6=1}(dPj0(Zn) ∧ dPj1(Zn))

∣∣∣∣X = x

]
(27)

=
1

2
EX1{X∈Xj}E

[∫
(dPj0(Zn) ∧ dPj1(Zn))

∣∣∣∣X = x

]
(28)

=
1

2
EX1{X∈Xj}

∫
(dPj0(Zn) ∧ dPj1(Zn)). (29)

Denote

bj :=
[
1− E2(

√
1− φ2(X)|X ∈ Xj)

]1/2
, (30)

and

b′j := (Eφ(X)|X ∈ Xj), (31)

then
∫

(dPj0(Zn) ∧ dPj1(Zn)) = Θ(1) through our design of Xj when bj = O(1/
√
nε) by Lemma 5.1 in Audibert

(2004).

As a result, when bj = b, b′j = b′ for all j = 1, ...,m, and b = O(1/
√
nε), there exists some C3 > 0 such that

sup
P∈P

P (ĝ(X,Zn) 6= Y )− P (g(X) 6= Y ) (32)

= sup
P∈P

E|2η(X)− 1|P (ĝ(X,Zn) 6= g(X)) (33)

= sup
P∈P

m∑
j=1

E|2η(X)− 1|P (ĝ(X,Zn) 6= g(X))1{X∈Xj} (34)

≥ C3mb
′ε. (35)

The regret is lower bounded as C1n
−α(β+1)/(2α+d) when taking q = O(n1/(2α+d)). Note that ĝ(x, Zn) can be any

classifier, which also includes those “random” estimators when x is perturbed / attacked.

Case 2 : when ω > C0n
− 1

2α+d , we construct a distribution of (x, y) such that, after injecting noise in it, there is
some sets of x̃ where P (g(x) = 1|x̃) and P (g(x) = 0|x̃) are comparable, thus no matter which label is obtained
from the estimator, it has a constant-level of probability to make false decision at this x̃.

The construction is similar as Case 1, and we take q = b2/ωc. For function u, here we let it increase from 0 and
becomes 1 in [1/4,∞). For each pair (Xj0,Xj1), take η(x) = (1 + φ(x))/2 when x ∈ Xj0 and η(x) = (1− φ(x))/2
when x ∈ Xj1. The support of x is X0 ∪ (

⋃m
i=1B(zi, 3ω/4)). Take m = O(ωαβ−d) and ε = O(ωd), then both

α-smoothness condition and β-margin condition are satisfied.



After injecting random noise on x, consider ξj as the boundary between Xj0 and Xj1, then when x̃ is from
{z | dist(z, ξj) < ω/4, z ∈ Xj0 ∪ Xj1}, P (g(x) = 1|x̃) and P (g(x) = 0|x̃) are in [C4, 1 − C4] for some constant
C4 > 0. Thus the probability of any estimator to make a false decision at this x̃ is larger than C4. In addition,
the probability measure of ∪mj=1{z | dist(z, ξj) < ω/4, z ∈ Xj0 ∪ Xj1} is greater than C5ω

αβ for some constant

C5 > 0. Thus the regret is greater than C5ω
αβCφω

αC4 = C6ω
α(β+1).

References

Audibert, J.-Y. (2004), “Classification under polynomial entropy and margin assumptions and randomized
estimators,” .

Audibert, J.-Y. and Tsybakov, A. B. (2007), “Fast learning rates for plug-in classifiers,” The Annals of statistics,
35, 608–633.

Belkin, M., Hsu, D., and Mitra, P. (2018), “Overfitting or perfect fitting? Risk bounds for classification and
regression rules that interpolate,” arXiv preprint arXiv:1806.05161.

Chaudhuri, K. and Dasgupta, S. (2014), “Rates of convergence for nearest neighbor classification,” in Advances
in Neural Information Processing Systems, pp. 3437–3445.

Gray, A. (2012), Tubes, vol. 221, Birkhäuser.
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