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Abstract

Adversarially robust learning aims to design
algorithms that are robust to small adversar-
ial perturbations on input variables. Beyond
the existing studies on the predictive perfor-
mance to adversarial samples, our goal is to
understand the statistical properties of ad-
versarially robust estimates and analyze ad-
versarial risk in the setup of linear regression
models. By discovering the statistical mini-
max rate of convergence of adversarially ro-
bust estimators, we emphasize incorporating
model information, e.g., sparsity, in adversar-
ially robust learning. Further, we reveal an
explicit connection between adversarial and
standard estimates and propose a straight-
forward two-stage adversarial learning frame-
work that facilitates utilizing model struc-
ture information to improve adversarial ro-
bustness. In theory, the consistency of the
adversarially robust estimator is proven and
its Bahadur representation is also developed
for the statistical inference purpose. The pro-
posed estimator converges in a sharp rate
under either a low-dimensional or a sparse
scenario. Moreover, our theory confirms two
phenomena in adversarially robust learning:
adversarial robustness hurts generalization,
and unlabeled data improves generalization.
In the end, we conduct numerical simulations
to verify our theory.

1 INTRODUCTION

The development of machine/deep learning methods
has led to breakthrough performance in various areas
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of application. However, some recent research revealed
that these powerful but delicate models are vulnera-
ble to random perturbation and adversarial attacks.
For example, well-designed malicious adversarial in-
put may induce wrong decision making when filter-
ing junk emails or detecting malicious binary pro-
grams Zhang et al. (2017); Papernot et al. (2017).
On the other hand, by studying adversarial samples,
one can improve the adversarial robustness of algo-
rithms in practice. The existing literature focused on
generating adversarial samples, e.g., Papernot et al.
(2016, 2017), adversarial training, e.g., Goodfellow
et al. (2015); Kurakin et al. (2017); Wang et al. (2019),
invariance/interpretability to detect adversarial sam-
ples, e.g., Xu et al. (2018); Tao et al. (2018); Ma et al.
(2019); Etmann et al. (2019); Carmon et al. (2019)
and theoretical studies of adversarially robust learn-
ing, e.g., Xu et al. (2009a,b); Xu and Mannor (2012).
In particular, some studies Yin et al. (2019); Raghu-
nathan et al. (2019) showed that adversarial train-
ing leads to a worse generalization performance, while
Schmidt et al. (2018); Zhai et al. (2019); Najafi et al.
(2019) argued that the adversarial robustness requires
more (labeled/unlabeled) data to enhance generaliza-
tion performance. Besides, the trade-off between stan-
dard performance and adversarial performance is care-
fully characterized in Zhang et al. (2019); Javanmard
et al. (2020).

Adversarially robust estimation in the literature is of-
ten formulated as an empirical “min-max” problem:
minimizing the empirical risk under the worst-case at-
tack (which maximizes the loss) on the training data.
Unfortunately, this formulation does not directly con-
sider the structural information of the model such
as sparsity and grouping, e.g., Shaham et al. (2015);
Sinha et al. (2018); Wang et al. (2019), which may be
utilized to improve adversarial robustness. The struc-
ture information is particularly needed in the high-
dimensional regime, i.e., data dimension p is much
larger than sample size n, where the empirical (adver-
sarial) risk may no longer converge to the population
risk Mei et al. (2018).
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The above concern raises two questions: (1) whether
the statistical minimax1 rate of the estimation error of
any linear adversarial estimator will get changed given
certain structure information for the standard model,
and (2) whether we can utilize this information to get
a better adversarially robust estimator.

Our contributions can be summarized as follows:

• In Section 3, by studying the form of adversar-
ial risk, we figure out the minimax lower bound
of estimation error, which reveals the potential to
improve the estimation efficiency through utiliz-
ing model information.

• In Section 4, we design a two-stage adversarially
robust learning framework that nicely connects
adversarially robust estimation with standard es-
timation. The model structure information can
be easily embedded into the standard estimator,
and is further carried over to the adversarially
robust estimate through this two-stage learning
procedure. For statistical inference, we develop
the Bahadur representation result (He and Shao,
1996) that implies the asymptotic normality of
the proposed estimate under certain conditions.
Besides, by analyzing the upper bound for the
estimation error, we reveal the benefit of incor-
porating sparsity information into the adversar-
ial estimation procedure, in which the estimator
reaches the minimax optimal rate of convergence.

• Besides the above two main contributions, in Sec-
tion 5, we utilize our theory to verify two argu-
ments in adversarially robust learning: adversari-
ally robust learning hurts generalization, and ad-
versarial robustness can be improved using unla-
beled data.

Two related works are appearing very recently. The
first one Javanmard et al. (2020) mainly investigated
the trade-off between adversarial risk and standard
risk under an isotropic condition of the covariate.
Rather, we focus on improving adversarial robustness
by utilizing prior knowledge on the model and study-
ing statistical properties of the adversarially robust es-
timate itself, in contrast with the generalization stud-
ies by Schmidt et al. (2018); Zhang et al. (2019); Zhai
et al. (2019); Najafi et al. (2019). Another recent work
Dan et al. (2020) studied the sharp statistical bound
in adversarially robust classification. In the regres-
sion setup, our theorems reveal that an adversarially
robust estimate is different from a standard estimate

1In this paper, “min-max” refers to the optimization
problem considered in adversarially robust learning, while
“minimax” refers to the statistical lower bound on the es-
timation error.

even in the rate of convergence: for noiseless case, stan-
dard model estimators can exactly recover the correct
model, but the lower bound for adversarially robust
model is always nonzero. Our lower bound for sparse
model is also new. Notation. We use boldface font for
vectors, e.g., x, and capital letters for matrices, e.g., A.
The `2 norm of a vector u is denoted as ‖u‖2 (or ‖u‖
for simplicity). The p×p identity matrix is denoted by
Ip.The induced spectral norm of a matrix A ∈ Rp×p
is denoted by ‖A‖, i.e., ‖A‖ := sup{‖Ax‖ : ‖x‖ = 1}.
We denote by λi(A), i ∈ {1, 2, · · · , p}, its eigenvalues
in decreasing order. For a symmetric matrix A, de-
note ‖x‖2A = x>Ax. For two matrices A,B, we denote
〈A,B〉F as the Frobenius inner product, which is the
sum of component-wise inner product of two matrices.
The Frobenius norm of A is denoted by ‖A‖F .

2 PROPERTIES OF ADVERSARIAL
RISK

Consider a linear regression model

y = x>θ0 + ε, (1)

where Ex = 0, Var(x) = Σ, and ε is a noise term
(independent of x) with E(ε) = 0 and Var(ε) = σ2.
Throughout this paper, we assume that x ∈ Rp fol-
lows a p-dimensional Gaussian distribution and Σ has
a bounded largest eigenvalue (away from ∞) and a
bounded smallest eigenvalue (away from 0) as p in-
creases. The noise variance σ2 and ‖θ0‖ are allowed
to diverge in p, and the signal-to-noise ratio ‖θ0‖Σ/σ
needs to be large enough, say bounded away from 0.

The (population) adversarial risk is defined as follows

R0(θ, δ) := Ex max
‖x∗−x‖2≤δ

[
((x∗)>θ − x>θ0)2

]
(2)

= ‖θ − θ0‖2Σ + 2δc0‖θ − θ0‖Σ‖θ‖+ δ2‖θ‖2,

where c0 :=
√

2/π. The corresponding minimizer of
(2) is denoted by θ∗(δ), i.e.,

θ∗(δ) := arg min
θ
R0(θ, δ).

We may just use θ∗ when no confusion arises.

In the proposition below, we study the shape of R0,
and establish an analytical form of θ∗(δ), which sug-
gests the construction of adversarially robust estima-
tor (to be specified later). Define

θ(λ) := (Σ + λIp)
−1Σθ0,

and two thresholds of δ:

δ1 =
c0‖θ0‖
‖θ0‖Σ−1

and δ2 =
‖θ0‖Σ2

c0‖θ0‖Σ
.
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Proposition 1. The risk R0(θ, δ) is a convex function
w.r.t. θ, and has positive definite Hessian for any θ 6=
0, θ 6= θ0. In addition, the global minimizer of R0(θ, δ)
can be written as

θ∗(δ) := θ(λ∗(δ)) (3)

where λ∗(δ) depends on (δ,Σ, θ0). (1) If δ ≤ δ1, then
λ∗(δ) = 0 such that θ∗ = θ0, and there is no station-
ary point for R0(θ, δ). (2) If δ ≥ δ2, then λ∗(δ) = ∞
such that θ∗ = 0, and there is no stationary point for
R0(θ, δ). (3) If δ1 < δ < δ2, then there is a unique sta-
tionary point θ(λ∗(δ)) of R0(θ, δ), which is the global
optimum. Here λ∗(δ) is the solution of the following
equation w.r.t. λ:

λ

(
1 +

δc0‖θ(λ)‖
‖θ(λ)− θ0‖Σ

)
= δc0

‖θ(λ)− θ0‖Σ
‖θ(λ)‖

+ δ2. (4)

The proof of Proposition 1 is in Appendix B.

For a general Σ, it is hard to obtain an explicit solution
for θ∗ by solving (4). However, when Σ = Ip, one
can write down the explicit formula of θ∗(δ), which is
actually a re-scaled version of θ0. In this case, δ1 = c0,
δ2 = 1/c0, and λ∗(δ) = (δ2 − δc0)/(1− δc0) when δ ∈
(δ1, δ2). Moreover, the adversarial risk and standard
risk of the adversarially robust model become

R0(θ∗(δ), δ) =


δ2‖θ0‖2 δ ≤ c0
δ2(1−c20)
δ2+1−2δc0

‖θ0‖2 c0 ≤ δ ≤ 1/c0
‖θ0‖2 δ ≥ 1/c0

R0(θ∗(δ), 0) =


0 δ ≤ c0
δ2(δ−c0)2

(δ2+1−2δc0)2 ‖θ0‖2 c0 ≤ δ ≤ 1/c0
‖θ0‖2 δ ≥ 1/c0

.

Similar as R0(θ∗(δ), δ), the standard risk of the ad-
versarially robust model R0(θ∗(δ), 0) also increases as
δ and reaches the same level as R0(θ∗(δ), δ) when
δ > 1/c0; see Figure 1 below. This result echoes with
Javanmard et al. (2020); Raghunathan et al. (2019)
that the adversarially robust model leads to a worse
performance when testing data is un-corrupted.

Remark 1. Besides adversarial risk, we define adver-
sarial prediction risk as

R(θ, δ) := Ex,y max
‖x∗−x‖≤δ

[(
(x∗)>θ − y

)2]
.

The properties of R are similar as R0 when ε ∼
N(0, σ2), and we focus on R0 in this paper.

3 MINIMAX LOWER BOUND

In this section, through figuring out the minimax lower
bounds of the estimation error, we argue that it is

Figure 1: R0(θ∗(δ), δ) and R0(θ∗(δ), 0) correspond to
blue and purple curves, respectively. Here, Σ = Ip and
‖θ0‖2 = 1. Dashed lines represent the two thresholds
δ1 = c0 (left) and δ2 = 1/c0 (right). Curve: theoretical
values. Dots: simulations with p = 10 and n = 10000.

essential to incorporate sparsity information of (θ0,Σ)

in (θ̂0, Σ̂) in sparse model. For minimax lower bound
in standard learning problems, studies can be found in
Dicker et al. (2016); Mourtada (2019) for dense case
and Verzelen (2010); Ye and Zhang (2010); Raskutti
et al. (2011) for sparse case.

The following two theorems present the lower bounds
of E‖θ̂ − θ∗‖2 for dense/sparse models respectively.

Theorem 1. When σ/‖θ0‖ <∞, σ2p/(‖θ0‖2n)→ 0,
and (p log2 n)/n → 0, if ‖θ0‖ ≤ R, 0 < c1 ≤
λmin(Σ) ≤ λmax(Σ) ≤ c2 < ∞, δ > 0, then there
exists some constant δ > 0 such that

inf
θ̂

sup
Σ,θ0,δ

E‖θ̂ − θ∗‖2 = Ω

(
pσ2

n
∨ pR

2

n

)
,

The estimator θ̂ refers to any estimator θ̂(X,Y, δ), and
θ∗ is a function of (θ0,Σ, δ).

For sparse model, the sparsity of θ0 is directly con-
trolled through the size of active set of θ0. In terms of
the sparsity of Σ, we follow Cai et al. (2010) to consider
a family of sparse covariance matrix as follows:

Fα =

{
Σ : max

j

∑
i

{|σij | : |i− j| > k} ≤Mk−α ∀k,

λmax(Σ) ≤M0, λmin(Σ) ≥ m0 > 0

}
.

Theorem 2. When σ/‖θ0‖ < ∞, if ‖θ0‖ ≤ R and
‖θ0‖0 ≤ s, 0 < c1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c2 < ∞,
δ > 0, then for any 0 < s < p and α > 0, there exists
some constant δ > 0 such that

inf
θ̂

sup
Σ∈Fα,θ0,δ

E‖θ̂ − θ∗‖2

= Ω

(
sσ2 1 + log(p/s)

n
∨R2n−

2α
2α+1

)
.

The proof of the above two theorems utilizes some
tools in Mourtada (2019); Verzelen (2010); Cai et al.
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(2010). A difficulty compared with existing literature
in standard learning is that the relationship between
θ0 and θ∗ is nonlinear, and θ∗ further depends on Σ.
The details are in Appendix C.

To compare Theorem 1 and 2, the lower bound for
sparse model is much smaller than the one for dense
model. This indicates a potential improvement for ad-
versarially robust estimators if the algorithm can uti-
lize the sparsity information (if there is). As discussed
in Belkin et al. (2019); Xing et al. (2020), for the high-
dimensional model, if we do not consider the sparsity
information, the resulting model is not consistent in
both standard and adversarially robust learning prob-
lems.

To compare with standard learning problem, the re-
sults in Theorem 1 and 2 are different from those
in standard learning. Such a difference implies it is
hard to train adversarially robust models. In standard
learning, when σ2 = 0, the lower bound is exactly zero
since some estimators of θ0 can achieve zero estima-
tion error. However, when δ > 0, even if σ2 = 0, the
lower bound is not zero.

Remark 2. Similar to our results, Dan et al. (2020)
provided a minimax lower bound of generalization er-
ror under the adversarially robust classification setup.
However, they only considered the dense case corre-
sponding to our Theorem 1, but not for the sparse case.

4 TWO-STAGE ADVERSARIAL
ROBUST ESTIMATOR

In this section, we demonstrate a two-stage procedure
for constructing adversarially robust estimators based
on the explicit relation pointed out in the previous
section. This relation allows us to incorporate spe-
cific model information, such as sparsity, into adver-
sarially robust estimates through standard estimates.
The idea of the proposed method is similar to the es-
timators in Dan et al. (2020); Carmon et al. (2019)
and the method is straightforward. We emphasize that
such a simple two-stage method is powerful enough to
achieve minimax optimal.

4.1 Estimator description

There are two stages in the proposed method. In the
first stage, consistent estimators of the true parameter
θ0, denoted as θ̂0, and matrix Σ, denoted as Σ̂, are
obtained from standard statistical procedures. In the
second stage, the robust estimator of θ∗, which mini-
mizes the adversarial risk, is constructed as follows:

θ̂(δ) := θ̂(λ̂∗(δ)) := (Σ̂ + λ̂∗(δ)Ip)
−1Σ̂θ̂0, (5)

where λ̂∗(δ) is a plug-in estimate of λ∗(δ) depending

on θ̂0 and Σ̂. Alternatively speaking, θ̂(δ) may be ob-
tained by minimizing an empirical version of (2):

R̂0(θ, δ) := R̂0(θ, θ̂0, Σ̂, δ) (6)

= ‖θ − θ̂0‖2Σ̂ + 2δc0‖θ − θ̂0‖Σ̂‖θ‖+ ‖θ‖2.

According to the proof of Proposition 1, the empirical
risk R̂0(θ, δ) shares similar properties as adversarial

risk R0(θ, δ) in Proposition 1. We may simply use θ̂

instead of θ̂(δ) when no confusion arises.

4.2 Consistency

We first show that for any level of attack δ, the ad-
versarial excess risk converges to zero, i.e., (7), as long
as the standard estimates of θ0 and Σ are consistent
with proper rates and p does not grow too fast. Next,
combining with the convex properties of R0, the upper
bound in (7) implies the consistency of θ̂ in estimat-
ing θ∗; see Theorem 4. This consistency result will be
used in deriving the generalization error in Theorem 5
later.

Theorem 3. For any consistent estimators θ̂0 and Σ̂,
with probability tending to 1,

sup
δ≥0

∣∣∣R0(θ∗(δ), δ)−R0(θ̂(δ), δ)
∣∣∣ (7)

= O
(
‖θ̂0 − θ0‖‖θ0‖

)
+O

(
‖θ0‖2

√
‖Σ̂− Σ‖

)
.

To illustrate Theorem 3 in details, we use θ̂0 =
(X>X)−1X>y and Σ̂ = X>X/n to construct θ̂. Based
on Theorem 2 in Hsu et al. (2012) (taking ridge penalty
as zero) and Theorem 3, with probability tending to
1, we have

R0(θ̂, δ)−R0(θ∗, δ)

‖θ0‖2Σ + σ2
= o(1), (8)

which implies the adversarial excess risk of θ̂ converges
to zero as long as (p log n)/n→ 0.

The proof of Theorem 3 is postponed to Appendix
C. We also postpone an analog of Theorem 3 for the
adversarial prediction risk R to Appendix A (for the
statement) and C (for the proof). Note that the upper
bound in (7) is not tight, but enough to justify the

adversarial risk consistency of θ̂(δ).

We next use an example to illustrate how sparsity in-
formation can be utilized in the proposed framework.

Example 1 (Sparse Standard Estimates). Assume
matrix belongs to the family Fα, then using the sparse
estimator Σ̂ in Cai et al. (2010), we have

E‖Σ̂− Σ‖2 = O

(
n−

2α
2α+1 +

log p

n

)
.
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Assume θ̂0 is the LASSO estimate obtained under
proper penalization. Denote s < n as the number
of nonzero coefficients in θ0. When x follows Gaus-
sian and the noise ε satisfies E exp{tε2} <∞ for some
t > 0, based on Bickel et al. (2009); Jeng et al. (2018),
we have with probability tending to 1,

‖θ̂0 − θ0‖ = O

(
σ

√
s log p

n

)
.

Therefore, (8) holds under weaker conditions, say
(σs log p)/n → 0 and (log p)/n → 0. On the other

hand, we point out that θ̂ (θ∗) does not inherit the

sparsity of θ̂0 (θ0) according to (5) and (3).

4.3 Bahadur representation and convergence
rate

We next study statistical properties of the adver-
sarially robust estimator θ̂ by establishing its Ba-
hadur representation He and Shao (1996) that implies
asymptotic normality in some cases.

Theorem 4. Assume both ‖θ̂0−θ0‖/‖θ0‖ and ‖Σ̂−Σ‖
converge to zero in probability.

(1) If δ ∈ (δ1, δ2), then θ̂ − θ∗ is a linear combination

of θ̂0 − θ0 and Σ̂− Σ in the main term:

θ̂ − θ∗

= M1(θ∗, θ0,Σ)(θ̂0 − θ0)

+(θ∗ − θ0)>(Σ̂− Σ)(θ∗ − θ0)M2(θ∗, θ0,Σ)

+M3(θ∗, θ0,Σ)(Σ̂− Σ)(θ∗ − θ0) + op(‖θ̂ − θ∗‖),

where M1, M2, and M3 are functions of (δ, θ0,Σ, θ
∗),

and detailed formulas are postponed to Appendix A.

(2) If δ < δ1, then θ̂ − θ∗ = θ̂0 − θ0 + op(‖Σ̂ − Σ‖) +

op(‖θ̂0 − θ0‖).

(3) If δ > δ2, we have θ̂−θ∗ = op(‖Σ̂−Σ‖)+op(‖θ̂0−
θ0‖).

The proof for Theorem 4 is postponed to Appendix
C. We next illustrate how the Bahadur representation
can be used to infer the asymptotic normality of θ̂.

Example 2 (Least Square Estimate). Consider the
least square estimate (OLS)

θ̂0 = (X>X)−1X>y, Σ̂ =
1

n
X>X.

It is trivial to see that θ̂ = 0 in probability when δ > δ2
based on Theorems 1 and 4. When δ ∈ [0, δ1), the

asymptotic normality of
√
n/p(θ̂−θ∗) trivially follows

the fact that θ̂ = θ̂0 in probability and θ∗ = θ0. When
δ ∈ (δ1, δ2),

θ̂ − θ∗ = m1 + m2 + m3 + op(‖θ̂ − θ∗‖),

where

m1 = M1

[
Σ−1

n

n∑
i=1

xiεi

]
,

m2 = M2

[
1

n

n∑
i=1

(θ∗ − θ0)>(xix
>
i − Σ)(θ∗ − θ0)

]
,

m3 = M3

[
1

n

n∑
i=1

(xix
>
i − Σ)(θ∗ − θ0)

]
.

If p is fixed and δ ∈ (δ1, δ2), then
√
n(θ̂ − θ∗) asymp-

totically converges to a zero-mean Gaussian. For in-
ference purpose, we need to estimate V ar(θ̂). Since
xiεi and (xix

>
i −Σ) in m1,m2,m3 are both i.i.d. ran-

dom variables, and xi follows Gaussian distribution,
one can figure out the variance of θ̂. As a result, re-
placing (θ∗, θ0,Σ, δ) with (θ̂, θ̂0, Σ̂, δ), one can obtain

an estimate of V ar(θ̂). As a side remark, if p diverges

in n, we have ‖θ̂ − θ∗‖/
√
‖θ0‖2Σ + σ2 = Op(

√
p/n).

Furthermore, when using dense/sparse estimators of
(θ0,Σ), our proposed two-stage estimator achieves
minimax rate optimal in dense/sparse models respec-

tively. The upper bound of E‖θ̂ − θ∗‖2 can be devel-
oped from Theorem 4:

Corollary 1. Denote v2 = ‖θ0‖2Σ + σ2. When

(p log n)/n→ 0, θ̂0 is the OLS estimate, and Σ̂ is the
sample matrix, we have

E‖θ̂ − θ∗‖2 = Θ

(
v2p

n

)
.

Combining upper bound result in the above corollary
and lower bound in Theorem 1 together, one can see
that using OLS estimate as θ̂0 and sample covariance
matrix as Σ̂ in the two-stage method reaches minimax
optimal in dense models. Besides, as stated in the fol-
lowing result, using the sparse estimators in Example
1, our proposed two-stage estimator reaches the mini-
max rate as in Theorem 2:

Corollary 2. For sparse models, when (log p)/n→ 0,

σ2(s log p)/(n‖θ0‖2) → 0, θ̂0 is the LASSO estimate

and Σ̂ is the sparse covariance estimator in Cai et al.
(2010), it satisfies that

E‖θ̂ − θ∗‖2 = O

(
sσ2 log p

n
+ v2n−

2α
2α+1

)
.

If logs(p) > 1 + cs for some constant cs > 0, the above
results are minimax-optimal.

5 PROPERTIES OF THE METHOD

This section provides additional properties of the pro-
posed method beyond the consistency and conver-
gence rate. In particular, we use theorems associated
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with our method to verify two arguments in the ex-
isting literature: (1) generalization of adversarially ro-
bust learning is worse than standard learning; (2) one
can improve the generalization of adversarially robust
learning through utilizing extra unlabeled data.

5.1 Adversarial learning hurts generalization

We study the generalization of our proposed estimator.
From the minimax lower bound theorems in Section 3,
it is easy to see that the excess risk when δ > 0 may
converge in a slower rate than the one when ε = 0.
Besides this, we work on the multiplicative constants
of excess risk and generalization error and reveal that
those constants are larger when ε > 0 as well.

Based on Theorem 4, the generalization error (9) and
the estimation error of minimal adversarial risk (10)
can be decomposed as follows:

R0(θ̂, δ)− R̂0(θ̂, δ) (9)

= e1,Σ(Σ̂, δ) + e1,θ0(θ̂0, δ) + op(R0(θ̂, δ)− R̂0(θ̂, δ)),

R0(θ∗, δ)− R̂0(θ̂, δ) (10)

= e2,Σ(Σ̂, δ) + e2,θ0(θ̂0, δ) + op(R0(θ∗, δ)− R̂0(θ̂, δ)).

The term ej,θ0 (ej,Σ) represents the error component

that is only caused by the estimation error of θ̂0 (Σ̂).
We next characterizes the forms of ej,Σ and ej,θ0 with
precise multiplicative constants.

Theorem 5. Under the same conditions as in Propo-
sition 1, if ‖Σ̂−Σ‖ → 0 and ‖θ̂0− θ0‖/‖θ0‖ → 0, then
when δ < δ1,

e1,Σ(Σ̂, δ) = op(‖Σ̂− Σ‖‖θ0‖2),

e1,θ0(θ̂0, δ) = ‖θ̂0 − θ0‖2Σ + 2c0δ‖θ0‖‖θ̂0 − θ0‖Σ
+op(‖θ̂0 − θ0‖‖θ0‖),

e2,Σ(Σ̂, δ) = op(‖Σ̂− Σ‖‖θ0‖2),

e2,θ0(θ̂0, δ) = −2δ2θ>0 (θ̂0 − θ0) + op(‖θ̂0 − θ0‖‖θ0‖).

If δ > δ1, we have

e1,Σ(Σ̂, δ) = −cΣ(δ)
(θ∗ − θ0)>(Σ̂− Σ)(θ∗ − θ0)

‖θ∗ − θ0‖2Σ
+op(‖Σ̂− Σ‖‖θ0‖2),

e1,θ0(θ̂0, δ) = 2cθ0(δ)
(θ̂0 − θ0)>Σ(θ∗ − θ0)

‖θ∗ − θ0‖Σ
+op(‖θ̂0 − θ0‖‖θ0‖),

e2,Σ(Σ̂, δ) = e1,Σ(Σ̂, δ) + op(‖Σ̂− Σ‖‖θ0‖2),

e2,θ0(θ̂0, δ) = e1,θ0(θ̂0, δ) + +op(‖θ̂0 − θ0‖‖θ0‖).

where the multiplicative constants cΣ(δ) := ‖θ∗ −
θ0‖2Σ + δc0‖θ∗‖‖θ∗ − θ0‖Σ and cθ0(δ) := ‖θ∗ − θ0‖Σ +
δc0‖θ∗‖ are monotone increasing functions in δ. Re-
call that θ∗ is a function of δ.

The proof of Theorem 5 is postponed to Appendix C.

To better understand Theorem 5, we plot the changes
of |e1,θ0 |, |e1,Σ|, and |e2,θ0 | w.r.t. δ by assuming Σ = Ip
in Figure 2. In the left plot, |e1,θ0 | firstly increases
in δ linearly until δ = δ1, then jumps to the second
regime and grows until it converges to 2|(θ̂0−θ0)>Σθ0|
after δ > δ2. In the middle plot, |e1,Σ| is almost zero
when δ < δ1, then increases when δ ∈ (δ1, δ2) and
finally converges when δ > δ2. And, |e2,Σ| shares a
similar pattern. The pattern of |e2,θ0 | is similar as
|e1,θ0 | except that it smoothly transits into the second
regime, as shown in the right plot. The empirical and
theoretical curves match very well in Figure 2.

5.2 Reducing estimation error through
additional unlabeled data

Unlabeled data is commonly used in semi-supervised
learning, e.g. locally-weighted nearest neighbors algo-
rithm (Cannings et al., 2020). Besides, in the con-
text of adversarially robust learning, some studies also
observed the benefits of using extra unlabeled data
(Raghunathan et al., 2019).

We study the effect of extra unlabeled data on the
minimax lower bounds and the upper bounds of our
proposed method under different scenarios. With the
existence of extra unlabeled data, the minimax lower
bounds become smaller. Besides, these data also help
reduce the upper bounds by improving the accuracy
of Σ̂:

Theorem 6. Under the conditions in Theorem 1, if
there are extra n1 samples of unlabeled data, the lower
bound becomes Ω((pσ2/n) ∨ (pR2/(n+ n1))).

Under the conditions in Theorem 2, if there are extra
n1 samples of unlabeled data, the lower bound becomes

Ω

(
sσ2 log(p/s)

n
∨R2(n+ n1)−

2α
2α+1

)
.

In terms of the upper bounds, since the estimation of
Σ̂ is only related to x, one can directly utilize these ex-
tra unlabeled data into the two-stage framework. The
following result is extended from Theorem 4:

Corollary 3. Under the conditions in Corollary 1, if
there are extra n1 samples of unlabeled data, the upper
bound becomes O((pσ2/n) ∨ (pR2/(n+ n1))).

Under the conditions in Corollary 2, if there are extra
n1 samples of unlabeled data, the bound becomes

O

(
sσ2 log(p/s)

n
∨R2(n+ n1)−

2α
2α+1

)
.

To summarize, as both lower bounds and upper
bounds are reduced, it is essential to utilize extra un-
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Figure 2: The value of |e1,θ0 |, |e1,Σ|, and |e2,θ0 | as functions of δ. Assume ‖θ0‖ = 1, Σ = Ip. Blue curve is

obtained from Theorem 5 given (θ̂0, Σ̂). Orange points are obtained from simulation. n = 1000, σ2 = 1. The
two vertical dashed lines in each figure represent δ1 and δ2.

labeled data for adversarially robust learning. A nu-
merical illustration is also given in the next section of
the experiments.

6 NUMERICAL EXPERIMENTS

In numerical experiments, we consider Example 2, and
adopt LASSO/sparse estimators in the first stage to
improve adversarial robustness.

We consider the following specifications of (θ0,Σ): θ0

is randomly generated from ∂B(0, 1), the sphere of a
L2 ball; the diagonal elements in Σ are Σii = 2r +
|τi|, where τi’s follow i.i.d. standard Gaussian, and
the other elements in Σ are r. Under this design of
Σ, coordinates of x are correlated with each other,
and the smallest and largest eigenvalues are within a
reasonable range as p increases. Each experiment was
repeated 500 times with σ2 = 1. Define Σ̂ = X>X/n
for non-sparse Σ.

Empirical coverage when p is fixed. As men-
tioned in Example 2,

√
n(θ̂ − θ∗) asymptotically con-

verges to a zero-mean Gaussian when δ < δ2. We use
empirical coverage to verify this statement. In this ex-
periment, θ0 = (1, 2)> and Σii = i for i = 1, 2 with
Σ12 = 0.5. For each δ, we repeat the experiment of
estimating θ∗ for 1000 times using 1000 samples, and
calculate the 95% empirical coverage for θ∗1 and θ∗2 . In
Figure 3, when δ < 1.9, the magnitude of θ∗i ’s are away
from zero, and the empirical coverage for both θ∗i ’s are
close to 0.95. When δ > 1.9, θ∗i ’s are almost zero, and
the corresponding empirical coverages are a little bit
away from 0.95.

Sparse coefficients. In this experiment, we verify
that LASSO helps to obtain a better adversarially ro-
bust estimate. We take p = 50, n = 300, and assume
Σ is known. Cross-validation is applied to choose the
penalty that minimizes the (standard) prediction risk.
This is implemented by library glmnet in R.
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Figure 3: Value of θ∗i and the 95% Empirical Cover-
age. Blue line: θ∗i /θ0i. Orange line: 95% Empirical
Coverage. Purple dased line: 0.95. The 95% coverage
for both θ∗1 and θ∗2 are close to 0.95 when δ < 1.9.

We consider both lower-dimensional dense (Table 1)
case with (p, n) = (50, 300) and high-dimensional
sparse scenario with (p, n) = (300, 200). For high-
dimensional sparse model, to make it clear on the dif-
ference between θ̂OLS and θ̂LASSO, we present the re-
sults given Σ is known/unknown. In the dense coeffi-
cient model, although we can select a λ such that the
LASSO estimator leads to a smaller standard risk than
the OLS estimator, its corresponding adversarial risk
gets worse with an increasing δ. For the sparse model,
for all choices of δ, LASSO has a smaller adversarial
risk than OLS. The results for unknown Σ are similar
to the case when Σ is known, in the sense that LASSO
is also better than OLS.

In addition, R0(θ̂LASSO, δ) is always smaller when Σ is
known than when Σ is unknown. This also verifies that
unlabeled data helps improve the adversarial robust-
ness (the comparison is not applicable to R0(θ̂OLS , δ)

since θ̂OLS is not consistent).

Sparse matrix. We use sparse matrix estimator to
verify that it helps enhancing adversarial robustness.
To generate sparse matrix, we consider Σ such that
Σii = 1, and Σij = r|i − j|−α−1 when j 6= i, where
r = 0.6 and α = 0.2. This choice of (r, α) ensures that
all eigenvalues of Σ are positive. We take p = 300, n =
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Table 1: Comparison between OLS and LASSO for dense θ0 with known Σ. p = 50, n = 300, r = 0.1, σ2 = 1.
Σ is known. Standard deviation is provided for R0(θ∗, δ)−R0(θ̂OLS , δ) and R0(θ∗, δ)−R0(θ̂LASSO, δ).

δ R0(θ∗, δ) R0(θ̂OLS , δ) R0(θ̂LASSO, δ) R0(θ0, δ) R0(0, δ)
0.5 0.2489 0.8545(0.1413) 0.633(0.0795) 0.25 0.9997
0.8 0.5847 0.8436(0.0867) 0.8516(0.0858) 0.64 0.9997
0.9 0.6862 0.8715(0.65) 0.8888(0.0762) 0.81 0.9997

Table 2: Comparison between OLS and LASSO for sparse θ0 . The first 10 elements of θ0 are 1/
√

10. p = 300,
n = 200, r = 0.1, σ2 = 1.

Σ δ R0(θ∗, δ) R0(θ̂OLS , δ) R0(θ̂LASSO, δ) R0(θ0, δ) R0(0, δ)

known

0.5 0.25 6.1134(1.0171) 0.7486(0.1200) 0.25 1.8943
1 0.7847 2.7114(0.4124) 0.9941(0.0752) 1 1.8943
2 1.3088 1.4912(0.0431) 1.3684(0.0453) 4 1.8943
3 1.6088 1.7522(0.0641) 1.6435(0.1033) 9 1.8943

unknown

0.5 0.25 2.3533(0.2551) 0.8212(0.0984) 0.25 1.8943
1 0.7847 1.5830(0.1368) 1.1414(0.0732) 1 1.8943
2 1.3088 1.5023(0.0341) 1.4716(0.0358) 4 1.8943
3 1.6088 1.7040(0.0250) 1.6930(0.0494) 9 1.8943

Table 3: Comparison between Σ̂ and Σ̂sparse. p = 300, n = 200, σ2 = 1. θ0 is known. Σ̂sparse performs slightly
better when Σ is sparse.

δ = 2 R0(θ∗, δ) R0(θ∗
Σ̂
, δ) R0(θ∗

Σ̂sparse
, δ) R0(θ0, δ)

Dense 1.8865 2.0576(0.1841) 4.8769(0.1044) 4.0000
Sparse 2.9807 3.0652(0.0279) 3.0293(0.0279) 4.0000

200 so that the difference between Σ̂ and Σ̂sparse is ob-
vious. The attack level δ is set to be 2 in this compari-
son. For simplicity, we assume θ0 is known in the com-
parison of matrix estimators. The sparse covariance
estimator Σ̂sparse was obtained based on the method in
Cai et al. (2010). In Table 3, the adversarial excess risk
is reduced from 0.0845 (R0(θ∗

Σ̂
, δ)−R0(θ∗, δ)) to 0.0486

(R0(θ∗
Σ̂sparse

, δ)−R0(θ∗, δ)), which shows the effective-

ness of Σ̂sparse. In addition to the sparse matrix, we
also consider dense covariance matrix generated in the
same way as previous experiments by taking r = 0.6.
When the true matrix is dense, using a sparse estimate
is not appropriate; thus, the corresponding adversarial
risk is much higher.

7 CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper, we figure out the minimax lower bound
of estimation error of adversarially robust model in lin-
ear regression setup, which indicates the importance of
incorporating model information in adversarially ro-
bust learning. In addition, we propose a two-stage ad-
versarially robust learning method based on an explicit
relation between adversarially robust estimator and

standard estimator. The proposed two-stage estima-
tor can encode model information (e.g., sparsity) into
standard estimators, through which the robustness of
adversarially robust estimator could be improved and
reach minimax optimal convergence rate. Our inves-
tigation in the generalization error also verifies that
adversarial robustness hurts generalization.

One future direction is to relax the distributional as-
sumption on (x, y), say x follows non-Gaussian distri-
bution. Although there is a wide range of data that
may follow Gaussian assumption, e.g., abalone data
and other biological data, many other data may not
follow Gaussian, e.g., image data. The constant c0
in our framework currently depends on the Gaussian
assumption, and there is potential to relax it. An-
other direction is concerned with sparse adversarially
robust learning, say sparse θ̂, which could be useful
in both compressing and robustifying deep neural net-
works Guo et al. (2018). The first step is to understand
how the sparsity of θ0 (together with other model as-
sumptions) implies the sparsity of θ∗, which in turn de-

termines the sparsity of θ̂. An example can be found
in Allen-Zhu and Li (2020) for linear sparse coding
model. However, more careful studies would be needed
in the future.
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A More theoretical results

This section provides some supplementary theorems.

A.1 Results regarding to prediction risk (an analog of Theorem 3)

For consistent estimates (θ̂0, Σ̂, σ̂
2), with probability tending to 1, we have

sup
δ≥0

∣∣∣R(θ∗(δ), δ)−R(θ̃(δ), δ)
∣∣∣ = O

(
‖θ̂0 − θ0‖‖θ0‖

)
+O

(
‖θ0‖2

√
‖Σ̂− Σ‖

)
+O

(
σ̂2 − σ2

)
+O (‖θ0‖(σ̂ − σ)) .

A.2 Definitions in Theorem 4

M1(θ∗, θ0,Σ) = H(θ∗, θ0,Σ)−1M(θ∗, θ0,Σ),

M2(θ∗, θ0,Σ) = −δc0H(θ∗, θ0,Σ)−1

(
Σ(θ∗ − θ0)

2‖θ∗ − θ0‖Σ‖θ∗‖
− ‖θ∗‖θ∗

2‖θ∗ − θ0‖3Σ

)
,

M3(θ∗, θ0,Σ) = −(1 + δc0A(θ∗, θ0,Σ)),

M(θ∗, θ0,Σ) = Σ + δc0A(θ∗, θ0,Σ)Σ +
δc0A(θ∗, θ0,Σ)

‖θ∗ − θ0‖2Σ
Σ(θ∗ − θ0)(θ∗ − θ0)>Σ

+δ
c0

A(θ∗, θ0,Σ)‖θ∗‖22
θ∗(θ∗)>,

where A(θ∗, θ0,Σ) = ‖θ∗‖/‖θ∗ − θ0‖Σ. The matrix H(θ∗, θ0,Σ) is the Hessian matrix of R0.

B Proofs in Section 2

There are two parts of Proposition 1: the statement about Hessian, and the optimal solution θ∗. We prove them
separately.

B.1 Positive definite Hessian

Proof of Proposition 1 for Positive Definite Hessian. Expand the adversarial risk at x as

max
‖x∗−x‖≤δ

[
((x∗)>θ − x>θ0)2

]
= max

‖x∗−x‖≤δ

[
(x∗ − x)>θ + x>(θ − θ0)

]2
=

(
δ‖θ‖+ |x>(θ − θ0)|

)2
.

Since x follows Gaussian, for any fixed θ − θ0, x>(θ − θ0) follows Gaussian as well. Let Z = x>(θ − θ0). Note
that x ∼ N(0,Σ), we have Z ∼ N(0, ‖θ − θ0‖2Σ) and

R0(θ, δ) = EZ(|Z|+ δ‖θ‖)2

= ‖θ − θ0‖2Σ + 2δc0‖θ‖‖θ − θ0‖Σ + δ2‖θ‖22.

Taking the gradient of R0(θ, δ) with respect to θ yields

∇θR0(θ, δ) = 2

[
Σ(θ − θ0) + δc0

‖θ − θ0‖Σ
‖θ‖

θ + δc0
‖θ‖

‖θ − θ0‖Σ
Σ(θ − θ0) + δ2θ

]
= 2

[(
Ip + δc0

‖θ‖
‖θ − θ0‖Σ

)
Σ(θ − θ0) +

(
δc0
‖θ − θ0‖Σ
‖θ‖

+ δ2

)
θ

]
.

Denote A = ‖θ‖/‖θ − θ0‖Σ, then ∂2R0

2∂θ2 becomes

H :=
∂2R0

2∂θ2
= Σ + δc0AΣ +

(
δc0
A

+ δ2

)
Ip + δc0Σ(θ − θ0)

(
∂A

∂θ

)>
+ δc0θ

(
∂1/A

∂θ

)>
. (11)
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To show that R0 is convex, it sufficies to show that H is positive definite.

In H, the two partial derivatives are

∂A

∂θ
=

∂

∂θ

‖θ‖
‖θ − θ0‖Σ

=
θ

‖θ‖‖θ − θ0‖Σ
− ‖θ‖Σ(θ − θ0)

‖θ − θ0‖3Σ
,

and

∂1/A

∂θ
=

Σ(θ − θ0)

‖θ‖‖θ − θ0‖Σ
− ‖θ − θ0‖Σθ

‖θ‖3
.

Thus

Σ(θ − θ0)

(
∂A

∂θ

)>
=

1

‖θ‖‖θ − θ0‖Σ
Σ(θ − θ0)θ> − ‖θ‖

‖θ − θ0‖3Σ
Σ(θ − θ0)(θ − θ0)>Σ,

=
1

‖θ‖‖θ − θ0‖Σ
Σ(θ − θ0)θ> − A

‖θ − θ0‖2Σ
Σ(θ − θ0)(θ − θ0)>Σ,

θ

(
∂1/A

∂θ

)>
=

1

‖θ‖‖θ − θ0‖Σ
θ(θ − θ0)>Σ− ‖θ − θ0‖Σ

‖θ‖3
θθ>,

=
1

‖θ‖‖θ − θ0‖Σ
θ(θ − θ0)>Σ− 1

A‖θ‖2
θθ>.

Then H can be represented as

Σ + δc0AΣ +

(
δc0
A

+ δ2

)
Ip + δc0Σ(θ − θ0)

(
∂A

∂θ

)>
+ δc0θ

(
∂1/A

∂θ

)>
=

(
Σ− 1

‖θ − θ0‖2Σ
Σ(θ − θ0)(θ − θ0)>Σ

)
Ac0δ

+

(
Ip −

1

‖θ‖2
θθ>

)
c0δ

A

+

(
Σ + δ2Ip +

δc0
‖θ‖‖θ − θ0‖Σ

θ(θ − θ0)>Σ +
δc0

‖θ‖‖θ − θ0‖Σ
Σ(θ − θ0)θ>

)
:= M1Ac0δ + M2

c0δ

A
+ M3.

Since Σ is positive definite, for any vector a 6= 0, and θ 6= θ0, θ 6= 0, by Cauchy inequality,

a>M1a = a>Σa−
(
a>Σ(θ − θ0)

)2
.

‖θ − θ0‖2Σ
≥ 0,

a>M2a = a>a− (a>θ)2

‖θ‖2
≥ 0,

which imply M1 and M2 are positive semi-definite.

For M3, we have

M3 =

[
δIp +

c0
‖θ‖‖θ − θ0‖Σ

Σ(θ − θ0)θ>
] [
δIp +

c0
‖θ‖‖θ − θ0‖Σ

Σ(θ − θ0)θ>
]>

+Σ− c20
‖θ − θ0‖2Σ

Σ(θ − θ0)(θ − θ0)>Σ.

Since c0 =
√

2/π < 1, for any vector a 6= 0, and θ 6= θ0, θ 6= 0,

a>
(

Σ− c20
‖θ − θ0‖2Σ

Σ(θ − θ0)(θ − θ0)>Σ

)
a > a>M1a ≥ 0.
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B.2 Optimal solution

Proof of Proposition 1 for θ∗. We first consider the case where Σ is a diagonal matrix. Recall that the gradient
of R0(θ, δ) is

∇θR0(θ, δ) = 2

[
Σ(θ − θ0) + δc0

‖θ − θ0‖Σ
‖θ‖

θ + δc0
‖θ‖

‖θ − θ0‖Σ
Σ(θ − θ0) + δ2θ

]
= 2

[(
Ip + δc0

‖θ‖
‖θ − θ0‖Σ

)
Σ(θ − θ0) +

(
δc0
‖θ − θ0‖Σ
‖θ‖

+ δ2

)
θ

]
.

Note the gradient ∇θR0(θ, δ) is well-defined in Rp/{0, θ0} and R0(θ, δ)→ +∞ as ‖θ‖ → +∞. Thus, the global
minimizer θ∗ of R0(θ, δ) should only be 0, θ0 or the stationary point of R0(θ, δ). Note if ∇θR0(θ, δ) = 0, we have
ηΣ(θ − θ0) = −θ for some η > 0, or equivalently,

θη = (ηΣ + Ip)
−1ηΣθ0 =

[
Ip − (ηΣ + Ip)

−1
]
θ0.

Since when η → 0, θη → 0 and when η → +∞, θη → θ0, the global minimizer of R0(θ, δ) should has the form as[
I − (ηΣ + Ip)

−1
]
θ0 for some η ∈ [0,∞]. Define

r(η) = R0(θη, δ), (12)

θη = (Ip − (ηΣ + Ip)
−1)θ0, (13)

H(η) =

√
θ>0 ( Σ

ηΣ+Ip
)2θ0√

θ>0
Σ

(ηΣ+Ip)2 θ0

, (14)

g(η) = 1− δc0
H(η)

+ η(δc0H(η)− δ2). (15)

We have

r′(η) =
∂

∂η
R0(θη, δ) = (∇θR0(θη))>

∂

∂η
θη

= −2g(η)(θ − θ0)>Σ(ηΣ + Ip)
−1Σ(θ − θ0). (16)

By Lemma 1 below, if δ ≤ δ1, g(η) > 0. Thus, r(η) is decreasing and the global minimizer of R0(θ, δ) is
θη=+∞ = θ0. If δ ≥ δ2, g(η) < 0. Thus, r(η) is increasing and the global minimizer of R0(θ, δ) is θη=0 = 0. If
δ1 < δ < δ2, there exists a unique positive number η∗ (as denoted as η∗(δ)) such that g(η∗) = 0. Moreover, note

g(η) =

(
1 + δc0

‖θη‖
‖θη − θ0‖Σ

)
− η

(
δc0
‖θη − θ0‖Σ
‖θη‖

+ δ2

)
,

thus, η∗ is the unique solution to (4). Finally, g(η) > 0 when η ∈ [0, η∗), and g(η) < 0 when η ∈ (η∗,∞).
Thus, by (16), r(η) is decreasing when η ∈ [0, η∗), is increasing when η ∈ (η∗,∞). Thus, R0(θ, δ) gets the global
minimum when θ = θη=η∗ .

For the general positive definite matrix Σ, we consider the orthogonal decomposition of Σ and let Σ = U>DU
where D is a p× p diagonal matrix and U is an orthogonal matrix. Let θ = Uθ, θ0 = Uθ0. Then the adversarial
prediction risk R0(θ, δ) in (2) becomes

R0(θ, δ) = R0(U>θ, δ) = ‖θ − θ0‖2D + 2δc0‖θ‖‖θ − θ0‖D + δ2‖θ‖22. (17)

Note D is a diagonal matrix. Applying the results from Proposition 1 yields θ∗ = (Ip − (η∗D + Ip)
−1)θ0.

Therefore, since θ = Uθ, θ0 = Uθ0, θ
∗ = (Ip − (η∗Σ + Ip)

−1)θ0, which completes the proof.

Lemma 1. Suppose Σ is a p by p diagonal matrix. Define functions H(η) and g(η) as in (14) and (15), then

1. If δ ≥ δ2, g(η) < 0 for all η > 0.

2. If δ ≤ δ1, g(η) > 0 for all η ≥ 0.
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3. If δ1 < δ < δ2, there exists a unique positive number η∗ such that g(η) = 0. Moreover, g(η) > 0 when
η ∈ [0, η∗), and g(η) < 0 when η ∈ (η∗,∞).

Here δ1 = c0‖θ0‖
‖θ0‖Σ−1

and δ2 =
‖θ0‖Σ2

c0‖θ0‖Σ .

Proof of Lemma 1. By Lemma 2 below, we have for any η ≥ 0, δ1/c0 ≤ H(η) ≤ δ2c0. Therefore, g(η) > 0 if
δ ≤ δ1 and g(η) < 0 if δ ≥ δ2.

Moreover, note H(η = 0) = δ2c0, H(η = ∞) = δ1/c0. When δ1 < δ < δ2, g(η = 0) = 1 − δ/δ2 > 0 and
g(η = ∞) = −∞. There must exist a positive solution to g(η) = 0. Next, we will show the solution is unique.
Assume η∗ is the smallest η such that g(η) = 0. Then we claim g(η) is decreasing as η ≥ η∗. In fact, if g(η∗) = 0,
we have 1 − δc0

H(η∗) ≤ 0 and δc0H(η∗) − δ2 < 0. By Lemma 3, H(η) is a decreasing function when η ≥ 0. Thus,

g(η) is decreasing as η ≥ η∗ and g(η) < g(η∗) = 0 for η > η∗. Therefore, there is one unique η∗ such that
g(η∗) = 0. Moreover, g(η) > 0 when η ∈ [0, η∗), and g(η) < 0 when η ∈ (η∗,∞).

Lemma 2. If Σ =diag(d1, d2, · · · , dp) is a diagonal matrix, where all di > 0, then for any η ≥ 0,(
θ>0

(
1

Σ

)
θ0

)(
θ>0

(
Σ

ηΣ + Ip

)2

θ0

)
≥

(
θ>0

Σ

(ηΣ + Ip)2
θ0

)(
θ>0 θ0

)
(18)

(
θ>0 Σ2θ0

)(
θ>0

Σ

(ηΣ + Ip)2
θ0

)
≥

(
θ>0 Σθ0

)(
θ>0

(
Σ

ηΣ + Ip

)2

θ0

)
(19)

Proof of Lemma 2. To prove Lemma 2, we expand all terms in(
θ>0

(
1

Σ

)
θ0

)(
θ>0

(
Σ

ηΣ + Ip

)2

θ0

)
=

(
p∑
i=1

1

di
(θi0)2

)(
p∑
i=1

(
di

ηdi + 1
)2(θi0)2

)

= −
p∑
i=1

di
(ηdi + 1)2

(θi0)4 +
∑∑
1≤i≤j≤p

[
1

di
(θi0)2(

dj
ηdj + 1

)2(θj0)2 +
1

dj
(θj0)2(

di
ηdi + 1

)2(θi0)2

]

= −
p∑
i=1

di
(ηdi + 1)2

(θi0)4 +
∑∑
1≤i≤j≤p

[(
1

di
(

dj
ηdj + 1

)2 +
1

dj
(

di
ηdi + 1

)2

)
(θi0θ

j
0)2

]

(
θ>0

Σ

(ηΣ + Ip)2
θ0

)(
θ>0 θ0

)
=

(
p∑
i=1

di
(ηdi + 1)2

(θi0)2

)(
p∑
i=1

(θi0)2

)

= −
p∑
i=1

di
(ηdi + 1)2

(θi0)4 +
∑∑
1≤i≤j≤p

[
di

(ηdi + 1)2
(θi0)2(θj0)2 +

dj
(ηdj + 1)2

(θj0)2(θi0)2

]

= −
p∑
i=1

di
(ηdi + 1)2

(θi0)4 +
∑∑
1≤i≤j≤p

[(
di

(ηdi + 1)2
+

dj
(ηdj + 1)2

)
(θi0θ

j
0)2

]

By rearrangement inequality, for any i and j, we have(
1

di
(

dj
ηdj + 1

)2 +
1

dj
(

di
ηdi + 1

)2

)
≥
(

di
(ηdi + 1)2

+
dj

(ηdj + 1)2

)
,

which yields the inequality in (18). Similarly we can show (19).

Lemma 3. If Σ = diag(d1, d2, · · · , dp) is a diagonal matrix, where all di > 0, then for any η1 > η2,(
θ>0 (

Σ

η1Σ + Ip
)2θ0

)(
θ>0 (

Σ

(η2Σ + Ip)2
)θ0

)
<

(
θ>0 (

Σ

η2Σ + Ip
)2θ0

)(
θ>0 (

Σ

(η1Σ + Ip)2
.)θ0

)
.
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Proof of Lemma 3. Using the same techniques as in the proof of Lemma 2, it suffices to show that for any di 6= dj ,(
di

η1di + 1

)2
dj

(η2dj + 1)2
+

(
dj

η1dj + 1

)2
di

(η2di + 1)2

<

(
di

η2di + 1

)2
dj

(η1dj + 1)2
+

(
dj

η2dj + 1

)2
di

(η1di + 1)2
,

which is equivalent to

di − dj
(η1di + 1)2(η2dj + 1)2

<
di − dj

(η1dj + 1)2(η2di + 1)2
. (20)

The last inequality (20) always hold no matter di > dj or di < dj by the rearrangement inequality, which
completes the proof.

C Proofs in Section 3 and 4

C.1 Theorem 1

Lemma 4. Assume R > c1σ for some constant c1. Also Assume λmax(Σ) and λmin(Σ) are bounded and bounded
away from zero. When (p log2 n)/n→ 0,

inf
θ̂

sup
δ,σ<‖θ0‖≤

√
R2+σ2,Σ

E‖θ̂ − θ∗(δ)‖2 = Ω

(
σ2p

n

)
. (21)

Proof of Lemma 4. We first consider a relaxation where ‖θ0‖ is unbounded, then add back the condition on ‖θ0‖
into the bound to show that these conditions does not change the rate of the lower bound.

Assume θ0 follows N(0, σ2/(αn)Ip) and α = o(1). Denote Σ̂n = X>X/n, and θ̂n,α = (Σ̂n + αIp)
−1X>y/n.

Given (X,y), it follows that θ0|(X,y) ∼ N(θ̂n,α, (σ
2/n)(Σ̂n + αIp)

−1), and

inf
θ̂

sup
δ,θ0,Σ

E‖θ̂ − θ∗(δ)‖2 ≥ inf
θ̂

sup
δ,θ0,Σ=Ip

E‖θ̂ − θ∗(δ)‖2

≥ inf
θ̂

sup
δ

E
[
Eθ0|X,y,Σ=Ip‖θ̂ − θ

∗(δ)‖2
]
.

Observe that

inf
θ̂

sup
δ

E
[
Eθ0|X,y,Σ=Ip‖θ̂ − θ

∗(δ)‖2
]

= inf
θ̂

sup
δ

E
(
‖θ̂ − Eθ0|X,y,Σ=Ip [θ∗(δ)]‖2 + Eθ0|X,y,Σ=Ip‖Eθ0|X,y,Σ=Ip [θ∗(δ)]− θ∗(δ)‖2

)
≥ sup

δ
E
[
Eθ0|X,y,Σ=Ip‖Eθ0|X,y,Σ=Ip [θ∗(δ)]− θ∗(δ)‖2

]
.

When Σ = Ip, by Proposition 1, we know that θ∗(δ) = (1 − κ(δ))θ0 for some function κ that only depends on

δ. In addition, based on equation (A.5) in Lemma A.6 of Ing and Lai (2011), we have ‖Σ̂n − Ip‖ = o(1) and

tr(Σ̂−1) = Θ(p) with probability tending to 1. Thus for α = o(1),

Eθ0|X,y,Σ=Ip‖θ
∗(δ)− Eθ0|X,y,Σ=Ip [θ∗(δ)]‖2 = (1− κ(δ))2Eθ0|X,y,Σ=Ip‖θ0 − θ̂n,α‖2

= (1− κ(δ))2σ
2

n
tr
(

(Σ̂n + αIp)
−1
)

= (1− κ(δ))2σ
2

n
tr
(

Σ̂−1
n − α(Σ̂n + αIp)

−1Σ̂−1
n

)
=

(
1 +O

(
1

λmax(Σ̂n)/α+ 1

))
(1− κ(δ))2σ

2

n
tr
(

Σ̂−1
n

)
= (1 + o(1))(1− κ(δ))2σ

2

n
tr
(

Σ̂−1
n

)
.
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The above derivation is for unbounded θ0. Now we show that adding back the constraint ‖θ0‖ ≤ R does not
change the order of this bound.

Take α = (pR2)/(n), and denote Π(c) = {(X,y) | ‖θ̂n,α‖ ∈ (σ(1 + c),
√
R2 + σ2(1 − c)], ‖Σ̂n − Ip‖ = o(1)}.

Recall that R ≥ c1σ for some constant c1 > 0, thus there exists some small constant c > 0, such that P ((X,y) ∈
Π(c)) > c2 for some constant c2 > 0.

For any (X,y) ∈ Π(c), from the conditional distribution θ0|X,y and the assumption that (p log2 n)/n→ 0, one
can show that

Eθ0|X,y,Σ=Ip

∥∥∥Eθ0|X,y,Σ=Ip

[
θ∗(δ)1{‖θ0‖∈(σ,

√
R2+σ2]}

]
−
[
θ∗(δ)1{‖θ0‖∈(σ,

√
R2+σ2]}

]∥∥∥2

= (1 + o(1))Eθ0|X,y,Σ=Ip‖θ
∗(δ)− Eθ0|X,y,Σ=Ip [θ∗(δ)]‖2.

Consequently,

inf
θ̂

sup
δ,σ<‖θ0‖≤

√
R2+σ2,Σ

E‖θ̂ − θ∗(δ)‖2

= inf
θ̂

sup
δ,θ0,Σ

E
[
‖θ̂ − θ∗(δ)‖21{‖θ0‖∈(σ,

√
R2+σ2]}

]
≥ inf

θ̂
sup
δ

E
[
1{(X,y)∈Π(c)}

(
Eθ0|X,y,Σ=Ip‖θ̂ − θ

∗(δ)‖21{‖θ0‖∈(σ,
√
R2+σ2]}

)]
≥ (1 + o(1)) sup

δ
E
[
1{(X,y)∈Π(c)}

(
Eθ0|X,y,Σ=Ip‖θ

∗ − Eθ0|X,y,Σ=Ip [θ∗]‖2
)]

= Ω

(
σ2p

n

)
.

Lemma 5. Assume (p log2 n)/n→ 0, then for any θ0, when λmin(Σ) and λmax(Σ) are both bounded and bounded
away from zero, for any nonzero θ0,

inf
θ̂

sup
δ,Σ

E‖θ̂ − θ∗(δ)‖2 = Ω

(
p‖θ0‖2

n

)
. (22)

Proof of Lemma 5. We impose a prior distribution on Σ. Assume Σ follows IW (ν,Λ) with Λ = (ν − p − 1)Ip
and ν = n+ p+ 1. In this case, we have EΣ = Λ

ν−p−1 = Ip, and

Σ|X ∼ IW (n+ ν,Λ + nΣ̂n).

Similar as Lemma 4, we first relax the condition on the eigenvalues on Σ to obtain a bound, then add back the
conditions back to the bound.

Based on the distribution of Σ|X, we have

inf
θ̂

sup
δ

E
[
EΣ|X‖θ̂ − θ∗(δ)‖2

]
= inf

θ̂
sup
δ

E
(
‖θ̂ − EΣ|Xθ

∗(δ)‖2 + EΣ|X‖EΣ|X(θ∗)− θ∗‖2
)

(23)

≥ sup
δ

E
[
EΣ|X‖EΣ|X(θ∗)− θ∗‖2

]
.

Denote λ = λ∗((nΣ̂n + Λ)/(n+ ν − p− 1), θ0, δ). For any δ > 0,

EΣ|X‖EΣ|X(θ∗)− θ∗‖2

≥ 1

2
EΣ|X‖(EΣ|X(Σ + λIp)

−1Σθ0)− (Σ + λIp)
−1Σθ0)‖2

−EΣ|X
∥∥EΣ|X(θ∗)− EΣ|X(Σ + λIp)

−1Σθ0 − θ∗ + (Σ + λIp)
−1Σθ0

∥∥2

=
1

2
EΣ|X‖(EΣ|X(Σ + λIp)

−1Σθ0)− (Σ + λIp)
−1Σθ0)‖2

−EΣ|X
∥∥EΣ|X(λ∗(Σ)− λ)(Σ + λ∗(Σ)Ip)

−1(Σ + λIp)
−1Σθ0 − (λ∗(Σ)− λ)(Σ + λ∗(Σ)Ip)

−1(Σ + λIp)
−1Σθ0

∥∥2

=
1

2
EΣ|X‖(EΣ|X(Σ + λIp)

−1Σθ0)− (Σ + λIp)
−1Σθ0)‖2 −O

(
E‖Σ− EΣ|XΣ‖4‖θ0‖2

)
. (24)
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When (p log2 n)/n→ 0, E‖Σ−EΣ|XΣ‖4 = O(((p log n)/n)2) = o(p/n) based on equation (A.5) in Lemma A.6 of
Ing and Lai (2011). As will be shown later, the dominant term is in Θ(p‖θ0‖2/n), therefore E‖Σ−EΣ|XΣ‖4‖θ0‖2
is only a remainder term. Furthermore,

EΣ|X‖(EΣ|X(Σ + λIp)
−1Σθ0)− (Σ + λIp)

−1Σθ0)‖2

= λ2EΣ|X‖(EΣ|X(Σ + λIp)
−1θ0)− (Σ + λIp)

−1θ0‖2

:= λ2ψ(λ).

Based on Lemma 6 below, when λ ≥ 0,

ψ(0) = θ>0 Vnθ0,

∂ψ(λ)

∂λ
≤ 0,

∂ψ(λ)

∂λ

∣∣∣∣
λ=0

= −Θ(θ>0 Vnθ0),

∂2ψ(λ)

∂λ2
≥ 0,

where

Vn,i,j =

p∑
k=1

CovΣ|X(Σ−1
i,k ,Σ

−1
k,j).

From the formula in Nydick (2012),

CovΣ|X(Σ−1
i,k ,Σ

−1
k,j) = (n+ ν)

(
(Λ + nΣ̂n)−1

i,k (Λ + nΣ̂n)−1
k,j + (Λ + nΣ̂n)−1

i,j (Λ + nΣ̂n)−1
k,k

)
.

Consequently, there exists some constant ε > 0 such that, when δ is chosen such that the corresponding λ satisfies
0 < λ < ε, then

EΣ|X‖Eθ0,Σ|X,y(θ∗)− Eθ0|X,y[θ∗|Σ]‖2 = Ω

(
tr(Σ̂−1

n )λmin(Σ̂−1
n )‖θ0‖2

n

)
.

Note that the above bound does not have restriction on Σ.

Now we add back the condition where λmin(Σ) and λmax(Σ) are both bounded and bounded away from zero.

When (p log2 n)/n→ 0 and c1 ≤ λmin(Σ̂n) ≤ λmax(Σ̂n) ≤ c2, since Σ→ EΣ|XΣ, there exists some constant c > 0
such that

EΣ|X‖(EΣ|XΣ−1θ01{λmax(Σ),λmin(Σ)∈(c1−c,c2+c)})− Σ−1θ01{λmax(Σ),λmin(Σ)∈(c1−c,c2+c)}‖2

= (1 + o(1))EΣ|X‖(EΣ|XΣ−1θ0)− Σ−1θ0‖2.

Furthermore, since with probability tending to 1, ‖Σ̂n − Ip‖ = o(1), we also have with probability tending to 1,

λ∗((nΣ̂n + Λ)/(n + ν − p − 1), θ0, δ) = (1 + o(1))λ∗(Ip, θ0, δ). Therefore, denote δ∗1 and δ∗2 be the δ’s such that
λ∗(Ip, θ0, δ) = 0+ and λ∗(Ip, θ0, δ) = ε respectively, then when δ ∈ (δ∗1 + ε, δ∗2 − ε) for some small ε > 0, with
probability tending to 1,

λ∗((nΣ̂n + Λ)/(n+ ν − p− 1), θ0, δ) ∈ (0, ε).

Recall that the prior distribution of Σ is IW (ν,Λ), so there exists some (C1, C2, c) > 0 such that with probability
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tending to 1, λmin(Σ̂n) > C1 + c, λmax(Σ̂n) < C2 − c. Therefore, taking 0 < C1 + c < 1 < C2 − c <∞,

inf
θ̂

sup
δ,λmin(Σ)>C1,λmax(Σ)<C2

E‖θ̂ − θ∗(δ)‖2 (25)

= inf
θ̂

sup
δ,Σ

E‖θ̂ − θ∗(δ)‖21{λmin(Σ)>C1,λmax(Σ)<C2} (26)

≥ (1 + o(1)) sup
δ

E
[
1{λmin(Σ̂n)>C1+c,λmax(Σ̂n)<C2−c}EΣ|X‖Eθ0,Σ|X,y(θ∗)− Eθ0|X,y[θ∗|Σ]‖2

]
(27)

≥ (1 + o(1)) sup
δ∈(δ∗1+ε,δ∗2−ε)

E
[
1{λ∗((nΣ̂n+Λ)/(n+ν−p−1),θ0,δ)∈(0,ε)}1{λmin(Σ̂n)>C1+c,λmax(Σ̂n)<C2−c}

×EΣ|X‖Eθ0,Σ|X,y(θ∗)− Eθ0|X,y[θ∗|Σ]‖2
]

(28)

= Ω

(
p‖θ0‖2

n

)
.

From (25) to (26), we use the fact that the exact choice of Σ in (25) will automatically leads to
1{λmin(Σ)>C1,λmax(Σ)<C2} = 1, thus moving the eigenvalue conditions from sup to indicator function does not
change the result.

From (26) to (27), we change from “choosing the exact Σ” to “Σ satisfies a prior distribution”, so the equal-

ity becomes inequality. Further, since under our choice of prior distribution of Σ, Σ|Σ̂n → Σ̂n, we replace

1{λmin(Σ)>C1,λmax(Σ)<C2} to 1{λmin(Σ̂n)>C1+c,λmax(Σ̂n)<C2−c}. The estimator θ̂ is eliminated due to (23).

From (27) to (28), we restrict the choice of δ into a certain range.

Lemma 6. When (p log n)/n→ 0, and all eigenvalues of Σ̂n are finite and bounded away from zero,

ψ(0) = θ>0 Vnθ0,

∂ψ(λ)

∂λ
≤ 0,

∂ψ(λ)

∂λ

∣∣∣∣
λ=0

= −Θ(θ>0 Vnθ0),

∂2ψ(λ)

∂λ2
≥ 0,

Proof of Lemma 6. Recall that the definition of ψ is

ψ(λ) = EΣ|X‖(EΣ|X(Σ + λIp)
−1θ0)− (Σ + λIp)

−1θ0‖2,

thus when λ = 0, we have

ψ(0) = EΣ|X
∥∥[Σ−1 − EΣ|X(Σ−1)

]
θ0

∥∥2
= θ>0 Vnθ0.

On the other hand,

∂ψ(λ)

∂λ
=

∂

∂λ
EΣ|X‖(EΣ|X(Σ + λIp)

−1θ0)− (Σ + λIp)
−1θ0‖2

= EΣ|X
∂

∂λ

∥∥(EΣ|X(Σ + λIp)
−1θ0)− (Σ + λIp)

−1θ0

∥∥2

= 2EΣ|X
[
(EΣ|X(Σ + λIp)

−1θ0)− (Σ + λIp)
−1θ0

]> ∂

∂λ

[
(EΣ|X(Σ + λIp)

−1θ0)− (Σ + λIp)
−1θ0

]
= −2EΣ|X

[
(EΣ|X(Σ + λIp)

−1θ0)− (Σ + λIp)
−1θ0

]> [
(EΣ|X(Σ + λIp)

−2θ0)− (Σ + λIp)
−2θ0

]
= 2(EΣ|X(Σ + λIp)

−1θ0)>(EΣ|X(Σ + λIp)
−2θ0)− 2EΣ|Xθ

>
0 (Σ + λIp)

−3θ0

≤ 0,
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∂2ψ(λ)

∂λ2
=

∂2

∂λ2
EΣ|X‖(EΣ|X(Σ + λIp)

−1θ0)− (Σ + λIp)
−1θ0‖2

= 2EΣ|X
[
(EΣ|X(Σ + λIp)

−2θ0)− (Σ + λIp)
−2θ0

]> [
(EΣ|X(Σ + λIp)

−2θ0)− (Σ + λIp)
−2θ0

]
+4EΣ|X

[
(EΣ|X(Σ + λIp)

−1θ0)− (Σ + λIp)
−1θ0

]> [
(EΣ|X(Σ + λIp)

−3θ0)− (Σ + λIp)
−3θ0

]
≥ 0.

When (p log n)/n→ 0, and all eigenvalues of Σ̂n are finite and bounded away from zero,

θ>0
(
EΣ|XΣ−1EΣ|XΣ−2 − EΣ|XΣ−3

)
θ0

= θ>0
(
−EΣ|X(Σ−1 − EΣ|XΣ−1)3 − 2EΣ|XΣ−1EΣ|X(Σ−1 − EΣ|XΣ−1)2

)
θ0

= −Θ(1)θ>0 Vnθ0.

Proof of Theorem 1. In Lemma 4 and 5, we obtain two lower bounds for E‖θ̂ − θ∗‖2, therefore the final lower
bound just takes the larger one of these two bounds.

C.2 Theorem 2

Proof of Theorem 2. Similar as Theorem 1, we have the following decomposition:

inf
θ̂

sup
δ,‖θ0‖≤R,‖θ0‖0≤s,Σ

E‖θ̂ − θ∗‖2

≥

(
inf
θ̂

sup
δ=0,‖θ0‖≤R,‖θ0‖0≤s,Σ=Ip

E‖θ̂ − θ∗‖2
)
∨

(
inf
θ̂

sup
δ,θ0=(1,0,0,...)>,Σ

E‖θ̂ − θ∗‖2
)
. (29)

For the first part of bound in (29), it is directly followed from Proposition 4.3 of Verzelen (2010): for some
constant L > 0,

inf
θ̂

sup
δ=0,‖θ0‖≤R,‖θ0‖0≤s,Σ=Ip

E‖θ̂ − θ∗‖2 ≥ (sLR2) ∧ sLσ
2(1 + log(p/s))

n
.

Since we assume ‖θ0‖/σ to be bounded away from zero, the above result becomes

inf
θ̂

sup
δ=0,‖θ0‖≤R,‖θ0‖0≤s,Σ=Ip

E‖θ̂ − θ∗‖2 = Ω

(
sσ2(1 + log(p/s))

n

)
.

The above bound also holds for δ > 0 since when Σ = Ip, θ
∗ = (1− κ(δ))θ0.

For the second part of bound in (29), we use Assouad’s method and modify the proof in Cai et al. (2010).
Consider Σ1 = Ip and Σ2 = Ip + D, where D1,j = Dj,1 = n−(α+1)/(2α+1) for j = 1, ..., n1/(2α+1). Denote
k = n1/(2α+1) and a = n−(α+1)/(2α+1), then D is just a matrix where the first k elements in the first row and
first column are a.

Denote PΣ as the density of N(0,Σ). Based on Assouad’s Lemma, for any δ and θ0, for some constant C > 0
(which is independent with (δ, θ0)),

inf
θ̂

sup
Σ
‖θ̂ − θ∗(Σ, δ)‖2 ≥ C‖θ∗(Σ1, δ)− θ∗(Σ2, δ)‖2‖PΣ1

∧ PΣ2
‖,

where ‖PΣ1
∧ PΣ2

‖ =
∫
PΣ1

(x) ∧ PΣ2
(x)dx. The notation θ∗(Σ, δ) is to emphasize the choice of Σ.

From Lemma 6 of Cai et al. (2010), we have

‖PΣ1
∧ PΣ2

‖ ≥ c.
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As a result, our remaining task becomes to quantify ‖θ∗(Σ1, δ)− θ∗(Σ2, δ)‖2. Consider θ0 = (1, 0, 0, ..., 0)>, for
a given δ such that λ1 := λ∗(θ0,Σ1, δ) > 0, we have

λ1 − δc0λ1
‖(Σ1 + λ1Ip)

−1θ0‖Σ1

‖(Σ1 + λ1Ip)−1Σ1θ0‖
+ δc0

‖(Σ1 + λ1Ip)
−1Σ1θ0‖

‖(Σ1 + λ1Ip)−1θ0‖Σ1

− δ2 = 0. (30)

Similarly, denote λ2 := λ∗(θ0,Σ2, δ), then

λ2 − δc0λ2
‖(Σ2 + λ2Ip)

−1θ0‖Σ2

‖(Σ2 + λ2Ip)−1Σ2θ0‖
+ δc0

‖(Σ2 + λ2Ip)
−1Σ2θ0‖

‖(Σ2 + λ2Ip)−1θ0‖Σ2

− δ2 = 0. (31)

It is easy to observe that λ1 − λ2 = O(‖Σ1 − Σ2‖). However, since our aim is to figure out the lower bound of

‖θ̂ − θ∗‖, we want the lower bound of |λ1 − λ2|. To characterize λ1 − λ2 in details, observe that

‖(Σ2 + λ2Ip)
−1θ0‖Σ2

− ‖(Σ1 + λ2Ip)
−1θ0‖Σ1

=
1

2‖(Σ1 + λ2Ip)−1θ0‖Σ1

[
θ>0 (Σ2 + λ2Ip)

−1Σ2(Σ2 + λ2Ip)
−1θ0 − θ>0 (Σ1 + λ2Ip)

−1Σ1(Σ1 + λ2Ip)
−1θ0

]
+ o

=
1

2‖(Σ1 + λ2Ip)−1θ0‖Σ1

θ>0
[
(Σ2 + λ2Ip)

−1 − (Σ1 + λ2Ip)
−1 − λ2(Σ2 + λ2Ip)

−2 + λ2(Σ1 + λ2Ip)
−2
]
θ0 + o

=
θ>0
[
−(Σ2 + λ2Ip)

−1D(Σ1 + λ2Ip)
−1 + λ2(Σ2 + λ2Ip)

−1D(Σ1 + λ2Ip)
−1
(
(Σ2 + λ2Ip)

−1 + (Σ1 + λ2Ip)
−1
)]
θ0

2‖(Σ1 + λ2Ip)−1θ0‖Σ1

+ o

=
θ>0
[
−(Σ1 + λ2Ip)

−1D(Σ1 + λ2Ip)
−1 + 2λ2(Σ1 + λ2Ip)

−1D(Σ1 + λ2Ip)
−2
]
θ0

2‖(Σ1 + λ2Ip)−1θ0‖Σ1

+ o

=
1

2‖(Σ1 + λ2Ip)−1θ0‖Σ1

λ2 − 1

(1 + λ2)3
(2k − 1)a+ o

=
λ2 − 1

2(1 + λ2)2
(2k − 1)a+ o,

and

‖(Σ2 + λ2Ip)
−1Σ2θ0‖ − ‖(Σ1 + λ2Ip)

−1Σ1θ0‖

=
1

2‖(Σ1 + λ2Ip)−1Σ1θ0‖
θ>0
[
−2λ2

(
(Σ2 + λ2Ip)

−1 − (Σ1 + λ2Ip)
−1
)

+ λ2
2

(
(Σ2 + λ2Ip)

−2 − (Σ1 + λ2Ip)
−2
)]
θ0 + o

=
1

2‖(Σ1 + λ2Ip)−1Σ1θ0‖
θ>0
[
2λ2(Σ1 + λ2Ip)

−1D(Σ1 + λ2Ip)
−1 − 2λ2

2(Σ1 + λ2Ip)
−1D(Σ1 + λ2Ip)

−2
]
θ0 + o

=
1

2‖(Σ1 + λ2Ip)−1Σ1θ0‖
2λ2

(1 + λ2)3
(2k − 1)a+ o

=
λ2

(1 + λ2)2
(2k − 1)a+ o.

Therefore, denote ∆1 = A(θ0,Σ2, δ, λ2)−A(θ0,Σ1, δ, λ2), with

A(θ0,Σ, δ, λ) =
‖(Σ + λIp)

−1Σθ0‖
‖(Σ + λIp)−1θ0‖Σ

,

then

A(θ0,Σ2, δ, λ2) =

(
‖(Σ1 + λIp)

−1Σ1θ0‖+
λ2

(1 + λ2)2
(2k − a) + o

)
×
(

1

‖(Σ1 + λIp)−1θ0‖Σ1

− 1

‖(Σ1 + λIp)−1θ0‖2Σ1

λ2 − 1

2(1 + λ2)2
(2k − a) + o

)
= −‖(Σ1 + λIp)

−1Σ1θ0‖
‖(Σ1 + λIp)−1θ0‖2Σ1

λ2 − 1

2(1 + λ2)2
(2k − 1)a+

1

‖(Σ1 + λIp)−1θ0‖Σ1

λ2

(1 + λ2)2
(2k − 1)a+ o

+A(θ0,Σ1, δ, λ2)

= − λ2 − 1

2(1 + λ2)
(2k − 1)a+

λ2

1 + λ2
(2k − 1)a+A(θ0,Σ1, δ, λ2) + o

=
1

2
(2k − 1)a+A(θ0,Σ1, δ, λ2) + o.
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Hence ∆1 = (2k − 1)a+ o.

Denote ε = λ2 − λ1. Note that A(θ0,Σ1, δ, λ) = 1 for any λ ≥ 0 since Σ1 = Ip. Therefore, (30) minus (31) leads
to

0 = −ε− δc0λ1
1

A(θ0,Σ1, δ, λ1)
+ δc0λ2

1

A(θ0,Σ2, δ, λ2)
− δc0∆1 +A(θ0,Σ1, δ, λ1)−A(θ0,Σ1, δ, λ2)

= −ε− δc0λ1
1

A(θ0,Σ1, δ, λ1)
+ δc0(λ1 + ε)

[
1

A(θ0,Σ1, δ, λ2)
− ∆1

A2(θ0,Σ1, δ, λ2)

]
− δc0∆1 + o

= −ε+ δc0λ1

(
1

A(θ0,Σ1, δ, λ2)
− 1

A(θ0,Σ1, δ, λ1)

)
+ ε

δc0
A(θ0,Σ1, δ, λ2)

− λ1δc0∆1

A2(θ0,Σ1, δ, λ2)
− δc0∆1 + o

= −ε+ ε
δc0

A(θ0,Σ1, δ, λ2)
− λ1δc0∆1

A2(θ0,Σ1, δ, λ2)
− δc0∆1 + o

= −ε+ εδc0 − λ1δc0∆1 − δc0∆1 + o.

Consequently,

ε = δc0
λ1 + 1

δc0 − 1
∆1 + o,

and hence

(Σ1 + λ1Ip)
−1Σ1θ0 − (Σ2 + λ2Ip)

−1Σ2θ0

= (Σ1 + λ1Ip)
−1Σ1θ0 − (Σ2 + λ2Ip)

−1Σ1θ0 + (Σ2 + λ2Ip)
−1Σ1θ0 − (Σ2 + λ2Ip)

−1Σ2θ0

= (Σ1 + λ1Ip)
−1(D + εIp)(Σ2 + λ1Ip)

−1Σ1θ0 − (Σ2 + λ2Ip)
−1Dθ0

= (Σ1 + λ1Ip)
−1(D + εIp)(Σ1 + λ1Ip)

−1Σ1θ0 − (Σ1 + λ1Ip)
−1Dθ0 + o

=
1

(1 + λ1)2
(D + εIp)θ0 −

1

1 + λ1
Dθ0 + o.

Since

εθ0 + Dθ0 =


ε+ a
a
...
a
0
...

 ,

and recall that k = n1/(2α+1) and a = n−(α+1)/(2α+1), when δ is chosen such that ε = Θ(ka), we have∥∥(Σ1 + λ1Ip)
−1Σ1θ0 − (Σ2 + λ2Ip)

−1Σ2θ0

∥∥2
= Ω(k2a2) = Ω

(
n−

2α
2α+1

)
.

As a result, we conclude that

inf
θ̂

sup
δ,‖θ0‖≤R,‖θ0‖0≤s,Σ

‖θ̂ − θ∗‖2 = Ω
(
R2n−

2α
2α+1

)
. (32)

C.3 Proof of Theorem 3

Proof of Theorem 3. There exacts a constant δ′ > δ1 such that as δ ≥ δ′, θ̂ = θ∗ = 0. Thus, we have R0(θ̂, δ)−
R0(θ∗, δ) = 0 when δ ≥ δ′. Next, we will show for any δ ≤ δ′, (7) always hold.

To simplify notations, denote θ̂(λ) = θ̂0−(Σ̂/λ+Ip)
−1θ̂0 and θ(λ) = θ0−(Σ/λ+Ip)

−1θ0, R̂(θ, δ) = Rn(θ, θ̂0, Σ̂, δ)
as in (6). Then

R0(θ̂(λ), δ)− R̂0(θ̂(λ), δ) = ‖θ̂(λ)− θ0‖2Σ + 2δc0‖θ̂(λ)‖‖θ̂(λ)− θ0‖Σ − ‖θ̂(λ)− θ̂0‖2Σ̂ − 2δc0‖θ̂(λ)‖‖θ̂(λ)− θ̂0‖Σ̂.
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From the formula of θ̂(λ), we have supλ ‖2θ̂(λ)− θ0 − θ̂0‖ and ‖θ̂(λ)− θ̂0‖ are always in O(‖θ0‖), therefore∣∣∣‖θ̂(λ)− θ0‖2Σ − ‖θ̂(λ)− θ̂0‖2Σ̂
∣∣∣ = (θ̂0 − θ0)>Σ(2θ̂(λ)− θ0 − θ̂0)− ‖θ̂(λ)− θ̂0‖2Σ̂−Σ

= O(‖θ̂0 − θ0‖‖θ(λ)− θ0‖) +O(‖θ(λ)− θ0‖2‖Σ̂− Σ‖).

Based on similar arguments,∣∣∣‖θ̂(λ)− θ0‖Σ − ‖θ̂(λ)− θ̂0‖Σ̂
∣∣∣ =

∣∣∣‖θ̂(λ)− θ0‖Σ − ‖θ̂(λ)− θ̂0‖Σ + ‖θ̂(λ)− θ̂0‖Σ − ‖θ̂(λ)− θ̂0‖Σ̂
∣∣∣

= O(‖θ̂0 − θ0‖) +O

(
‖θ(λ)− θ0‖

√
‖Σ̂− Σ‖

)
.

Thus,∣∣∣‖θ̂(λ)‖‖θ̂(λ)− θ0‖Σ − ‖θ̂(λ)‖‖θ̂(λ)− θ̂0‖Σ̂
∣∣∣ = O(‖θ(λ)‖‖θ̂0 − θ0‖) +O

(
‖θ(λ)‖‖θ(λ)− θ0‖

√
‖Σ̂− Σ‖

)
.

Therefore, uniformly for all λ:

R0(θ̂(λ), δ)− R̂0(θ̂(λ), δ) (33)

= O(‖θ̂0 − θ0‖‖θ(λ)− θ0‖) +O(‖θ(λ)− θ0‖2‖Σ̂− Σ‖) +O(δ‖θ(λ)‖‖θ̂0 − θ0‖) +O

(
δ‖θ(λ)‖‖θ(λ)− θ0‖

√
‖Σ̂− Σ‖

)
.(34)

When δ →∞, δ‖θ(λ)‖/‖θ0‖ converges to some constant. For any δ > 0, δ‖θ∗‖/‖θ0‖ is finite. As a result,

R0(θ̂(λ), δ)− R̂0(θ̂(λ), δ) = O
(
‖θ̂0 − θ0‖‖θ0‖

)
+O

(
‖θ0‖

√
‖Σ̂− Σ‖

)
. (35)

By similar derivations, we can get uniformly for all λ:

R0(θ(λ), δ)− R̂0(θ(λ), δ) = O
(
‖θ̂0 − θ0‖‖θ0‖

)
+O

(
‖θ0‖

√
‖Σ̂− Σ‖

)
. (36)

From the definition of R and R̂, we have

R0(θ̂, δ)−R0(θ∗, δ) = R0(θ̂, δ)− R̂0(θ̂, δ) + R̂0(θ̂, δ)− R̂0(θ∗, δ) + R̂0(θ∗, δ)−R0(θ∗, δ).

Since λ̂ is the minimizer of R̂(θ̂(λ), δ), it becomes

R̂(θ̂, δ)− R̂(θ∗, δ) < 0.

By the universal bounds in (35), (36), we obtain

R0(θ̂, δ)−R0(θ∗, δ) = O
(
‖θ̂0 − θ0‖‖θ0‖

)
+O

(
‖θ0‖

√
‖Σ̂− Σ‖

)
.

C.4 Theorem 4

Proof of Theorem 4. In the proof, we first assume ‖θ0‖ and σ2 are finite, then extend to unbounded ‖θ0‖ and
σ2 in the end. For simplification, we define

R0(θ1, θ2,Σ) = ‖θ1 − θ2‖2Σ + 2δc0‖θ1‖‖θ1 − θ2‖Σ + δ2‖θ1‖22.

We will prove the theorem based on different scenarios of δ. Denote θ∗, θ̃, and θ̂ as the minimizers of R0(·, θ0,Σ),

R0(·, θ̂0,Σ), and R0(·, θ̂0, Σ̂). Then we consider the partial derivative of R0(θ1, θ2,Σ),

∂R0(θ1, θ2,Σ)

∂θ1
= 2

[
(1 + δcA(θ1, θ2,Σ)) Σ(θ1 − θ2) +

(
δc

1

A(θ1, θ2,Σ)
+ δ2

)
θ1

]
,

where A(θ1, θ2,Σ) = ‖θ1‖/‖θ1 − θ2‖Σ.
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Case 1: When δ1 < δ < δ2, based on Proposition 1, the minimizer θ∗ is neither θ0 nor 0. Thus, for large n
(such that the probability of θ̂ being 0 or θ̂0 can be ignored), from the first order optimality condition of θ∗, θ̃,

and θ̂, we first have

0 =
∂R0

2∂θ1
(θ̂, θ̂0, Σ̂)− ∂R0

2∂θ1
(θ∗, θ0,Σ)

=

[(
1 + δcA(θ̂, θ̂0, Σ̂)

)
Σ̂(θ̂ − θ̂0) +

(
δc

1

A(θ̂, θ̂0, Σ̂)
+ δ2

)
θ̂

]
−[

(1 + δcA(θ∗, θ0,Σ)) Σ(θ∗ − θ0) +

(
δc

1

A(θ∗, θ0,Σ)
+ δ2

)
θ∗
]

=

[(
1 + δcA(θ̂, θ̂0, Σ̂)

)
Σ(θ̂ − θ̂0) +

(
δc

1

A(θ̂, θ̂0, Σ̂)
+ δ2

)
θ̂

]
−[

(1 + δcA(θ∗, θ0,Σ)) Σ(θ∗ − θ0) +

(
δc

1

A(θ∗, θ0,Σ)
+ δ2

)
θ∗
]

+
(

1 + δcA(θ̂, θ̂0, Σ̂)
)

(Σ̂− Σ)(θ̂ − θ̂0). (37)

Consider the Taylor expansions of A(θ̂, θ̂0, Σ̂), 1

A(θ̂,θ̂0,Σ̂)
at (θ∗, θ0,Σ). For both A and 1/A, we observe that

A(θ̂, θ̂0, Σ̂) = A(θ∗, θ0,Σ) +

(
∂A

∂θ1
(θ∗, θ0,Σ)

)>
(θ̂ − θ∗) +

(
∂A

∂θ2
(θ∗, θ0,Σ)

)>
(θ̂0 − θ0)

+
(θ∗ − θ0)>(Σ̂− Σ)(θ∗ − θ0)

2‖θ∗ − θ0‖Σ‖θ∗‖
+O

(
‖θ̂ − θ∗‖2

‖θ0‖2

)
1

A(θ̂, θ̂0, Σ̂)
=

1

A(θ∗, θ0,Σ)
+

(
∂1/A

∂θ1
(θ∗, θ0,Σ)

)>
(θ̂ − θ∗) +

(
∂1/A

∂θ2
(θ∗, θ0,Σ)

)>
(θ̂0 − θ0)

−‖θ∗‖ (θ∗ − θ0)>(Σ̂− Σ)(θ∗ − θ0)

2‖θ∗ − θ0‖3Σ
+O

(
‖θ̂ − θ∗‖2

‖θ0‖2

)

Moreover,(
1 + δcA(θ̂, θ̂0, Σ̂)

)
(Σ̂− Σ)(θ̂ − θ̂0)

= (1 + δcA(θ∗, θ0,Σ)) (Σ̂− Σ)(θ∗ − θ0) +O(‖θ̂ − θ∗‖2/‖θ0‖) +O(‖θ̂0 − θ0‖2/‖θ0‖) +O(‖Σ̂− Σ‖2‖θ0‖)

Combined with (37) yields

Σ(θ̂ − θ∗ + θ0 − θ̂0) + δcA(θ∗, θ0,Σ)Σ(θ̂ − θ∗ + θ0 − θ̂0) +

(
δc

A(θ∗, θ0,Σ)
+ δ2

)
(θ̂ − θ∗)

+δcΣ(θ∗ − θ0)

(
∂A

∂θ1
(θ∗, θ0,Σ)

)>
(θ̂ − θ∗) + δcθ∗

(
∂1/A

∂θ1
(θ∗, θ0,Σ)

)>
(θ̂ − θ∗) +

δcΣ(θ∗ − θ0)

(
∂A

∂θ2
(θ∗, θ0,Σ)

)>
(θ̂0 − θ0) + δcθ∗

(
∂1/A

∂θ2
(θ∗, θ0,Σ)

)>
(θ̂0 − θ0)

+δc
(θ∗ − θ0)>(Σ̂− Σ)(θ∗ − θ0)

‖θ∗ − θ0‖Σ‖θ∗‖
Σ(θ∗ − θ0)− δc‖θ∗‖ (θ∗ − θ0)>(Σ̂− Σ)(θ∗ − θ0)

‖θ∗ − θ0‖3Σ
θ∗

+ (1 + δcA(θ∗, θ0,Σ)) (Σ̂− Σ)(θ∗ − θ0)

+O

(
‖θ̂ − θ∗‖2

‖θ0‖

)
= 0.
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Thus the difference between θ̂ and θ∗ is dominated by θ̂0 − θ0, and Σ̂− Σ:

θ̂ − θ∗ = [H(θ∗, θ0,Σ)]
−1

[
M(θ∗, θ0,Σ)(θ̂0 − θ0)− δc (θ∗ − θ0)>(Σ̂− Σ)(θ∗ − θ0)

2‖θ∗ − θ0‖Σ‖θ∗‖
Σ(θ∗ − θ0) (38)

+δc‖θ∗‖ (θ∗ − θ0)>(Σ̂− Σ)(θ∗ − θ0)

2‖θ∗ − θ0‖3Σ
θ∗ − (1 + δcA(θ∗, θ0,Σ)) (Σ̂− Σ)(θ∗ − θ0)

]

+O

(
‖θ̂ − θ∗‖2

‖θ0‖

)
,

where

H(θ∗, θ0,Σ) = Σ + δcA(θ∗, θ0,Σ)Σ +

(
δc

A(θ∗, θ0,Σ)
+ δ2

)
Ip + δcΣ(θ∗ − θ0)

(
∂A

∂θ1
(θ∗, θ0,Σ)

)>
+δcθ∗

(
∂1/A

∂θ1
(θ∗, θ0,Σ)

)>
is the Hessian matrix of the population risk defined in (11) at point θ = θ∗, which is positive-definite by
Proposition 1.

M(θ∗, θ0,Σ) = Σ + δcA(θ∗, θ0,Σ)Σ− δcΣ(θ∗ − θ0)

(
∂A

∂θ2
(θ∗, θ0,Σ)

)>
− δcθ∗

(
∂1/A

∂θ2
(θ∗, θ0,Σ)

)>
= Σ + δcA(θ∗, θ0,Σ)Σ +

δcA(θ∗, θ0,Σ)

‖θ∗ − θ0‖2Σ
Σ(θ∗ − θ0)(θ∗ − θ0)>Σ

+δ
c

A(θ∗, θ0,Σ)‖θ∗‖22
θ∗(θ∗)>,

which is also positive definite.

Case 2: δ is either smaller than δ1 or larger than δ2. Recall that δ1 = c0‖θ0‖√
θ>0 (Σ−1)θ0

and δ2 =

√
θ>0 Σ2θ0

c0
√
θ>0 Σθ0

.

δ̂1 − δ1 =
∂δ1
∂θ0

(θ̂0 − θ0) +

〈
∂δ1
∂Σ

, Σ̂− Σ

〉
F

+O

(
‖θ̂0 − θ0‖2

‖θ0‖2

)
+O(‖Σ̂− Σ‖2),

δ̂2 − δ2 =
∂δ2
∂θ0

(θ̂0 − θ0) +

〈
∂δ2
∂Σ

, Σ̂− Σ

〉
F

+O

(
‖θ̂0 − θ0‖2

‖θ0‖2

)
+O(‖Σ̂− Σ‖2).

Therefore, if θ̂0 − θ0 and Σ̂−Σ are consistent, with probability tending to one, δ will smaller than δ̂1 or greater
than δ̂2. Thus, θ̂ will be either θ̂0 or 0 depending on δ.

C.5 Theorem 5

Proof of Theorem 5. The decomposition of generalizations can be directly obtained from Taylor expansion.
When δ < δ1, since δ̂1 − δ1 → 0, we have

R0(θ̂, δ)− R̂0(θ̂, δ) = 1{δ̂1 ≥ δ}
[
‖θ̂0 − θ0‖2Σ − ‖θ̂0 − θ̂0‖2Σ̂ + 2δc0‖θ̂0‖

(√
‖θ̂0 − θ0‖2Σ −

√
‖θ̂0 − θ̂0‖2Σ

)]
+1{δ̂1 < δ}

[
‖θ̂ − θ0‖2Σ − ‖θ̂ − θ̂0‖2Σ̂ + 2δc0‖θ̂‖

(√
‖θ̂ − θ0‖2Σ −

√
‖θ̂ − θ̂0‖2Σ̂

)]
= ‖θ̂0 − θ0‖2Σ + 2δc0‖θ0‖‖θ̂0 − θ0‖Σ + op(R0(θ̂, δ)− R̂0(θ̂, δ)).
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When δ > δ1,

R0(θ̂, δ)− R̂0(θ̂, δ)

= 1{δ̂1 < δ}
[
‖θ̂ − θ0‖2Σ − ‖θ̂ − θ̂0‖2Σ̂ + 2δc0‖θ̂‖

(√
‖θ̂ − θ0‖2Σ −

√
‖θ̂ − θ̂0‖2Σ̂

)]
+1{δ̂1 ≥ δ}

[
‖θ̂0 − θ0‖2Σ − ‖θ̂0 − θ̂0‖2Σ̂ + 2δc0‖θ̂0‖

(√
‖θ̂0 − θ0‖2Σ −

√
‖θ̂0 − θ̂0‖2Σ̂

)]
= ‖θ̂ − θ0‖2Σ − ‖θ̂ − θ0‖2Σ̂ + ‖θ̂ − θ0‖2Σ̂ − ‖θ̂ − θ̂0‖2Σ̂

+2δc0‖θ∗‖
(√
‖θ̂ − θ0‖2Σ −

√
‖θ̂ − θ̂0‖2Σ

)
+ 2δc0‖θ∗‖

(√
‖θ̂ − θ̂0‖2Σ −

√
‖θ̂ − θ̂0‖2Σ̂

)
+op(R(θ̂, δ)− R̂(θ̂, δ))

= (θ∗ − θ0)>(Σ− Σ̂)(θ∗ − θ0) + 2(θ̂0 − θ0)>Σ(θ∗ − θ0) + 2δc0‖θ∗‖
(θ̂0 − θ0)>Σ(θ∗ − θ0)√
‖θ∗ − θ0‖2Σ + σ2

+op(R(θ̂, δ)− R̂(θ̂, δ)).

Next we present the statement “‖θ∗ − θ0‖Σ + c0δ‖θ∗‖ is an increasing function in δ for any Σ and θ0”.

From (4) in Proposition 1, the first-order optimality condition to minimize population adversarial loss is

λ

(
1 + δc0

‖θ(λ)‖2
‖θ(λ)− θ0‖Σ

)
=

(
δc0
‖θ(λ)− θ0‖Σ
‖θ(λ)‖2

+ δ2

)
,

which is a quadratic function of δ (take A = ‖θ(λ)‖/‖θ(λ)− θ0‖Σ):

δ2 + δ
(c0
A
− λc0A

)
− λ = 0.

Therefore, δ can be written as a function of λ:

δ =
1

2

[
λc0A−

c0
A

+

√(
λc0A−

c0
A

)2

+ 4λ

]
,

thus

c0δ‖θ(λ)‖ = c0δA‖θ(λ)− θ0‖Σ

=
c0‖θ(λ)− θ0‖Σ

2

[
λc0A

2 − c0 +

√
(λc0A2 − c0)

2
+ 4λA2

]
.

Therefore,

∂

∂λ
(‖θ(λ)− θ0‖Σ + c0δ‖θ(λ)‖)

=
∂

∂λ
‖θ(λ)− θ0‖Σ

{
1 +

c0
2

[
λc0A

2 − c0 +

√
(λc0A2 − c0)

2
+ 4λA2

]}
=

{
1 +

c0
2

[
λc0A

2 − c0 +

√
(λc0A2 − c0)

2
+ 4λA2

]}(
∂

∂λ
‖θ(λ)− θ0‖Σ

)
+‖θ(λ)− θ0‖Σ

∂

∂λ

{
1 +

c0
2

[
λc0A

2 − c0 +

√
(λc0A2 − c0)

2
+ 4λA2

]}
.

The derivatives becomes

∂

∂λ
‖θ(λ)− θ0‖Σ =

1

2‖θ(λ)− θ0‖Σ
∂‖θ(λ)− θ0‖2Σ

∂λ
(39)
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and

∂

∂λ

{
1 +

c0
2

[
λc0A

2 − c0 +

√
(λc0A2 − c0)

2
+ 4λA2

]}

=
c0
2

c0A2 +
2c0A

2(λc0A
2 − c0) + 4A2

2

√
(λc0A2 − c0)

2
+ 4λA2

+
c0
2

λc0 +
2λc0(λc0A

2 − c0) + 4λ

2

√
(λc0A2 − c0)

2
+ 4λA2

 ∂A2

∂λ

=
c0
2

c0A2 +
c0A

2(λc0A
2 − c0) + 2A2√

(λc0A2 − c0)
2

+ 4λA2

+
c0
2

λc0 +
λc0(λc0A

2 − c0) + 2λ√
(λc0A2 − c0)

2
+ 4λA2

 ∂A2

∂λ
,

where

∂A2

∂λ
=

1

‖θ(λ)− θ0‖2Σ
∂‖θ(λ)‖2

∂λ
− ‖θ(λ)‖2

‖θ(λ)− θ0‖4Σ
∂‖θ(λ)− θ0‖2Σ

∂λ
. (40)

For any λ ≥ 0, one can check that

c0
2

c0A2 +
2c0A

2(λc0A
2 − c0) + 4A2

2

√
(λc0A2 − c0)

2
+ 4λA2

 ≥ 0,

and

‖θ(λ)− θ0‖Σ
c0
2

c0A2 +
2c0A

2(λc0A
2 − c0) + 4A2

2

√
(λc0A2 − c0)

2
+ 4λA2

 =
‖θ(λ)− θ0‖2Σ
‖θ(λ)− θ0‖

c0
2

c0A2 +
c0A

2(λc0A
2 − c0) + 2A2

2

√
(λc0A2 − c0)

2
+ 4λA2

 . (41)

The coefficient w.r.t ∂‖θ(λ)− θ0‖2Σ/∂λ is

1

2‖θ(λ)− θ0‖Σ

{
1 +

c0
2

[
λc0A

2 − c0 +

√
(λc0A2 − c0)

2
+ 4λA2

]}

− A2

‖θ(λ)− θ0‖Σ
c0
2

λc0 +
λc0(λc0A

2 − c0) + 2λ√
(λc0A2 − c0)

2
+ 4λA2


=

1

2‖θ(λ)− θ0‖Σ

1 +
c0
2

[
λc0A

2 − c0 +

√
(λc0A2 − c0)

2
+ 4λA2

]
− c0A2

λc0 +
λc0(λc0A

2 − c0) + 2λ√
(λc0A2 − c0)

2
+ 4λA2

 .

The coefficient w.r.t ∂‖θ(λ)‖2/∂λ is

1

‖θ(λ)− θ0‖Σ
c0
2

λc0 +
λc0(λc0A

2 − c0) + 2λ√
(λc0A2 − c0)

2
+ 4λA2

 .
Decompose Σ as PDP> and take β0 = P>θ0, then

∂‖θ(λ)− θ0‖2Σ
∂λ

=
∂

∂λ
β>0

(
λ2D

(D + λIp)2

)
β0 = 2λβ>0

(
D2

(D + λIp)3

)
β0,

and

∂‖θ(λ)‖2

∂λ
=

∂

∂λ
β>0

(
D2

(D + λIp)2

)
β0 = 2β>0

(
D2

(D + λIp)3

)
β0,

‖θ(λ)− θ0‖2Σ = β>0

(
λ2D2 + λ3Ip
(D + λIp)3

)
β0.
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Combining all the above results, we have

∂

∂λ
(‖θ(λ)− θ0‖Σ + c0δ‖θ(λ)‖)

=
β>0

(
λD2

(D+λIp)3

)
β0

‖θ(λ)− θ0‖Σ

{
1 +

c0
2

[
λc0A

2 − c0 +

√
(λc0A2 − c0)

2
+ 4λA2

]

−c0A2

λc0 +
λc0(λc0A

2 − c0) + 2λ√
(λc0A2 − c0)

2
+ 4λA2

− c0
c0 +

c0(λc0A
2 − c0) + 2√

(λc0A2 − c0)
2

+ 4λA2


+
β>0

(
λ2D2+λ3D
(D+λIp)3

)
β0

‖θ(λ)− θ0‖Σ
c0
2

c0A2 +
c0A

2(λc0A
2 − c0) + 2A2√

(λc0A2 − c0)
2

+ 4λA2


=

β>0

(
λD2

(D+λIp)3

)
β0

‖θ(λ)− θ0‖Σ

{
1 +

c0
2

[
λc0A

2 − c0 +

√
(λc0A2 − c0)

2
+ 4λA2

]

−c0
2
A2

λc0 +
λc0(λc0A

2 − c0) + 2λ√
(λc0A2 − c0)

2
+ 4λA2

− c0
c0 +

c0(λc0A
2 − c0) + 2√

(λc0A2 − c0)
2

+ 4λA2


+
β>0

(
λ3D

(D+λIp)3

)
β0

‖θ(λ)− θ0‖Σ
c0
2

c0A2 +
c0A

2(λc0A
2 − c0) + 2A2√

(λc0A2 − c0)
2

+ 4λA2


=

β>0

(
λD2

(D+λIp)3

)
β0

‖θ(λ)− θ0‖Σ

1− 3c20
2

+
c0
2

√
(λc0A2 − c0)

2
+ 4λA2 −

(c0
2
A2λ+ c0

) c0(λc0A
2 − c0) + 2√

(λc0A2 − c0)
2

+ 4λA2


+
β>0

(
λ3D

(D+λIp)3

)
β0

‖θ(λ)− θ0‖Σ
c0
2

c0A2 +
c0A

2(λc0A
2 − c0) + 2A2√

(λc0A2 − c0)
2

+ 4λA2


≥

β>0

(
λD2

(D+λIp)3

)
β0

‖θ(λ)− θ0‖Σ

1− 3c20
2

+
c0
2

√
(λc0A2 − c0)

2
+ 4λA2 −

(c0
2
A2λ+ c0

) c0(λc0A
2 − c0) + 2√

(λc0A2 − c0)
2

+ 4λA2


+
β>0

(
λD2

(D+λIp)3

)
β0

‖θ(λ)− θ0‖Σ
c0
2

c0 +
c0(λc0A

2 − c0) + 2√
(λc0A2 − c0)

2
+ 4λA2


=

β>0

(
λD2

(D+λIp)3

)
β0

‖θ(λ)− θ0‖Σ

1− c20 +
c0
2

√
(λc0A2 − c0)

2
+ 4λA2 −

(c0
2
A2λ+

c0
2

) c0(λc0A
2 − c0) + 2√

(λc0A2 − c0)
2

+ 4λA2

 .
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Further,

√
(λc0A2 − c0)

2
+ 4λA2

1− c20 +
c0
2

√
(λc0A2 − c0)

2
+ 4λA2 −

(c0
2
A2λ+

c0
2

) c0(λc0A
2 − c0) + 2√

(λc0A2 − c0)
2

+ 4λA2


≥

(
1− c20

)√
(λc0A2 − c0)

2
+ 4λA2 +

c0
2

((
λc0A

2 − c0
)2

+ 4λA2
)
− c0A

2λ

2

(
c0(λc0A

2 − c0) + 2
)

−c0
2

(
c0(λc0A

2 − c0) + 2
)

=
(
1− c20

)√
(λc0A2 − c0)

2
+ 4λA2 +

λ2c30A
4

2
− c30λA2 +

c30
2

+ 2c0λA
2 − c30λ

2A4

2
+
c30λA

2

2
− c0A2λ

−c
3
0λA

2

2
+
c30
2
− c0

=
(
1− c20

)√
(λc0A2 − c0)

2
+ 4λA2 +

c30
2
− c30

2
λA2 + c0λA

2 − c30λA
2

2
+
c30
2
− c0

=

(
1− 3c20

2

)√
(λc0A2 − c0)

2
+ 4λA2 + c30 − c30λA2 + c0λA

2 − c0

≥
(
1− c20

)√
(λc0A2 − c0)

2
+ 4λA2 + c30 − c0.

Recall that c0 =
√

2/π, so when λA2 > 0,√
(λc0A2 − c0)

2
+ 4λA2

2

− c20 = λ2c20A
4 + c20 − 2λc20A

2 + 4λA2 − c20
= λ2c20A

4 − 2λc20A
2 + 4λA2

= A2λ(λc20 − 2c20 + 4) > 0.

Therefore, uniformly for all δ, Σ, and θ0,

∂

∂λ
(‖θ(λ)− θ0‖Σ + c0δ‖θ(λ)‖) ≥ 0.

D Additional numerical experiments

Effectiveness of the two-stage estimator. Here we present the performance of the proposed two-stage
estimator. We also provide some other methods for references.

In this experiment, we set p = 10 and n = 1000 and take r = 0.1. From Theorem 4, the adversarial risk of our
proposed estimator is close to R0(θ∗, δ). We compare the performance of several estimators:

1. emp: take θ̂0 = (X>X)−1X>y and Σ̂ = 1
n

∑n
i=1 xix

>
i . Denote as θ̂emp.

2. mag : θ̂mag is obtained through taking Σ̂ as αIp, where α = ‖Σ̂‖.

3. adv train(y): minimize minθ
1
n

∑n
i=1 max‖x−xi‖≤δ[x

>θ − yi]2. Denote as θ̂y.

4. true: θ∗, for reference.

5. theta0 : θ0, for reference.

6. zero: θ = 0, for reference.

The results are shown in Figure 4. In the left panel, one can see that R0(θ̂emp, δ) is close to R0(θ∗, δ). In

addition, comparing θ̂emp and θ̂mag, it is important to consider the effect of Σ, and one may not assume Σ ∝ Ip
and use θ̂mag. On the other hand, for θ̂y, when σ2 → 0, it is expected to converge to θ∗ since the adversarial
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Figure 4: Comparison among Estimators under low dimensional case. Left panel: R0(θ∗, δ) minimizes adversarial

risk, and R0(θ̂emp, δ) is close to R0(θ∗, δ). Right panel: both R0(θ∗, 0) and R0(θ̂, 0) increases in δ until R0(0, 0).

risk and adversarial prediction are the same when δ = 0. However, when σ2 gets increasing, its performance in
reducing adversarial risk is not as good as θ̂emp. In terms of R0(θ, 0) on the right penal, for both θ∗ and θ̂emp,
their standard risk increases in δ until reaches R0(0, 0).

We present some more results for other choices of (r, σ2) from Figure 5 to Figure 11 in Appendix D. Detailed

values of R0(θ∗, δ), R0(θ̂emp, δ), and Std(R0(θ̂emp, δ) − R0(θ∗, δ)) are summarized in Table 4, and similarly the

details for Std(R0(θ̂emp, 0)−R0(θ∗, 0)) in Table 5 in Appendix D.
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Figure 5: Performance of Two-Stage Estimator
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Figure 6: Performance of Two-Stage Estimator
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Figure 7: Performance of Two-Stage Estimator

0.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0
δ

R
is
k

method

adv_train(y)

emp

mag

theta0

true

zero

R0(θ,δ),r=0.01,σ
2=0.01

0.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0
δ

R
is
k

method

adv_train(y)

emp

mag

theta0

true

zero

R0(θ,0),r=0.01,σ
2=0.01

Figure 8: Performance of Two-Stage Estimator
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Figure 9: Performance of Two-Stage Estimator
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Figure 10: Performance of Two-Stage Estimator



Yue Xing, Ruizhi Zhang, Guang Cheng

0.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0
δ

R
is
k

method

adv_train(y)

emp

mag

theta0

true

zero

R0(θ,δ),r=0.2,σ
2=0.01

0.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0
δ

R
is
k

method

adv_train(y)

emp

mag

theta0

true

zero

R0(θ,0),r=0.2,σ
2=0.01

Figure 11: Performance of Two-Stage Estimator

Table 4: Details of R0(θ, δ). “sd” represents Std(R0(θ̂emp, δ)−R0(θ∗, δ)).

r δ 0.5 0.8 0.9 1 1.1 1.2 1.3 1.5 1.8 2
0.01 true 0.2485 0.5488 0.6381 0.7120 0.7685 0.8082 0.8338 0.8565 0.8622 0.8624

emp 0.3182 0.5761 0.6539 0.7210 0.7740 0.8117 0.8361 0.8573 0.8622 0.8625
sd 0.0398 0.0364 0.0242 0.0117 0.0061 0.0044 0.0035 0.0023 0.0005 0.0003

0.02 true 0.2505 0.5575 0.6494 0.7258 0.7845 0.8259 0.8528 0.8769 0.8829 0.8832
emp 0.3233 0.5864 0.6662 0.7353 0.7902 0.8296 0.8551 0.8777 0.8830 0.8832
sd 0.0396 0.0378 0.0257 0.0126 0.0064 0.0045 0.0036 0.0024 0.0005 0.0003

0.1 true 0.2558 0.6010 0.7125 0.8097 0.8889 0.9489 0.9911 1.0345 1.0484 1.0491
emp 0.3430 0.6462 0.7387 0.8247 0.8979 0.9547 0.9950 1.0360 1.0486 1.0491
sd 0.0367 0.0495 0.0365 0.0216 0.0103 0.0060 0.0047 0.0032 0.0010 0.0004

0.2 true 0.2567 0.6288 0.7585 0.8765 0.9777 1.0603 1.1245 1.2055 1.2497 1.2557
emp 0.3485 0.6944 0.7991 0.8999 0.9917 1.0694 1.1309 1.2087 1.2505 1.2559
sd 0.0327 0.0593 0.0487 0.0338 0.0192 0.0096 0.0064 0.0046 0.0023 0.0011

Table 5: Details of R0(θ, 0). The minimal R0(θ, 0) is 0 through taking θ = θ0.
r δ 0.5 0.8 0.9 1 1.1 1.2 1.3 1.5 1.8 2
0.01 true 0.0045 0.0817 0.1546 0.2568 0.3805 0.5085 0.6251 0.7863 0.8561 0.8618

emp 0.0143 0.0897 0.1622 0.2633 0.3845 0.5082 0.6208 0.7799 0.8553 0.8613
sd 0.0060 0.0217 0.0313 0.0416 0.0499 0.0538 0.0562 0.0498 0.0132 0.0088

0.02 true 0.0040 0.0798 0.1528 0.2559 0.3817 0.5132 0.6334 0.8019 0.8765 0.8825
emp 0.0139 0.0878 0.1605 0.2625 0.3862 0.5135 0.6293 0.7956 0.8755 0.8819
sd 0.0059 0.0216 0.0315 0.0419 0.0508 0.0548 0.0576 0.0512 0.0140 0.0091

0.1 true 0.0011 0.0579 0.1218 0.2188 0.3460 0.4929 0.6412 0.8849 1.0326 1.0476
emp 0.0114 0.0661 0.1298 0.2263 0.3526 0.4968 0.6422 0.8811 1.0297 1.0468
sd 0.0050 0.0185 0.0292 0.0415 0.0536 0.0618 0.0671 0.0666 0.0291 0.0117

0.2 true 0.0000 0.0364 0.0893 0.1745 0.2909 0.4312 0.5846 0.8754 1.1550 1.2345
emp 0.0104 0.0452 0.0973 0.1819 0.2977 0.4369 0.5878 0.8753 1.1560 1.2332
sd 0.0043 0.0149 0.0248 0.0370 0.0497 0.0618 0.0702 0.0797 0.0613 0.0394


