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A Missing Proofs

A.1 Connection to discrepancy measure

In this section, we discuss how our assumption relates to discrepancy assumptions. Consider Y-discrepancy that
measures the maximum absolute distance between the loss function: dist (D1,D2) := suph∈H |LD1

(h)− LD2
(h)| ,

where D1 and D1 represents the source domain and target domain and LD1
and LD2

are expected loss for two
domains.

Note that under the GLM assumption, the L2 distance in unknown parameters resembles the discrepancy using
square loss. Consider a funnel with two layers and ‖θ1 − θ2‖2 = q. Lemma 3 indicates that q ≈ dist(D1,D2).
Lemma 3. We have under square loss function, dist(D1,D2) ≤ 4κdxq.

Proof.

We first show the second inequality.

dist (D1,D2)

= sup
θ
|Ex(µ(xT θ))− µ(xT θ∗1))2 − Ex(µ(xT θ)− µ(xT θ∗2))2|

≤ sup
θ
|Exµ(xT θ)(µ(xT θ∗1)− µ(xT θ∗2))|+ |Ex(µ2(xT θ∗1)− µ2(xT θ∗2))|

≤ 4|Ex(µ(xT θ∗1)− µ(xT θ∗2))|
≤ 4Ex|µ(xT θ∗1)− µ(xT θ∗2)|
≤ 4κEx|xT (θ∗1 − θ∗2)|
≤ 4κdxq

On the other hand, an lower bound of dist (D1,D2) is also closely related to q.

dist (D1,D2)

= sup
θ
|Ex(µ(xT θ))− µ(xT θ∗1))2 − Ex(µ(xT θ)− µ(xT θ∗2))2|

= sup
θ
|Ex(µ(xT θ∗1)− µ(xT θ∗2))(µ(xT θ∗1) + µ(xT θ∗2) + µ(xT θ))|

= sup
θ
|Ex

∫
t

µ′
(
txT θ∗1 + (1− t)xT θ∗2

)
dt(xT (θ∗1 − θ∗2))(µ(xT θ∗1) + µ(xT θ∗2) + µ(xT θ))|

= sup
θ
|(θ∗1 − θ∗2)T [Exx

∫
t

µ′
(
txT θ∗1 + (1− t)xT θ∗2

)
dt(µ(xT θ∗1) + µ(xT θ∗2) + µ(xT θ))]|

(Let θ → −∞)

≥ |(θ∗1 − θ∗2)T νθ∗1 ,θ∗2 | (letting νθ∗1 ,θ∗2 = [Exx
∫
t

µ′
(
txT θ∗1 + (1− t)xT θ∗2

)
dt(µ(xT θ∗1) + µ(xT θ∗2))]).

Let θ∗2 = θ∗1 + ‖θ∗1 − θ∗2‖2µ, where µ is a unit vector. For sufficient small ‖θ∗1 − θ∗2‖2, νθ∗1 ,θ∗2 →
2Ex[xµ′(xT θ∗1)µ(xT θ∗1)] =: νθ∗1 , which is a constant vector. Thus

lim
‖θ∗1−θ∗2‖2→0

dist(D1,D2)

‖θ∗1 − θ∗2‖2
= |µT νθ∗1 |.

For sufficient small ‖θ∗1 − θ∗2‖, discrepancy scales with ‖θ∗1 − θ∗2‖.

A.2 Proof of Lemma 1

In this subsection, we introduce the proof of Lemma 1. Many proofs could achieve a very similar bound. Here we
use the idea of local Rademacher complexity.
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Proof.

We discuss two cases: 1) θ̂ ∈ int(Θ0). 2) θ̂ /∈ int(Θ0).

In both cases, one simply has

|µ(xT θ̂)− µ(xT θ∗)| ≤ κ|xT (θ̂ − θ∗)| ≤ κ sup
θ1,θ2∈Θ0

|xT (θ1 − θ2)|,

which completes the first term in the minimum.

Now we prove the parametric bound. We first assume that case 1 holds. In this case, the constraint does not
come into effects and θ̂ is the global minimal. By Theorem 26.5 in Shalev-Shwartz and Ben-David (2014), we
have under an event, whose probability is at least 1− δ,

L(θ̂)− L(θ∗) ≤ 2Rn(z) + 5

√
2 ln(8/δ)

n
, (8)

where R(z) is the Rademacher complexity defined by

Rn(z) = Eσ
1

n
sup
θ∈Θ

n∑
i=1

‖zi − µ(xTi θ)‖2Mn
σi,

and the variables in σ are distributed i.i.d. from Rademacher distribution. Let us call the event EA.

As for any i ∈ [n], let φi(t) := (zi − µ(t))2, which satisfies |φ′i(t)| = |2(zi − µ(t))µ′(t)| ≤ κ, using Contraction
lemma (Shalev-Shwartz and Ben-David, 2014), we have

Rn(z) ≤ Eσ
1

n
sup
θ∈Θ

∑
i

κ(xTi θ)σi

= κEσ
1

n
sup
θ∈Θ

n∑
i=1

xTi (θ − θ∗)σi. (9)

≤ κEσ
1

n
sup
θ∈Θ
‖
∑
i

xiσi‖M−1
n
‖θ − θ∗‖Mn

≤ κEσ
1

n
‖
∑
i

xiσi‖M−1
n

sup
θ∈Θ0

‖θ − θ∗‖Mn .

Next, using Jensen’s inequality we have that

Eσ
1

n
‖
∑
i

xiσi‖M−1
n

≤ 1

n

(
Eσ‖

∑
i

xiσi‖2M−1
n

)1/2

=
1

n

(
Eσtr[M

−1
n (
∑
i

xiσi)(
∑
i

xiσi)
T ]

)1/2

=
1

n

(
tr[M−1

n Eσ(
∑
i

xiσi)(
∑
i

xiσi)
T ]

)1/2

(10)



Ziping Xu, Amirhossein Meisami, Ambuj Tewari

Finally, since the variables σ1, . . . , σm are independent we have

Eσ(
∑
i

xiσi)(
∑
i

xiσi)
T

= Eσ

∑
k,l∈[n]

σkσlxkx
T
l

= Eσ

∑
i∈[n]

σ2
i xix

T
i

=
∑
i∈[n]

xix
T
i = nMn.

Plugging this into (10), assuming Mn is full rank, we have

(9) ≤
√
d/n sup

θ∈Θ0

‖θ − θ∗‖Mn
. (11)

Lemma 4. Under the notation in Lemma 1 and Assumption 2, if an estimate θ̂ satisfies L(θ̂) ≤ L(θ∗) + bn, then

‖θ̂ − θ∗‖2Mn
≤ dxbn

cµ
.

Proof. Let gn(θ) =
∑
i xi(µ(xTi θ)− µ(xTi θ

∗)). For any θ, ∇gn(θ) =
∑
i xix

T
i µ
′(xTi θ). By simple calculus,

gn(θ∗)− gn(θ̂) =

∫ 1

0

∇gn
(
sθ∗ + (1− s)θ̂

)
ds(θ∗ − θ̂).

As µ(t) ≥ cµ, we have
∫ 1

0
∇gn

(
sθ∗ + (1− s)θ̂

)
ds � cµMn. Plugging this into the inequality above we have

‖θ∗ − θ̂‖2Mn
≤ 1

cµ
(
∑
i

xi(µ(xTi θ)− µ(xTi θ
∗)))2 =

1

cµ
εTMnε ≤

dx
cµ
εT ε =

dx
cµ

(L(θ̂)− L(θ∗)),

where ε := (µ(xTi θ̂)− µ(xTi θ
∗))ni=1.

Applying (8) and Lemma 4, we complete the proof by

‖θ̂ − θ∗‖Mn ≤

√
2dx
√
d

cµ
√
n

sup
θ∈Θ
‖θ − θ∗‖Mn

+ 5

√
2 ln(8/δ)

n

≤

√
20
√

2 ln(8/δ)dx
√
d supθ∈Θ0

‖θ − θ∗‖Mn

cµ
√
n

. (12)

We apply (12) iteratively 1. Let Θ(1) := Θ0. For any t > 1, let Θ(t) = {θ ∈ Rd : ‖θ − θ̂‖Mn
≤√

20
√

2d ln(8/δ)

cµ
√
n

supθ∈Θ(t−1)
‖θ − θ∗‖Mn}. When t→∞, we have

Θ(∞) =
20dx

√
2d ln(8/δ)

cµ
√
n

.

By (12), we have θ∗ ∈ ∩t≥1Θ(∞) and ‖θ̂ − θ∗‖Mn
≤ 40dx

√
2d ln(8/δ)

cµ
√
n

, which completes the second part of Lemma 1.

1Note that (12) holds under the same event EA as the estimates θ̂ keeps the same each round as it is the global
minimizer.
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For any x ∈ X , we have

|µ(xT θ̂)− µ(xT θ∗)| ≤ κ‖x‖M−1
n

40dx
√

2d ln(8/δ)

cµ
√
n

. (13)

When case 2 holds, let θ̂′ be the global minimizer. Using the analysis above, we have

‖θ̂′ − θ∗‖Mn
≤

40dx
√

2d ln(8/δ)

cµ
√
n

.

Then by triangle inequality

‖θ̂ − θ∗‖Mn
≤ ‖θ̂ − θ̂′‖Mn

+ ‖θ̂′ − θ∗‖Mn
≤

80dx
√

2d ln(8/δ)

cµ
√
n

.

A.3 Tightness of Lemma 1

We use an example to show the tightness of Lemma 1. Assume a linear predictor, i.e. µ(t) = t. Consider the
following distribution, let X be uniform over the d-standard basis vector em, for m = 1, . . . , d. Let Z | (X =
ei) ∼ Bern(ri), where ri ∈ [0, 1] is pre-determined and unknown. The optimal parameter θ∗ = (r1, . . . , rd)

T . Let
nm be the number of samples collected for dimension m. Let Θ0 := {θ : ‖θ‖2 ≤ q}.

When n is sufficiently large n > 1/q2, θ̂ is the regularized minimizer. It can be shown that for any θ̂, there exists
θ∗ such that E[θ̂i − θ∗i ]2 ≥ (rm(1− rm))/nm. Then E‖θ̂ − θ∗‖22 ≥

∑d
m=1

ri(1−ri)
nm

≥ d2(ri(1−ri))
n = Ω(d

2

n ).

Then we also see that when n is small (≤ 1
q2 ), the estimation error is Ω(q). We use the same example as above.

This time, we assume ‖θ∗‖ ≤ q
2 . If we have a ‖θ̂‖ = q, then ‖θ∗ − θ̂‖ ≥ q/2 = Ω(q). Otherwise, we use the lower

bound above: ‖θ∗ − θ̂‖ ≥ Ω( d√
n

) = Ω(dq).

The above argument corresponds to the upper bound in Lemma 1, where we use prior knowledge when n is small
and use the parametric bound when n is large.

A.4 Proof of Theorem 1

In this subsection, we show the missing proof for Theorem 1.

Theorem 4 (Prediction error under sequential dependency). For any funnel with a sequential dependency of
parameters q1, . . . , qJ , let θ̂1, . . . , θ̂J be the estimates from Algorithm 1. If nj+1 ≤ nj/4, q1 ≥, . . . ,≥ qJ and
Assumption 5 is satisfied, then with a probability at least 1− δ, for any j0 ∈ [J ], we have

PEj ≤

 κ‖x‖2 cδ
cµλ

√
d
nj
, if j < j0,

κ‖x‖2( cδ
cµλ

√
d
nj0

+
∑j
i=j0+1 qj), if j ≥ j0,

(14)

where we let n0 =∞. The bound is smallest when j0 is the smallest j ∈ [J ], such that

4cδ
√
d

cµλ
(

1
√
nj
− 1
√
nj−1

) ≥ qj , (15)

if none of j’s in [J ] satisfies (15), j0 = J + 1.

Proof. First we reshape the ellipsoid in (3) to a ball.

Lemma 5 (Reshape). For any vector x ∈ Rd and any matrix M � 0 ∈ Rd×d, ‖x‖2 ≤ 1
λ‖x‖M , where λ is the

minimum eigenvalue of M .

Proof. We directly use the definition of positive definite matrix: λ2‖x‖22 − ‖x‖2M = xT (λ2I −M)x ≤ 0. Thus,
‖x‖2 ≤ 1

λ2 ‖x‖M . #
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Using Lemma 5 and Assumption 5, we have ‖θ̄j − θ∗j ‖2 ≤ 1
λ‖θ̄j − θ

∗
j ‖Mn

≤ 4cδ
cµλ

√
d
n . Thus the set Θ̂j ⊂ {θ :

‖θ − θ̄j‖2 ≤ 4cδ
cµλ

√
d
n} =: Θ̂ball

j .

For every j, one can derive two bounds. First we can directly apply Corollary 1 and get PEj ≤ κ‖x‖2 4cδ
cµλ

√
d
nj
.

Second, for any j0, we have θ∗j ∈ Θ1[j] ⊂ {θ : ‖θ̄j0 − θ‖2 ≤ 4cs
cµλ

√
d
nj0

+
∑
j0+1≤i≤j qi} and get PEj ≤

κ‖x‖2( cδ
cµλ

√
d
nj0

+
∑j
i=j0+1 qj).

Now we show the second argument: of all those bounds the one defined in (14) with j0 defined in (15) is the
smallest. For any j ≤ j0 and j1 ≤ j, we have

4cδ
cµλ

√
d

nj
=

4cδ
√
d

cµλ

 j∑
i=j1+1

(
1
√
ni
− 1
√
ni−1

) +
1
√
nj1

 ≤ 4cδ
cµλ

√
d

nj1
+

j∑
i=j1+1

qi. (16)

The second inequality is given by ( 1√
ni
− 1√

ni−1
) ≤ qi for all i < j0. For any j ≥ j0 and j1 ≤ j0, by (16), we have

4cδ
cµλ

√
d

nj0
+

j∑
i=j0+1

qi ≤
4cδ
cµλ

√
d

nj1
+

j∑
i=j1+1

qi.

Now we prove that for all i ≥ j0,
4cδ
√
d

cµλ
(

1
√
ni
− 1
√
ni−1

) ≥ qi. (17)

We use induction. Assume for some i1, (17) is satisfied. Under the assumption that ni1−1 ≤ ni1/4 and qi1 ≥ qi1+1,
we have

4cδ
√
d

cµλ
(

1
√
ni1+1

− 1
√
ni1

) =
4cδ
√
d

cµλ
(

1
√
ni1+1

+
1

√
ni1−1

− 2
√
ni1

+
1
√
ni1
− 1
√
ni1−1

)

≥ 4cδ
√
d

cµλ
(

1
√
ni1+1

+
2
√
ni1
− 2
√
ni1

+
1
√
ni1
− 1
√
ni1−1

)

≥ 4cδ
√
d

cµλ
(+

1
√
ni1
− 1
√
ni1−1

)

≥ qi1 ≥ qi1+1.

Using 17, for any j ≥ j1 > j0,

4cδ
cµλ

√
d

nj0
+

j∑
i=j0+1

qi =
4cδ
√
d

cµλ

 j1∑
i=j0+1

(
1

√
ni−1

− 1
√
ni

) +
1
√
nj1

+

j∑
i=j0+1

qi ≤
4cδ
cµλ

√
d

nj1
+

j∑
i=j1+1

qi.

Finally, we conclude that j0 gives the smallest bound. #

Similar argument can be used to show Theorem 2. For any j0 ∈ [J ], we have

PEj ≤ κ‖x‖2 min

{
cδ/J

cµλ

√
d

nj0
+ qj ,

cδ/J

cµλ

√
d

nj

}
.

Out of all the choices of j0, the best one is achieved by j0 = arg minj∈[J]
cδ
cµλ

√
d
nj

+ qj .
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A.5 Proof of Theorem 3

Theorem 5. Using Algorithm 2, under the Assumptions 1-4, with a probability at least 1− δ, the total regret

T∑
t=1

[
P (xt,θ

∗
a∗t

)− P (xt,θ
∗
at)
]

≤ 2
√

2c0
∑
a,j

√
nTa,j +

∑
a,j

8c20Jd
4
x log(6AJT/δ)

p̄2
a,j

−
∑
a,j

∆a,j . (18)

where O ignores all the constant terms and logarithmic terms for better demonstrations, c0 = (κdxcδ/AJT
√
d)/(cµλ̄),

p̄a := ExPJ−1(xTθ∗a) and

∆a,j =

T∑
t=1;at=a

Pj(x
T
t θ̂

t
at)

c0 1√
nta,j ∨ 1

−∆µta,j

 .
represents the benefits of transfer learning.

Let p̄a,j := ExPj−1

(
xT θ∗a

)
. We first show that upper bound the number of steps t with λtat,j ≤ λ̄/2 or nta,j ≤

1
2n

t
a,1p̄a,j . These steps are considered bad events.

Lemma 6 shows that with high probability, the number of observations for each layer is close to its expectation.

Lemma 6. With a probability at least 1 − δ, we have nta,j ≥ nta,1p̄a,j −
√

2nta,1 log(1/δ). Especially, when

nta,1 > 8 log(1/δ)/p̄2
a,j =: cn,a, we have nta,j ≥ 1

2n
t
a,1p̄a,j.

Proof. This is a direct application of Hoeffding inequality.

Lemma 7. For any x1, . . . , xn i.i.d, ‖xi‖ ≤ dx, let λn be the minimum eigenvalue of
∑
i xix

T
i /n and λ̄ be the

minimum eigenvalue of its expectation. We have λn ≥ λ̄/2, when n > d4
x log(1/δ)/λ̄2.

Proof. For all x1, . . . , xn, write xi =
∑d
s=1 νs,ix̃s, where x̃1, . . . , x̃d are any basis of Rd. We have Eν2

s,i ≥ λ̄. For
Hoeffding’s inequality, since νs,i ≤ dx, with a probability 1− δ, we have

1

n

∑
i

ν2
s,i ≥ Eν2

s,1 − d2
x

√
log(1/δ)

n
≥ λ̄− d2

x

√
log(1/δ)

n
.

For n > d4
x log(1/δ)/λ̄2, we have 1

n

∑
i ν

2
s,i ≥ λ̄/2. There exists a choice of x̃1, . . . , x̃d such that λn = 1

n

∑
i ν

2
s,i.

Combining Lemma 6 and Lemma 7, we have with a probability at least 1− δ/3, #{t : ∃j, λtat,j ≤ λ̄/2 or nta,j ≤
1
2n

t
a,1p̄a,j} can be upper bounded by

∑
a,j

max
{

8 log(6AJT/δ)/p̄2
a,j , 2d

4
x log(6AJT/δ)/(λ̄2p̄a,j)

}
. (19)

In the following proof, we assume for all t, λta,j ≥ λ̄/2 and nta,j ≥ 1
2n

t
a,1p̄a,j . We also assume the event in Lemma

1 happens for all a ∈ [A], j ∈ [J ] and t < T . The probability is at least 1 − δ/3 as each probability is at least
1− δ/(3AJT ).



Ziping Xu, Amirhossein Meisami, Ambuj Tewari

The total regret is

T∑
t=1

[
P (xt,θ

∗
a∗t

)− P (xt,θ
∗
at)
]

≤
T∑
t=1

[
P (xt,θ

∗
a∗t

)− P+(xt, θ̂at) + P+(xt, θ̂at)− P (xt,θ
∗
at)
]

(Using P (xt,θ
∗
a∗t

)− P+(xt, θ̂at) ≤ 0)

≤
T∑
t=1

[
P+(xt, θ̂

t

at)− P (xt,θ
∗
at)
]

(Using Lemma 2)

≤
T∑
t=1

∑
j

PJ

(
x, θ̂tat

)
µ
(
xT θ̂tat,j

)∆µtat,j +
∑
i 6=j

∆µtat,j∆µ
t
at,i


≤

T∑
t=1

∑
j

Pj(xt, θ̂
t
at)∆µ

t
at,j +

∑
i 6=j

∆µtat,j∆µ
t
at,i


=

T∑
t=1

∑
j

(Pj(xt, θ
∗
at) + Pj(xt, θ̂

t
at)− Pj(xt, θ

∗
at))∆µ

t
at,j +

∑
i6=j

∆µtat,j∆µ
t
at,i


≤

T∑
t=1

∑
j

Pj
(
xt, θ

∗
at

) c0√
ntat,j︸ ︷︷ ︸

1©

−
T∑
t=1

∑
j

Pj
(
xt, θ

∗
at

)
(

c0√
ntat,j

−∆µtat,i)︸ ︷︷ ︸
2©

+

T∑
t=1

∑
i 6=j

∆µtat,j∆µ
t
at,i︸ ︷︷ ︸

3©

+

T∑
t=1

∑
j

(Pj(xt, θ̂
t
at)− Pj(xt, θ

∗
at))∆µ

t
at,j


︸ ︷︷ ︸

4©

.

We further bound the terms separately. The first term 1© represents the bound one could have without multi-task
learning.

T∑
t=1

∑
j

Pj(xt, θ
∗
at)

c0√
ntat,j

≤
T∑
t=1

∑
j

1(rt,j−1 = 1)
c0√
ntat,j

+

T∑
t=1

∑
j

(Pj(xt, θ
∗
at)− 1(rt,j−1 = 1))

c0√
ntat,j

(Using Lemma 19 in Jaksch et al. (2010))

≤ c02
√

2
∑
a,j

√
nTa,j +

T∑
t=1

∑
j

(Pj(xt, θ
∗
at)− 1(rt,j−1 = 1))

c0√
ntat,j

(20)

As E[Pj(xt, θ
∗
at)− 1(rt,j−1 = 1)] = 0, the second term in (20) is a martingale. Using Azuma-Hoeffding inequality,

with a probability at least 1− δ/3, for all T ,

T∑
t=1

∑
j

(Pj(xt, θ
∗
at)− 1(rt,j−1 = 1))

c0√
ntat,j

≤ c0
√

2 log(3TJ/δ). (21)
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Combined with (20),

1© ≤ 2
√

2c0
∑
a,j

√
nTa,j + c0

√
2 log(3TJ/δ). (22)

Next we bound 3©. We notice that this is a quadratic term. We first show Lemma 6 that lower bounds the
number of observations for each layer. Lemma 6 is a direct application of Hoeffding’s inequality.

For any pair i, j, we have

T∑
t=1

∆µtat,j∆µ
t
at,i

≤ c20
T∑
t=1

1√
ntat,i

1√
ntat,j

≤ c20
T∑
t=1

1(ntat,1 ≤ cn,at)
1√
ntat,i

1√
ntat,j

+ 1(ntat,1 > cn,at)
1√
ntat,i

1√
ntat,j


≤ c20

∑
a

cn,a + c20
∑
t

4

p̄2
an

t
at,1

≤ c20
∑
a

cn,a + c20
∑
a

4 log(nTa,1)

p̄2
a

≤ 4c20
∑
a

log(nTa,1A/δ)

p̄2
a

. (23)

where we let p̄a := ExPJ
(
xT θ∗a

)
.

Thus, 3© is upper bounded by 4c20J
2
∑
a

log(nTa,1A/(3δ))

p̄2a
.

Finally we bound term 4©. Using Lemma 2 on only first j layers, we have

4© ≤
∑
t

∑
j

[
∑
i

∆µtat,i +
∑
i,k

∆µtat,k∆µtat,i]∆µ
t
at,j ≤ (J + 1)× 3©. (24)

The proof is completed by combining Equations (19), (21), (22), (23) and (24).
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B Experiments

B.1 Practical algorithm

Algorithm 3 Practical Algorithm for Contextual Bandit with a Funnel Structure

t→ 1, total number of steps T , memory Ha = {} for all a ∈ [A]. Initialize θ̂a,? with zero vectors.
θ̂a,0 → 0.
for t = 1 to T do
Receive context xt.
Choose at = arg maxa∈A P̂J(xt, θ̂a,j).
Set at = Unif([A]) with probability ε.
Receive rt,1, . . . , rt,J from funnel Fat .
Set Hat → Hat ∪ {(xt, (rt,1, . . . , rt,J))}.
for j = 1, . . . , J do
# For sequential dependency

θ̂at,j → arg min
θ

l(θ,Hat) + λj‖θ − θ̂at,j−1‖2

# For clustered dependency

θ̂at,j → arg min
θ

l(θ,Hat) + λj‖θ −
1

J

∑
i

θ̂at,i‖2

end for
end for

B.2 Tuned hyper-parameters

Simulated environment.

1. Target: units 16

2. Mix: units 32

3. Sequential: units 32

4. Multi-layer Clustered: units 4; λ 0.001

5. Multi-layer Sequential: units 8; λ 0.001

Data-based environment.

1. Target: units 64

2. Mix: units 64

3. Sequential: units 64

4. Multi-layer Clustered: units 64; λ 0.005

5. Multi-layer Sequential: units 16; λ 0.001


