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A Proofs and Additional Lemmas

In Gorham et al. [2020] asymptotic consistency for stochastic Stein discrepancies is shown for Stein operators
which yield continuous functions. Due to this continuity assumption the techniques applied in Gorham et al.
[2020] differ considerably to then ones we shall employ here. Moreover, while the results in Gorham et al. [2020]
are of asymptotic nature, the results in this section give computable bounds.

Proof of Theorem 1

For convenience we re-state the theorem here.

Theorem 1. Let q(x) = ERGM(β, t) satisfy Assumption 1 and let q̃ denote the distribution of ER(a∗). For
f ∈ H equipped with kernel K, let f∗x(·) = (Tq−Tq̃)K(x,·)

‖(Tq−Tq̃)K(x,·)‖H
. Then there is an explicit constant C = C(β, t,K)

such that for all ε > 0,

P(| gKSS(q,X)− gKSS(q̃, Y )| > ε) ≤
{
||∆(gKSS(q, ·))2||(1 + ||∆ gKSS(q, ·)||) + 4 sup

x
(||∆f∗x ||2)

}(n
2

)
C

ε2
√
n
.

Under the null hypothesis, X ∼ q which is an ERGM satisfying Assumption 1. Let Y ∼ q̃, where q̃ is the
Bernoulli random graph with edge probability a∗ and a∗ is a solution to the equation in Assumption 1. We use
the triangle inequality,

| gKSS(q, x)− gKSS(q̃, y)| ≤ | gKSS(q, x)− gKSS(q̃, x)|+ | gKSS(q̃, y)|, x)− gKSS(q̃, y)|. (17)

This gives rise to two approximation terms. For the first summand in (17), we start with noting that

gKSS(q, x) = sup
f∈H,||f ||≤1

|Tqf(x)| = sup
f∈H,||f ||≤1

|(Tq − Tq̃ + Tq̃)f(x)| ≤ sup
f∈H,||f ||≤1

|(Tq − Tq̃)f(x)|+ gKSS(q̃, x)

and this inequality also holds with the roles of q and q̃ reversed, so that

| gKSS(q, x)− gKSS(q̃, x)| ≤ sup
f∈H,||f ||≤1

|(Tq − Tq̃)f(x)| = sup
f∈H,||f ||≤1

|〈f(·), (Tq − Tq̃)k(x, ·)〉H|

where we used that due to the RKHS property, f(x) = 〈f(·), k(x, ·)〉H. Thus we have an explicit form for the
optimal f∗x in this expression, namely f∗x(·) = (Tq − Tq̃)k(x, ·)/‖(Tq − Tq̃)k(x, ·)‖H, and

| gKSS(q, x)− gKSS(q̃, x)| ≤ |(Tq − Tq̃)f∗x(x)|.

Following the steps for the proof of Theorem 1.7 in Reinert and Ross [2019] but working directly with a function
f without using that it is a solution of a Stein equation, it is straightforward to show that for all f ∈ H, it holds
that for Y ∼ q̃,

|E(Tqf(Y )− Tq̃f(Y ))| ≤ ||∆f ||
(
n

2

)
C(β, t)√

n

for an explicit constant C which depends only on the vectors β and t. Moreover inspecting the proof of Lemma
2.4 in Reinert and Ross [2019] the bound is indeed a stronger bound,

1
N

∑
s∈N

E|(T (s)
q f(Y )− T (s)

q̃ f(Y ))| ≤ ||∆f ||
(
n

2

)
C(β, t)√

n
.

In particular with the crude bound |(T (s)
q − T (s)

q̃ )f | ≤ 2||∆f || it follows that

E


(

1
N

∑
s∈N

(T (s)
q f(Y )− T (s)

q̃ f(Y ))
)2
 ≤ 2||∆f ||2

(
n

2

)
C(β, t)√

n
.
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Thus, using the Chebychev inequality, for all ε > 0,

P(|(Tq − Tq̃)f∗Y (Y )| > ε) ≤ 1
ε2

Var((Tq − Tq̃)f∗Y (Y )) ≤ 4 sup
x

(||∆f∗x ||2)
(
n

2

)
C(β, t)
ε2
√
n
.

Hence
P(| gKSS(q, Y )− gKSS(q̃, Y )| > ε) ≤ 4 sup

x
(||∆f∗x ||2)

(
n

2

)
C(β, t)
ε2
√
n
.

For the second summand in Eq.(17), to bound | gKSS(q,X)− gKSS(q, Y )| we consider the test function h(x) =
gKSS(q, x) and apply Theorem 1.7 from Reinert and Ross [2019] to give that

|E(gKSS(q,X)− gKSS(q, Y ))| ≤ ||∆ gKSS(q, ·)||
(
n

2

)
C̃√
n
.

Here C̃ is a new constant which depends only on β and t. Similarly we can approximate the square of the
expectation using that (a− b)2 = a2 − b2 + 2b(b− a) and write

E{(gKSS(q,X)−gKSS(q, Y ))2} = E{(gKSS(q,X)2}−E{gKSS(q, Y )2}+2E{gKSS(q,X)(gKSS(q,X)−gKSS(q, Y )}.

The first summand can be bounded with Theorem 1.7 from Reinert and Ross [2019] using the test function
h(x) = gKSS(q, x)2. For the second summand, we the Cauchy-Schwarz inequality gives

|E{gKSS(q,X)(gKSS(q,X)− gKSS(q, Y )}| ≤ [E(gKSS(q,X)2)] 1
2 [E{(gKSS(q,X)− gKSS(q, Y ))2}] 1

2

As | gKSS(q, x)| ≤ 1 we obtain

E{(gKSS(q,X)− gKSS(q, Y ))2} ≤ E{gKSS(q,X)2} − E{gKSS(q, Y )2}+ 2[E{(gKSS(q,X)− gKSS(q, Y ))2}] 1
2 .

Solving this quadratic inequality gives

E{(gKSS(q,X)− gKSS(q, Y ))2} ≤
(

1−
√

1− (E{gKSS(q,X)2} − E{gKSS(q, Y )2})
)2

and |E{gKSS(q,X)2} − E{gKSS(q, Y )2| ≤ 1 we obtain that

E{(gKSS(q,X)− gKSS(q, Y ))2} ≤ |E{gKSS(q,X)2} − E{gKSS(q, Y )2}|.

With Theorem 1.7 from Reinert and Ross [2019] for the test function h(x) = gKSS(q, x)2 we obtain

E{(gKSS(q,X)− gKSS(q, Y ))}2 ≤ (||∆(gKSS(q, ·))2||
(
n

2

)
Ĉ√
n
,

where Ĉ is another constant which depends only on β and t but not on n. With the Chebychev inequality and
the triangle inequality we conclude that there is an explicitly computable constant C such that for all x

P(| gKSS(q,X)− gKSS(q̃, Y )| > ε) ≤ (sup
x

(||∆f∗x ||2) + ||∆(gKSS(q, ·))2||(1 + ||∆ gKSS(q, ·)||)
(
n

2

)
C

ε2
√
n
.

The assertion follows. �

For the approximate distribution of gKSS(q̃, Y ) it is more convenient to consider the square as given in Eq.(11);
this is addressed by Theorem 2.

Proof of Theorem 2

For convenience we re-state the assumptions and the theorem here.

To approximate the distribution of gKSS2 under the null hypothesis we make the following assumptions (As-
sumption 2 in the main text) on the kernel K for the RKHS H, namely that for x, y ∈ {0, 1}N ,

i) H is a tensor product RKHS, H = ⊗s∈[n]Hs;
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ii) k is a product kernel, k(x, y) = ⊗s∈[N ]ls(xs, ys);
iii) 〈ls(xs, ·), ls(xs, ·)〉Hs = 1;
iv) ls(1, ·)− ls(0, ·) 6= 0 for all s ∈ [N ].

Theorem 2. Assume that the conditions i) - iv) in Assumption 2 hold. Let µ = E[gKSS2(q̃, Y )] and σ2 =
Var[gKSS2(q̃, Y )]. Set W = 1

σ (gKSS2(q̃, Y )]− µ) and let Z denote a standard normal variable, Then there is an
explicit constant C = C(a∗, ls, s ∈ [N ]) such that

||L(W )− L(Z)||1 ≤
C√
N
.

For the Bernoulli random graph distribution q̃, and s ∈ [N ],

T (s)
q̃ f(x) = a∗f(x(s,1) − f(x)) + (1− a∗)f(x(s,0) − f(x)).

Thus,

gKSS2(q̃, x) = 1
N2

∑
s,s′∈[N ]

〈
T (s)
q̃ K(x, ·), T (s′)

q̃ K(x, ·)
〉

= 1
N2

∑
s,s′∈[N ]

〈
a∗
(
K(x(s,1), ·)−K(x, ·)

)
+ (1− a∗)

(
K(x(s,0), ·)−K(x, ·)

)
,

a∗
(
K(x(s′,1), ·)−K(x, ·)

)
+ (1− a∗)

(
K(x(s′,0), ·)−K(x, ·)

)〉
.

Under Assumptions (i), (ii) and (iii) we can write

K(x(s,1), ·)−K(x, ·) = (ls(1, ·)− ls(xs, ·))
∏
t 6=s

lt(xt, , ·)

= (1− xs)(ls(1, ·)− ls(0, ·))ls′(xs′ , ·)
∏
t 6=s,s′

lt(xt, ·).

Similarly,

K(x(s,0), ·)−K(x, ·) = −xs(ls(1, ·)− ls(0, ·))ls′(xs′ , ·)
∏
t 6=s,s′

lt(xt, ·).

Abbreviating g(x−s,s′ , ·) :=
∏
t6=s,s′ lt(xt, ·) we obtain that

gKSS2(q̃, x) = 1
N2

∑
s,s′∈[N ]

(a∗(1− xs)− (1− a∗)xs)(a∗(1− x′s)− (1− a∗)x′s)

〈(ls(1, ·)− ls(0, ·)ls′(xs′ , ·), 〈(l′s(1, ·)− l′s(0, ·))ls(xs, ·)〉〈g(x−s,s
′
, ·), g(x−s,s

′
, ·)〉

= 1
N2

∑
s,s′∈[N ]

(a∗ − xs)(a∗ − x′s)〈(ls(1, ·)− ls(0, ·))ls′(xs′ , ·), 〈(l′s(1, ·)− l′s(0, ·))ls(xs, ·)〉

= 1
N2

∑
s,s′∈[N ]

(a∗ − xs)(a∗ − x′s)〈ls(xs, ·), ls′(xs′ , ·)〉c(s, s′)

with
c(s, s′) = 〈ls(1, ·)− ls(0, ·), ls′(1, ·)− ls′(0, ·)〉

not depending on x. Here we used that by assumptions (ii) and (iii), 〈g(x−s,s′ , ·), g(x−s,s′ , ·)〉 = 1. Thus, when
replacing x by Y , a random vector in {0, 1}N representing a Bernoulli random graph on n vertices with edge
probability p, then gKSS2(q̃, Y ) is an average of locally dependent random variables. Hence, using Stein’s method



A Stein Goodness-of-fit Test for Exponential Random Graph Models

we obtain a normal approximation with bound, as follows. Let I = {(s, s′) : s, s′ ∈ [N ]} so that |I| = N2. For
α = (s, s′) ∈ I set

Xα = 1
N2 (a∗ − Ys)(a∗ − Ys′)〈ls(Ys, ·), ls′(Ys′ , ·)〉c(s, s′);

then
gKSS2(q̃, Y ) =

∑
α∈I

Xα

and unless α and β share at least one vertex, the random variables Xα and Xβ are independent. Let µα = EXα

and σ2 = Var(gKSS2(q̃, Y ))); these quantities depend on the chosen kernels ls. We use the standardised count

W =
∑
α∈I

Xα − µα
σ

= 1
σ

gKSS2(q̃, Y )−
∑
α∈I

µα
σ

;

then W has mean zero, variance 1, and results from Section 4.7 in Chen et al. [2010] apply. In their notation,
with A(s,s′) = {β = (t, t′) ∈ I : |{s, s′} ∩ {t, t′}| 6= ∅, condition (LD1) is satisfied. Applying Theorem 4.13, p.134,
from Chen et al. [2010] yields that, with || · ||1 denoting L1-distance, L denoting the law of a random variable,
and Z denoting a standard normal variable,

||L(W )− L(Z)||1 ≤
√

2
π

E

∣∣∣∣∣∑
α∈I

(ξαηα − E(ξαηα))

∣∣∣∣∣+
∑
α∈I

E|ξαη2
α| ≤

√
2
π

√
Var(

∑
α∈I

ξαηα) +
∑
α∈I

E|ξαη2
α|. (18)

with ξα = (Xα − µα)/σ and ηα =
∑
β∈Aα Xβ .

To obtain the dependence of the bound on N we assess its magnitude. First note that |Aα| ≤ 2N . Using that
by the assumption (iii), ||ls||2 = 1 for s ∈ [N ] and that |a∗ − Ys| ≤ 1 we can use the crude bounds |c(s, s′)| ≤ 4,
so that |Xα| ≤ 4

N2 and µα ≤ 4
N2 , In particular, |ξα| ≤ 8

N2σ and |ηα| ≤ 16
Nσ . Thus,∑

α∈I
E|ξαη2

α| ≤ N2 × 8
N2σ

× 256
N2σ2 = 2048

N2σ3 .

To evaluate the variance σ2,
σ2 =

∑
α∈I

VarXα +
∑
α∈I

∑
β∈Aα

Cov(Xα, Xβ).

We evaluate these terms in turn. First, if α = (s, s) then

VarXα ≤
c(s, s)2

N4 a∗(1− a∗)

and if α = (s, s′) with s 6= s′ then as 〈ls(x, ·), ls(y, ·)〉 ≤ 1 from the assumption (iii) and the Cauchy-Schwarz
inequality,

VarXα ≤ E[X2
α] ≤ c(s, s)2

N4 [a∗(1− a∗)]2.

Thus, ∑
α∈I

VarXα ≤
c(s, s)2

N2 a∗(1− a∗).

Moreover, if α = (s, s) and β = (s, t) ∈ Aα then

|Cov(Xα, Xβ)| =
∣∣∣∣c(s, s)c(s, t)N4 E{(a∗ − Ys)3(a∗ − Yt)〈ls(Ys, ·), lt(Yt, ·)〉} − µαµβ

∣∣∣∣ ≤ 2 |c(s, s)c(s, t)|
N4

and there are order N2 such terms (α, β) in the variance. The main contributions to the variance stem from
Cov(Xα, Xβ) for β ∈ Iα and for α = (s.s′) with s 6= s′. Assumption (iv) guarantees that c(s, s′) 6= 0. Then for
β = (s, t), with t 6= s,

Cov(Xα, Xβ) = 1
N4 c(α)c(β)E(a∗ − Ys)2(a∗ − Y ′s )(a∗ − Yt)〈ls(Ys, ·), ls′(Ys′ , ·)〉〈ls(Ys, ·), lt(Yt, ·)〉

− 1
N4 (a∗)4(1− a∗)4c(s, s′)c(s, t)
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and expanding the expectation gives a contribution of the order N−4. The overall contribution of such covariance
terms, of which there are order N3, to the variance is hence of order N−1, and therefore σ2 is of order N−1 and
σ is of order

√
N .

Similarly,

Var

(∑
α∈I

ξαηα

)
= Var

∑
α∈I

∑
β∈Aα

ξαξβ

 =
∑
α∈I

∑
β∈Aα

∑
γ∈I

∑
δ∈Aγ

Cov(ξαξβ , ξγξδ)

is dominated by the covariances between ξαξβ and ξγξδ such that α and β involve three distinct indices s, s′, t, and
γ and δ involve three distinct indices r, r′, u, and these two sets of three indices have non-zero intersection. These
summands give a contribution of order N5/(σ4N8), which is of order N−1, to the variance Var

(∑
α∈I ξαηα

)
.

A crude bound is obtained as Var(
∑
α∈I ξαηα) ≤ 512

σ4N3 . These estimates give that the bound in Eq.(18) is of
the order N− 1

2 . All moment expressions can be bounded explicitly and thus the constant C can be computed
explicitly. The conclusion follows.

Proof of Proposition 2

For convenience we re-state the result here again.

Proposition 2. Let
Y = 1

B2

∑
s,t∈[N ]

(kskt − E(kskt))hx(s, t).

Assume that hx is bounded such that V ar(Y ) is non-zero. Then if Z is mean zero normal with variance V ar(Y ),
there is an explicitly computable constant C > 0 such that for all three times continuously differentiable functions
g with bounded derivatives up to order 3,

|E[g(Y )]− E[g(Z)] ≤ C

B
.

For normal approximation in the presence of weak dependence, Charles Stein [Stein, 1986] introduced the method
of exchangeable pairs: construct a sumW ′ such that (W,W ′) form an exchangeable pair, and such that EW (W ′−
W ) is (at least approximately) linear in W . This linearity condition arises naturally when thinking of correlated
bivariate normals. As a multivariate generalisation, Reinert and Röllin [2009] considered the general setting that

E
W (W ′ −W ) = −ΛW +R (19)

for a matrix Λ and a vector R with small E|R| is treated. In a followup paper [Meckes, 2009] the results by
Chatterjee and Meckes [2008] and Reinert and Röllin [2009] are combined using slightly different smoothness
conditions on test functions as compared to Reinert and Röllin [2009]. In Reinert and Röllin [2009] it was found
that a statistic of interest can often be embedded into a larger vector of statistics such that (19) holds with
R = 0; this embedding does not directly correspond to Hoeffding projections, although it is related to the latter.
In Reinert and Röllin [2010] this embedding is applied to complete non-degenerate U-statistics. among other
examples. In this example the limiting covariance matrix is not of full rank; yet the bounds on the normal
approximation are of the expected order.

The general setup is as follows. Denote byW = (W1,W2, . . . ,Wd)t random vectors in Rd, whereWi are R-values
random variables for i = 1, . . . , d. We denote by Σ symmetric, non-negative definite matrices, and hence by Σ1/2

the unique symmetric square root of Σ. Denote by Id the identity matrix, where we omit the dimension d. Let
Z denote a random variable having standard d-dimensional multivariate normal distribution. We abbreviate the
transpose of the inverse of a matrix Λ as Λ−t := (Λ−1)t.

For derivatives of smooth functions h : Rd → R, we use the notation ∇ for the gradient operator. Denote by ‖ ·‖
the supremum norm for both functions and matrices. If the corresponding derivatives exist for some function
g : Rd → R, we abbreviate |g|1 := supi

∥∥ ∂
∂xi

g
∥∥, |g|2 := supi,j

∥∥ ∂2

∂xi∂xj
g
∥∥, and so on.

The following result is shown in Reinert and Röllin [2009].
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Theorem A.1 (c.f. Theorem 2.1 Reinert and Röllin [2009]). Assume that (W,W ′) is an exchangeable pair of
R
d-valued random variables such that

EW = 0, EWW t = Σ, (20)

with Σ ∈ Rd×d symmetric and positive definite. Suppose further that (19) is satisfied for an invertible matrix
Λ and a σ(W )-measurable random variable R. Then, if Z has d-dimensional standard normal distribution, we
have for every three times differentiable function g∣∣Eg(W )−Eg(Σ1/2Z)

∣∣ ≤ |g|24 I + |g|312 II +
(
|g|1 + 1

2d‖Σ‖
1/2|g|2

)
III,

where, with λ(i) =
∑d
m=1 |(Λ−1)m,i|,

I =
d∑

i,j=1
λ(i)
√

VarEW (W ′i −Wi)(W ′j −Wj),

II =
d∑

i,j,k=1
λ(i)
E
∣∣(W ′i −Wi)(W ′j −Wj)(W ′k −Wk)

∣∣,
III =

∑
i

λ(i)
√
ER2

i .

Here we use the approach for statistics of the form Y = 1
B2

∑
s,t∈[N ](kskt − E(kskt))h(s, t). The subscript x is

suppressed in hx to simplify notation. To apply Theorem A.1 we employ two additional statistics; including Y
as W1,

W1 = 1
B2

∑
s,t∈[N ]

(kskt − E(kskt))h(s, t)

W2 = 1
B2

∑
s,t∈[N ]

(ks − E(ks))h(s, t)

W3 = 1
B2

∑
s∈[N ]

(ks − E(ks))h(s, s).

Given k = (k1, . . . , kN ) we construct an exchangeable pair (k,k′) by choosing an index I ∈ [N ] such that
P(I = i) = ki

B and if I = i we set k′i = ki− 1 (we take a ball out of bin i in the multinomial construction). Then
we pick J ∈ [N ] uniformly and if J = j we set k′j = kj + 1 - we add the ball to bin j which we took away from
bin i. All other k′ls are left unchanged; k′l − kl if l 6= I, J . Note that I = J is possible in which case there is no
change. Based on this exchangeable pair we set

W ′1 = 1
B2

∑
s,t∈[N ]

(k′skt‘− E(k′sk′t))h(s, t)

W ′2 = 1
B2

∑
s,t∈[N ]

(k′s − E(k′s))h(s, t)

W ′3 = 1
B2

∑
s∈[N ]

(k′s − E(k′s))h(s, s).

With W = (W1,W2,W3) and W ′ = (W ′1,W ′2,W ′3) we have obtained an exchangeable pair (W,W ′). Moreover W
has mean zero and finite covariance matrix. First we calculate EW (W ′ −W ) componentwise, starting with the
easiest case to illustrate the argument. For this calculation we use that

k′I − kI = −1
k′J − kJ = 1

k′skt‘− kskt = (k′s − ks)(k′t − kt) + ks(k′t − kt) + kt(k′s − ks).
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Then, conditioning on I and J ,

E
W (W ′3 −W3) = 1

B2

∑
s∈[N ]

E
W (k′s − ks)h(s, s)

= 1
B2

1
BN

∑
s∈[N ]

∑
i∈[N ]

ki
∑
j∈[N ]

(−1(s = i)h(i, i) + 1(s = j)h(j, j))

= − 1
B2

1
B

∑
i∈[N ]

kih(i, i) + 1
N

1
B2

∑
j∈[N ]

h(j, j)

= − 1
B2

1
B

∑
i∈[N ]

(ki − E(ki))h(i, i)

= − 1
B
W3.

Similar arguments yield EW (W ′2 −W2) = − 1
BW2. Finally,

E
W (W ′1 −W1)

= 1
B2

∑
s,t∈[N ]

E
W (k′skt‘− kskt)h(s, t)

= 1
B2

∑
s,t∈[N ]

E
W [(k′s − ks)(k′t − kt) + ks(k′t − kt) + kt(k′s − ks)]h(s, t)

= 1
B2

∑
s,t∈[N ]

E
W [(k′s − ks)(k′t − kt)]h(s, t) + 2

∑
s,t∈[N ]

E
W [kt(k′s − ks)]h(s, t).

Here we used that h(s, t) = h(t, s) in the last step. We tackle the conditional expectations separately. Again
using h(s, t) = h(t, s),∑

s,t∈[N ]

E
W [(k′s − ks)(k′t − kt)]h(s, t)

= 1
BN

∑
s,t∈[N ]

∑
i∈[N ]

ki
∑
j∈[N ]

(1(s = I, t = J) + 1(s = J, t = I)[(k′s − ks)(k′t − kt)]h(s, t)

= − 2
BN

∑
i∈[N ]

ki
∑
j∈[N ]

1(i 6= j)h(i, j)

= − 2
BN

∑
i∈[N ]

∑
j∈[N ]

kih(i, j) + 2
BN

∑
i∈[N ]

kih(i, i)

= − 2
BN

W2 + 2
BN

W3.

Here the centering terms from W2 and W3 add up to 0 because the conditional expectation has mean zero, and
are thus not included in the calculation.

Moreover, ∑
s,t∈[N ]

E
W [kt(k′s − ks)]h(s, t)

= 1
BN

∑
s,t∈[N ]

∑
i∈[N ]

ki
∑
j∈[N ]

(−1(s = i)kth(i, t) + 1(s = j)kth(j, t))

= − 1
B

∑
t∈[N ]

∑
i∈[N ]

kikth(i, t) + 1
N

∑
t∈[N ]

∑
j∈[N ]

kth(j, t)

= − 1
B
W1 + 1

N
W2.
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Hence

E
W (W ′1 −W1) = − 2

BN
W2 + 2

BN
W3 −

2
B
W1 + 2

N
W2

= 2
BN

W3 + 2(B − 1)
BN

W2 −
2
B
W1.

Hence (19) is satisfied with R = 0 and

Λ = 1
B

−2 2(B−1)
N

2
N

0 −1 0
0 0 −1


giving

λ(1) = B

2 ;λ(2) = B
|N −B + 1|

N
;λ(3) = B(N + 1)

N
.

With B = FN we can bound

λ(i) ≤ max(F, 1/2)B, i = 1, 2, 3.

To complete the argument we need to bound I and II from Theorem A.1.

To bound the conditional variance term I from Theorem A.1,

I =
3∑

i,j=1
λ(i)
√

VarEW (W ′i −Wi)(W ′j −Wj) ≤ max(F, 1/2)B
3∑

i,j=1

√
VarEW (W ′i −Wi)(W ′j −Wj).

Instead of conditioning on W we condition on k this conditioning would only increase the conditional variance.
The largest variance contribution is from

E
k(W ′1 −W1)2

= 1
B4

∑
s,t∈[N ]

∑
u,v∈[N ]

E
k[(k′sk′t − kskt)(k′uk′v − kukv)h(s, t)h(u, v)]

= 1
B4

1
BN

∑
i∈[N ]

∑
j∈[N ]

∑
s,t∈[N ]

∑
u,v∈[N ]

E
k[ki ((k′s − ks)(k′t − kt) + 2ks(k′t − kt))×

((k′u − ku)(k′v − kv) + 2ku(k′v − kv))h(s, t)h(u, v)]

= 1
B4

1
BN

∑
i∈[N ]

∑
j∈[N ]

∑
s,t∈[N ]

∑
u,v∈[N ]

E
k[ki(k′s − ks)(k′t − kt)(k′u − ku)(k′v − kv)h(s, t)h(u, v)]

+2 1
B4

1
BN

∑
i∈[N ]

∑
j∈[N ]

∑
s,t∈[N ]

∑
u,v∈[N ]

E
k[kiku(k′s − ks)(k′t − kt)(k′v − kv)]h(s, t)h(u, v)

+2 1
B4

1
BN

∑
i∈[N ]

∑
j∈[N ]

∑
s,t∈[N ]

∑
u,v∈[N ]

E
k[kiks(k′t − kt)(k′u − ku)(k′v − kv)h(s, t)h(u, v)]

+4 1
B4

1
BN

∑
i∈[N ]

∑
j∈[N ]

∑
s,t∈[N ]

∑
u,v∈[N ]

E
k[kiksku(k′t − kt)(k′v − kv)h(s, t)h(u, v)].

Due to the exchangeable pair construction many sums simplify and the largest contribution to the variance is
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the last term;

4 1
B4

1
BN

∑
i∈[N ]

∑
j∈[N ]

∑
s,t∈[N ]

∑
u,v∈[N ]

E
k[kiksku(k′t − kt)(k′v − kv)h(s, t)h(u, v)]

= 4 1
B5N

∑
i∈[N ]

∑
j∈[N ]

∑
s,t∈[N ]

∑
u,v∈[N ]

E
k[kiksku(k′t − kt)(k′v − kv)h(s, t)h(u, v)](1(t = i) + 1(t = j))

= −4 1
B5N

∑
i∈[N ]

∑
j∈[N ]

∑
s∈[N ]

∑
u,v∈[N ]

E
k[kiksku(k′v − kv)h(s, i)h(u, v)](1(v = i) + 1(v = j))

+4 1
B5N

∑
i∈[N ]

∑
j∈[N ]

∑
s∈[N ]

∑
u,v∈[N ]

E
k[kiksku(k′v − kv)h(s, j)h(u, v)](1(v = i) + 1(v = j))

= 4 1
B5N

∑
i∈[N ]

∑
j∈[N ]

∑
s∈[N ]

kikskuh(s, i)h(u, i)− 4 1
B5N

∑
i∈[N ]

∑
j∈[N ]

∑
s∈[N ]

kikskuh(s, i)h(u, j)

−4 1
B5N

∑
i∈[N ]

∑
j∈[N ]

∑
s∈[N ]

∑
u∈[N ]

kikskuh(s, j)h(u, i) + 4 1
B5N

B
∑
j∈[N ]

∑
s∈[N ]

∑
u∈[N ]

kskuh(s, j)h(u, j).

These terms have a variance contribution of order 1
B10N2

B6

N6N
8 = 1

B4 as long as h(i, j) is bounded. The mixed
variances in I can be bounded using the Cauchy-Schwarz inequality. Overall the contribution to the term I of
Theorem A.1 is thus of order B

√
1
B4 = 1

B .

For the term II of Theorem A.1,
3∑

a,b,c=1
λ(a)

E
∣∣(W ′a −Wa)(W ′b −Wb)(W ′c −Wc)

∣∣ ≤ max(F, 1/2)B
3∑

a,b,c=1
E
∣∣(W ′a −Wa)(W ′b −Wb)(W ′c −Wc)

∣∣.
The largest contribution to this term is

E
∣∣(W ′1 −W1)3∣∣
≤ ||h||3 1

B6

∑
s,t∈[N ]

∑
u,v∈[N ]

∑
x,y∈[N ]

E|(k′sk′t − kskt)(k′uk′v − kukv)(k′xk′y − kxky)|

= ||h||3 1
B6

1
BN

∑
i∈[N ]

∑
j∈[N ]

∑
s,t∈[N ]

∑
u,v∈[N ]

∑
x,y∈[N ]

E |ki ((k′s − ks)(k′t − kt) + 2ks(k′t − kt))

((k′u − ku)(k′v − kv) + 2ku(k′v − kv))
(
(k′x − kx)(k′y − ky) + 2kx(k′y − ky)

)∣∣
≤ ||h||3 1

B6
1
BN

∑
i∈[N ]

∑
j∈[N ]

∑
s,t∈[N ]

∑
u,v∈[N ]

∑
x,y∈[N ]

E[|ki ((k′s − ks)(k′t − kt) + 2ks(k′t − kt))

((k′u − ku)(k′v − kv) + 2ku(k′v − kv))
(
(k′x − kx)(k′y − ky) + 2kx(k′y − ky)

)∣∣ .
With ||h|| = maxi,j |h(i, j)| the leading term in this expression is

8||h||3

B7N

∑
i∈[N ]

∑
j∈[N ]

∑
s,t∈[N ]

∑
u,v∈[N ]

∑
x,y∈[N ]

E
∣∣kikskx(k′t − kt)ku(k′v − kv)(k′y − ky)

∣∣ .
Now, not all of t, v, y can be distinct for a non-zero contribution to this term; we can bound it by

16||h||3

B7N

∑
i,j,s,t,u,v,x∈[N ]

Ekikskukx(1(t = i) + 1(t = j))(1(v = i) + 1(v = j)) ≤ 64
||h||3B3 .

Here we used that
∑
i ki = B. All other cross-expectations can be bounded using the Cauchy-Schwarz inequality.

Hence we conclude that the term II in Theorem A.1 is of order B−2. All higher moments can be bounded
explicitly and hence C can be bounded explicitly. The conclusion follows.



A Stein Goodness-of-fit Test for Exponential Random Graph Models

B Graph Kernels

For a vertex-labeled graph x = {xij}1≤i,j≤n ∈ Glab, with label range {1, . . . , c} = [c], denote the vertex set by
V , the edge set by E, and the label set by Σ. Consider an vertex-edge mapping ψ : V ∪ E → [c]. In this paper
we use the following graph kernels.

Vertex-Edge Histogram Gaussian Kernels The vertex-edge label histogram h = (h111, h211, . . . , hccc)
= h(ψ, x) has as components hl1l2l3 = |{v ∈ V, (v, u) ∈ E |ψ(v, u) = l1, ψ(u) = l2, ψ(v) = l3}|, for l1, l2, l3 ∈ [c]; it
is a combination of vertex label counts and edge label counts. Let 〈h(x), h(x′)〉 =

∑
l1,l2,l3

h(x)l1,l2,l3h(x′)l1,l2,l3 .
Following Sugiyama and Borgwardt [2015], we define the vertex-edge histogram Gaussian (VEG) kernel between
two graphs x, x′ as

KV EG(x, x′;σ) = exp
{
−‖h(x)− h(x′)‖2

2σ2

}
.

The VEG kernel is a special case of histogram-based kernels for assessing graph similarity using feature maps,
which are introduced in Kriege et al. [2016]. Adding a Gaussian RBF as in Sugiyama and Borgwardt [2015],
yielding the VEG kernel, significantly improved problems such as classification accuracy, see [Kriege et al., 2020].
In our implementation, as in Sugiyama et al. [2018], ψ is induced by the vertex index. If the vertices are indexed
by i ∈ [n] then the label of vertex vi is ψ(vi) = i; for edges, ψ(u, v) = 1 if (u, v) ∈ E is an edge and 0 otherwise.

Geometric Random Walk Graph Kernels A k-step random walk graph kernel [Sugiyama and Borgwardt,
2015] is built as follows. Take A⊗ as the adjacency matrix of the direct (tensor) product G⊗ = (V⊗, E⊗, ψ⊗)
[Gärtner et al., 2003] between x and x′ such that vertex labels match and edge labels match:

V⊗ = {(v, v′) ∈ V × V ′|ψ(v) = ψ′(v′)},

E⊗ = {((v, u), (v′, u′))) ∈ E × E′ |ψ(v, u) = ψ(v′, u′)},

and use the corresponding label mapping ψ⊗(v, v′) = ψ(v) = ψ′(v′); ψ⊗((v, v′), (u, u′)) = ψ(v, u) = ψ′(v′, u′).
With input parameters (λ0, . . . , λk), the k−step random walk kernel between two graphs x, x′ is defined as

Kk
⊗(x, x′) =

|V⊗|∑
i,j=1

[
k∑
t=0

λtA
>
⊗

]
i,j

.

A geometric random walk kernel between two graphs x, x′ takes the λ-weighted infinite sum from the k step
random walk kernels:

KGRW (x, x′) =
|V⊗|∑
i,j=1

[
(I − λA⊗)−1]

i,j
.

In our implementation we choose, λl = λ,∀l = 1, . . . , k and λ = 1
3 .

Shortest Path Graph Kernels Shortest Path Graph Kernels, introduced by Borgwardt and Kriegel [2005],
are based on a transformation of the graph x, the Floyd transformation. The Floyd transformation F turns the
original graph into the so-called shortest-path graph y = F (x); the graph y is a complete graph with vertex set
V with each edge labelled by the shortest distance in x between the vertices on either end of the edge. For two
networks x and x′ the 1-step random walk kernel K1

⊗ between the shortest-path graphs y = F (x) and y′ = F (x′)
gives the shortest-path (SP) kernel between x and x′;

KSP (x, x′) = K1
⊗(y, y′).

Lemma 3 in Borgwardt and Kriegel [2005] showed that this kernel is positive definite.

Weisfeiler-Lehman Graph Kernels Weisfeiler-Lehman Graph Kernels have been proposed by Shervashidze
et al. [2011]; these kernels are based on the Weisfeiler-Lehman test for graph isomorphisms and involve counting
matching subtrees between two given graphs. Theorem 3 in Shervashidze et al. [2011] showed the positive defi-
niteness of these kernels. In our implementation, we adapted an efficient implementation from the graphkernel
package [Sugiyama et al., 2018].
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C Vector-Valued RKHS

The general set-up for vector-valued RKHS for finite networks is as follows. Let N =
(
n
2
)
denote the index set

of vertex pairs in a graph x ∈ {0, 1}N . For s ∈ [N ] let x−s ∈ {0, 1}N−1 =: X−s denote the collection of edge
indicators except the one for s and let xs ∈ {0, 1} =: X s denote the edge indicator for s. When the underlying
graph is random, we use similar notation X−s, Xs to denote the corresponding random variables . For s ∈ [N ],
let ls : X s × X s → R be reproducing kernels, with associated RKHS Hls . Let ϕs : xs ∈ X s 7→ ls(·, xs) ∈ Hls
denote the corresponding feature maps of (ls)s∈[N ].

The RKHS kernels ls, or those used in Chwialkowski et al. [2016] or Liu et al. [2016], have scalar outputs, while
the RKHS kernel `−s has an output in L(Hls), the Banach space of bounded operators from Hls to Hls ; we
refer to the space Hls for `−s as a vector-valued RKHS (vvRKHS). All the kernels used here are assumed to
be positive definite and bounded. As composition preserves positive definiteness, we then consider the kernel:
K : (X s ⊗X−s)× (X s ⊗X−s)→ R, with associate RKHS HK .

In our experiments we assume that the ls corresponds to the same RKHS function: ls ≡ l,∀s ∈ [N ]. We further
assume the vvRKHS H` has the form

`(x−s, (x′)−s
′
) = k(x−s, (x′)−s

′
)IHl×Hl ,

where IHl×Hl is the identity map from Hl to Hl and k is the graph kernel of choice. The RKHS defined via
composition reads

K((xs, x−s), ((x′)s
′
, (x′)−s

′
)) = k(x−s, (x′)−s

′
)l(xs, (x′)s

′
).

For a single observed network x, as Hl, H` are the same for all s, it holds that for s, s′ ∈ [N ]:

K((xs, x−s), (xs
′
, x−s

′
)) = l(xs, xs

′
).

In our implementation we use the kernels k(x−s, ·) = k(x(s,1), ·) + k(x(s,0), ·) from Section B, defined not on the
whole graph x but on the set x−s.

D Additional Details on Distance-based Test Statistics

D.1 Modified Graphical Tests with Total-Variation Distance

Here we give the details of the modified graphical tests based on Total-Variation (TV) distance, mGra, presented
in Section 5. To assess the goodness-of-fit to a specific ERGM, Hunter et al. [2008] proposed to compare network
statistics from the observed network to those of simulated networks from the null model via box plots and
Monte-Carlo p-values. These network statistics are

• the degree distribution, with dk the number of vertices which have degree k;

• the number of edge-wise shared partners, which is the number of pairs of vertices which are neighbours and
which have exactly k common neighbours;

• the number of dyad-wise shared partners, which is the number of pairs of vertices which have exactly k
common neighbours (but are not necessarily themselves neighbours);

• the triad census, with 4 possible triads where triads are configurations on 3 vertices; the configurations are
0 edges, 1 edge, 2 edges and 3 edges;

• the statistics which are included in the ERGM as in Definition 1.

Fig. 2 shows an example of a graphical test based on the E2ST model Eq.(15) with the 2-star coefficient β2
perturbed. By comparing whether the observed statistics (the bold line) deviates from the simulated null, one
can visually assess whether the null hypothesis should be rejected. For instance, in Fig. 2(a) where the network is
generated from the null distribution, the observed network statistics are all within the range in which 95 percent
of the simulated observations fall.
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Graphical Test Statistics for beta = 0

(a) The null model
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Graphical Test Statistics for beta = −0.05

(b) A small perturbation of the null model
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Graphical Test Statistics for beta = −0.1

(c) A moderate perturbation of the null model
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Graphical Test Statistics for beta = −0.3

(d) A larger perturbation of the null model

Figure 2: Graphical Tests with different beta parameters

When the difference between the null distribution and the distribution which generates the data is small, the
graphical method may not easily distinguish the two models depending on the network statistics of choice. As
shown in Fig. 2(b), with a network from a model with small perturbation from the null distribution, we see
this effect. However, when the difference between data simulated under the null distribution and the data is
substantial enough, we can see, e.g. from Fig. 2(c), that the minimum geodesic distance and the triad census
from the observed network clearly differ from the simulated null, and the null hypothesis can be rejected. The
box plots are also used to carry out Monte Carlo tests for each possible observation (for example a specific triad
count) by giving a p-value for this specific test.

While every observed value can be used for a Monte Carlo test, Hunter et al. [2008] does not provide a systematic
procedure to reach an overall conclusion about rejection. For instance, it is not clear whether the null is to be
rejected when Fig. 2(d) is observed. To surpass such issue, we further develop the testing procedure by using the
TV distance between distributions for the observed and simulated distributions of the summary statistics from
Hunter et al. [2008]. Denote by S the random variable of a network statistic of choice and by S the space for
S. Using the vertex degree of a simple undirected network on n vertices as an example, S is a discrete random
variable taking values from 0 to n− 1. Further denote by Sz′ the network statistic of an observation z′ from the
null model q and by sx the network statistics from the observed x. Then with R denoting the set of possible
values of S,

dTV (Sz′ ;Sx) = sup
A⊂R

|E[hA(Sz′)− hA(Sx)]| = 1
2
∑
s∈S
|P (Sz′ = s)− P (Sx = s)|

where hA(s) = 1s∈A is 1 if s ∈ A and 0 otherwise. Our test statistic measures the distance between the



Wenkai Xu, Gesine Reinert

distribution of a network statistic S in the observed network x and under the null model q as follows:

DTV (q, x;S) = Ez′∼q[dTV (Sz′ ;Sx)].

To estimate Eq, we simulate m′ networks from the null model q, i.e. z′1, . . . , z′m′ ∼ q and use as empirical estimate
for DTV (q, x;S)

D̂TV (q, x;S) = 1
m′

m′∑
j=1

[dTV (Sz′
j
;Sx)].

To assess how the test statistics is distributed under the null hypothesis, i.e. x ∼ q, we simulate z ∼ q from the
null distribution. Similar to a Monte-Carlo test, we simulate independent network samples z1, . . . , zm ∼ q and
compute D̂TV (q, zi;S), for i ∈ [m]. Then we reject the null if D̂TV (q, x;S) exceeds the (1− α)-quantile level in
the simulated observations {D̂TV (q, z1;S), . . . , D̂TV (q, zm;S)} under the null distribution.

D.2 Test Statistics with Mahalanobis Distance

Lospinoso and Snijders [2019] proposed using a Mahalanobis distance instead of the total variation distance.
Suppose that a vector S(x) of network summaries is observed and that the null distribution is parametrised
by θ. Denote µ(θ) = Eθ(X) as the expectation and Σ(θ) = Covθ(X) as the covariance matrix under θ. The
Mahalanobis distance

DM (x, θ;S) = (S(x)− µ(θ))>Σ(θ)−1(S(x)− µ(θ))

can then be used as test statistic. In practice, µ(θ) and Σ(θ) are estimated using independent simulations
xk, k = 1, . . . ,m, from the distribution specified by θ;

µ̂ = 1
m

m∑
k=1

S(xk); Σ̂ = 1
m

m∑
k=1

(S(xk)− µ̂)(S(xk)− µ̂)>;

D̂M (x) = (S(x)− µ̂)>Σ̂−1(S(x)− µ̂).

The p-value of the test is estimated by the plug-in estimator

p̂ = 1
m

m∑
k=1

1{D̂M (xk) > D̂M (x)}.

In the main text this approach is abbreviated MD and applied to the degree distribution for ERGMs.

E Additional Experiment Results

Test performances with graph kernels Fig.3(a) shows the results for testing the E2ST model Eq.(15) with
the 2-star coefficient β2 perturbed using the different kernels described in Section B. Using the abbreviations
from Section B, the relevant choices of kernel parameters are σ = 1 for the VEG kernel, level= 5 for the WL
kernel, and λ = 1

3 in the GRW kernel. Similar to the WL kernel used in the main text, the other choices of graph
kernels achieve fairly good test power with the gKSS statistic. In our additional experimental results on the
rejection rate, the re-sample size is B = 100 for all kernel choices. From Fig.3(a) we see that the test power is
slightly higher with a small perturbed coefficient when the SP kernel and the VEG kernel are employed, while for
larger perturbed coefficient (resulting in sparser graphs) the WL kernel better distinguishes the observation from
the null. For large negative β2 the GRW kernel has the poorest rejection rate. These differences in performance
are no surprise as different choices of kernel emphasise different aspect of graph topology.

Computational time In Fig.3(b), we give more results for the computational time for one test, with 1,000
simulated networks. These results complement the reported results of Table 1 in the main text. As the number
of vertices in the network increases, there is an increase in the computational complexity. However, as the main
computation costs come from simulating the ERGM, we see from the plot that the slope is not substantial
compared to the difference in testing procedures.
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Figure 3: Additional experiment results

F Comparison with the Kernel Discrete Stein Discrepancy on Testing
Goodness-of-fit

F.1 Discrete Stein Operator

In this section, we compare our approach with the discrete Stein operator introduced in Yang et al. [2018]. First
we need some definitions.
Definition 2. [Definition 1 [Yang et al., 2018]](Cyclic permutation). For a set N of finite cardinality, a cyclic
permutation ¬ : N → N is a bijective function such that for some ordering x[1], x[2], . . . , x[|X|] of the elements in
N , ¬x[i] = x[(i+1)mod|X|],∀i = 1, 2, . . . , |X|.
Definition 3. [Definition 2 [Yang et al., 2018]] Given a cyclic permutation ¬ on N , for any d-dimensional
vector x = (x1, ..., xd)> ∈ N d, write ¬ix := (x1, . . . , xi−1,¬xi, xi+1, . . . , xd)>. For any function f : N d → R,
denote the (partial) difference operator as

∆xif(x) := f(x)− f(¬ix), i = 1, . . . , d

and introduce the difference operator:

∆¬f(x) := (∆x1f(x), . . . ,∆xdf(x))>.

Here we use the notation ∆¬ to distinguish it from the notation in the main text, where we used ∆sh(x) =
h(x(s,1))− h(x(s,0)) and ||∆h|| = sups∈[N ] |∆sh(x)|.

For discrete distributions q, Yang et al. [2018] proposed the following discrete Stein operator, which is based on
the difference operator ∆¬ constructed from a cyclic permutation:

T Dq f(x) = f(x)∆¬q(x)
q(x) −∆∗¬f(x), (21)

where ∆∗¬ denotes the adjoint operator of ∆¬.

In particular, for q the distribution of an ERGM, with N = {0, 1}N , the discrete Stein operator proposed [Yang
et al., 2018] can be written in the form of T Dq f(x) =

∑
s T D,sq f(x) where

T D,sq f(x) = (−1)1{x=x(s,0)}
f(x(s,1))q(x(s,0))− f(x(s,0))q(x(s,1))

q(x) . (22)
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Recall the ERGM Stein operator of the form Tqf(x) = 1
N

∑
s∈[N ] T

(s)
q f(x) and Eq.(5),

T (s)
q f(x) = q(x(s,1)|x)∆sf(x) +

(
f(x(s,0))− f(x)

)
= q(x(s,1))
q(x(s,1)) + q(x(s,0))

(
f(x(s,1))− f(x(s,0))

)
+
(
f(x(s,0))− f(x)

)
=
1{x=x(s,0)}q(x(s,1))− 1{x=x(s,1)}q(x(s,0))

q(x(s,1)) + q(x(s,0))

(
f(x(s,1))− f(x(s,0))

)
.

We illustrate the difference between the ERGM Stein operator and the discrete Stein operator for a Bernoulli
random graph with P(s = 1) = q,∀s. Due to the independence, we have q(x(s,1)|x) = q and q(x(s,0)|x) = 1− q.
With Eq.(5), our Stein operator becomes

Tqf(x) = 1
N

∑
s

(q − xs) (f(x(s,1))− f(x(s,0))). (23)

The KDSD in this case can be written as:

T Dq f(x) = 1
q(x)

∑
s

(−1)1−xs
(

(1− q)f(x(s,1))− qf(x(s,0))
)

with q(x) = q
∑

s
xs(1 − q)N−

∑
s
xs . Thus, for different values, Eq.(23) is a weighted sum of the terms(

f(xs,1)− f(xs,0)
)
, while KDSD is a weighted sum of the terms

(
(1− q)f(xs,1)− qf(xs,0)

)
and requires the

calculation of the binomial probability q(x).

The operators in Eq.(22) and Eq.(5) clearly differ in their scaling as well as in their repercussions for re-sampling.
While the operator in Eq.(5) emerges from Glauber dynamics and hence has a natural re-sampling interpretation,
no such interpretation is available for the operator in Eq.(22). Explicitly, the discrete Stein operator T Dq has
q(x) in the denominator, indicating the fixed x realisation; however, the Stein ERGM operator Tq has q(x−s)
in the denominator which stems from the conditioning in Glauber dynamics. Consequently, the corresponding
Stein discrepancy (called KSDS) differs from Eq.(2) in the main text, and, although usually only one network is
available, the goodness-of-fit test in Yang et al. [2018] requires independent and identically distributed network
observations.

A second key difference is that the test in Yang et al. [2018] requires the support of the unknown network
distribution to be identical to the support of the ERGM which is described by q. In practice this condition is
difficult if not impossible to verify. In contrast, ĝKSS does not make any such assumption.

F.2 Comparison Between Graph Testing

Testing with multiple graph observations The relevant kernel discrete Stein discrepancy (KDSD) from
the discrete Stein operator [Yang et al., 2018] is defined via taking the supreme over appropriate unit ball RKHS
test functions, similar as in Eq.(2)

KDSD(q‖p;H) = sup
‖f‖H≤1

Ep[T Dq f(x)]. (24)

Yang et al. [2018] built a goodness-of-fit testing procedure based on the KDSD for ERGM for multiple graph
observations. Let x1, . . . , xm ∼ p, be m independent identically distributed graph observations. The KDSD is
empirically estimated from the observed samples; and as the number of observed samples m→∞, in probability,

1
m

∑
i

[T Dq f(xi)]→ Ep[T Dq f(x)].

The rejection threshold is determined via a wild-bootstrap procedure [Chwialkowski et al., 2014].

While the ĝKSS type of statistics based on the ERGM Stein operator in Eq.(4), Tqf(x) = 1
N

∑
s∈[N ] T

(s)
q f(x),

focuses on a single graph observation, this ERGM Stein operator could similarly be used to assess goodness-of-fit
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when multiple graph observations are available. In particular, Eq[Tqf(x)] = 0. Hence, we introduce the graph
kernel Stein discrepancy (gKSD) as

gKSD(q‖p;H) = sup
‖f‖H≤1

Ep[Tqf(x)] = sup
‖f‖H≤1

Ep

[
1
N

∑
s

T (s)
q f(x)

]
.

Here the sum is taken over all N pairs of vertices and the expectation is taken with respect to the ERGM
q. When there are m independent observations x1, . . . , xm ∼ p available then we can empirically estimate
gKSD(q‖p;H) by 1

m

∑
i[

1
N

∑
s T

(s)
q f(xi)], which is weakly consistent by the law of large numbers. Then we use

this statistic to build a goodness-of-fit test for multiple graph observations, determining the threshold via the
same wild-bootstrap procedure as for the KDSD.

To compare the KDSD and the gKSD tests we consider the goodness-of-fit test setting as studied in Yang
et al. [2018], using the E2ST model as presented in Eq.(15). We set the null parameters β to (β1, β2, β3) =
(−2, 0.0, 0.01) and carry out a test at significance level α = 0.05 using 100 repeats. For the alternative, we
perturb the coefficient for 2-stars, β2, and report the rejection rate in Table 3. Note that β2 = 0.00 recovers the
null distribution. In this experiment, with a small number of graph observations, m = 30, gKSD captures the
difference between the null model and the alternative model better, resulting in a higher test power, compared
to KDSD. Both gKSD and KDSD have higher power for β2 > 0 than for β2 < 0 of the same magnitude. This
finding is plausible as increasing β2 leads to denser networks.

β2 -0.1 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.1
gKSD 0.32 0.30 0.24 0.14 0.10 0.04 0.08 0.22 0.18 0.28 0.54
KDSD 0.08 0.05 0.6 0.04 0.01 0.02 0.03 0.03 0.06 0.12 0.16

Table 3: Rejection rate for the E2ST model (β1, β2, β3) = (−2, 0, 0.01) with perturbation of the 2-star coefficient
β2: W.L. Kernel of level 3; sample size m = 30; graph size n = 20; test significance level α = 0.05.

Testing with a single graph observation The ERGM Stein operator satisfies the mean zero property Eq.(6)
when flipping each edge s given the rest of the graph x−s. This is a key ingredient that KDSD does not satisfy;
KDSD relies on a cyclic permutation as in Definition 2 to construct the partial difference operator in Definition
3, which depends on the order sequence of the cyclic permutation. As such, the mean zero property of their
Stein operator is based on sign flips in each state of the discrete variable, instead of flipping the edge probability.
Thus, the discrete Stein operator T Dq could not easily be adapted to construct a subsampled Stein statistic such
as ĝKSS to perform goodness-of-fit testing with a single graph observation.

Testing with a few graph observations An interesting setting which is related to that of a single graph
observation, is that a few graphs are observed, with the number of graphs assumed to be finite and not tending
infinity with network size. With the proposed gKSD goodness-of-fit test for a single graph observation, a
possible approach and a potential future research direction is applying multiple tests of goodness-of-fit, one for
each observed network, with a Bonferroni correction [Bonferroni, 1936] to correct for multiple testing.


