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Abstract

We propose and analyse a novel nonparamet-
ric goodness-of-fit testing procedure for ex-
changeable exponential random graph mod-
els (ERGMs) when a single network realisa-
tion is observed. The test determines how
likely it is that the observation is generated
from a target unnormalised ERGM density.
Our test statistics are derived from a kernel
Stein discrepancy, a divergence constructed
via Stein’s method using functions in a repro-
ducing kernel Hilbert space, combined with a
discrete Stein operator for ERGMs. The test
is a Monte Carlo test based on simulated net-
works from the target ERGM. We show the-
oretical properties for the testing procedure
for a class of ERGMs. Simulation studies and
real network applications are presented.

1 INTRODUCTION

Complex data from many application areas are of-
ten represented as networks, and probabilistic network
models help to understand the expected behaviour of
such networks. In social science, exponential random
graph models (ERGMs) have been successfully em-
ployed for this task, see for example Wasserman and
Faust [1994]. ERGMs can be viewed as exponential
family models or energy-based models, and as typical
for such models, statistical inference for ERGMs suf-
fers from intractable normalisation constants. Monte
Carlo methods for parameter estimations in ERGMs
alleviate this issue [Snijders, 2002], and model di-
agnoses via maximum likelihood (MLE) and maxi-
mum pseudo-likelihood are developed [Morris et al.,
2008]. Statistical properties with particular attention
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to the normalisation constant are studied in Chatterjee
and Diaconis [2013]. For analysing distributions with
intractable normalisation constants, Stein’s method
[Barbour and Chen, 2005; Chen et al., 2010] provides
a promising approach [Chwialkowski et al., 2016; Liu
and Wang, 2016; Bresler and Nagaraj, 2019]. In Rein-
ert and Ross [2019], Stein’s method is developed for
ERGMs but not yet applied to goodness-of-fit tests.

Goodness-of-fit tests for random graph models address
the problem of whether the proposed model gener-
ates the observed network(s), and play a key role in
understanding and interpreting network structures in
real-world applications. A main issue is that repli-
cates are usually not available; the data are repre-
sented as only one network. Standard goodness-of-fit
tests for ERGMs to date rely on Monte Carlo tests for
particular summary statistics such as vertices degrees
[Ouadah et al., 2020], motifs or subgraph counts [Bhat-
tacharyya and Bickel, 2015; Ospina-Forero et al., 2019;
Chen and Onnela, 2019], or spectral properties [Shore
and Lubin, 2015]. The goodness-of-fit tests for ERGM
in Hunter et al. [2008] or Schweinberger [2012] also as-
sess the model assumptions via graphical assessments.
Lospinoso and Snijders [2019] combines such statistics
into a Mahalanobis-type distance which is assessed via
Monte Carlo tests. The consistency of type 1 error and
the power of the test have not yet been systematically
investigated.

Nonparametric goodness-of-fit tests based on Stein op-
erators [Gorham and Mackey, 2015; Ley et al., 2017)
and functions in a reproducing kernel Hilbert space
(RKHS) [Berlinet and Thomas, 2004] for data with
replicates build on a kernel Stein discrepancy (KSD)
that utilises the strength of a Stein operator to treat
unnormalised models and optimises over test functions
in a rich enough RKHS to best distinguish the data
from the model distributions. Such schemes are consis-
tent and have high test power in various scenarios, in-
cluding multivariate distributions [Chwialkowski et al.,
2016; Liu et al., 2016], discrete distributions [Yang
et al., 2018], point processes [Yang et al., 2019], di-
rectional distributions [Xu and Matsuda, 2020], and
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censored data [Fernandez et al., 2020]. These sce-
narios are typically based on i.i.d. samples from the
distributions. In addition, the properties of kernel
mean embeddings [Berlinet and Thomas, 2004; Muan-
det et al., 2017] enable the extraction of distributional
features to perform model comparison and model crit-
icism [Jitkrittum et al., 2017b, 2018; Kanagawa et al.,
2019; Jitkrittum et al., 2020].

Here we propose a novel goodness-of-fit testing pro-
cedure for ERGMs combining a Stein operator for
ERGMs and functions in an RKHS. The class of
ERGMs treated here are undirected networks which,
when the number of vertices tends to infinity, can be
approximated by a suitably chosen Bernoulli random
graph, with edge probability parameter that generally
does not equal the MLE. The test is based on only
one observed network and estimates the Stein oper-
ator through re-sampling edge indicators. This test
compares the test statistics from one observed network
to the simulated distribution of the statistics under
the null model. As the Stein operator characterises
the target distribution for this class of ERGMs, un-
der a member of this class serving as null hypothesis
we derive theoretical results for the test statistic. We
also provide a theoretical justification of the proposed
re-sampling procedure.

To assess the performance of the test, we use simulated
data as well as three real-world applications: Lazega’s
lawyer network [Lazega, 2001], a teenager friendship
network [Steglich et al., 2006], and a larger network of
legislation co-sponsorship [Fowler, 2006a,b]. We find
that on synthetic data, our test is more reliable and
has higher power than the standard tests even when
only a small number of edge indicators is re-sampled.
Moreover, the test can be applied to networks on more
vertices than its competitor tests. For the lawyer net-
work, we confirm the suggestion by Lazega [2001] of
a Bernoulli random graph; for the friendship network
we do not reject an ERGM with edges, two-stars and
triangles as statistics. For the co-sponsorship network
we do not reject a Bernoulli random graph fit whereas
the model proposed in Schmid and Desmarais [2017]
is rejected at level a = 0.05.

The paper is structured as follows. We begin our pre-
sentation with a short review on ERGM, KSD and
the ERGM Stein operator in Section 2. Section 3 in-
troduces our re-sampling Stein operator for ERGM,
Our goodness-of-fit testing procedure which is based
on what we call the graph kernel Stein statistic (gKSS),
and the relevant theoretical results, are given in Sec-
tion 4. In Section 5, we illustrate the test performances
on synthetic data as well as real network applications.

All the proofs are deferred to the Supplementary Mate-

rial. The Supplementary Material also contains more
discussions, details for experiment settings and addi-
tional experimental results, as well as a detailed com-
parison to the correesponding test in Yang et al. [2018].
The code and data sets for the experiments are avail-
able at https://github.com/clemonl13/gkss.git.

2 BACKGROUND

2.1 Exponential Random Graph Models

Exponential random graph models (ERGM) are fre-
quently used as parametric models for social network
analysis [Wasserman and Faust, 1994; Holland and
Leinhardt, 1981; Frank and Strauss, 1986]; they in-
clude Bernoulli random graphs as well as stochastic
blockmodels as special cases. Here we restrict atten-
tion to undirected, unweighted simple graphs on n ver-
tices, without self-loops or multiple edges. To define
such an ERGM, we introduce the following notations.

Let G!2 be a set of vertex-labeled graphs on n ver-
tices and, for N = n(n — 1)/2, encode z € Gl
by an ordered collection of {0,1} valued variables
z = (2ij)1<i<j<n € {0,1} where z;; = 1 if and only
if there is an edge between ¢ and j. For a graph H
on at most n vertices, let V(H) denote the vertex set,
and for z € {0,1}, denote by ¢(H,x) the number of
edge-preserving injections from V(H) to V(x); an in-
jection o preserves edges if for all edges vw of H with
o(v) < o(w), Tow)o(w) = 1. For vy = [V(H)| > 3 set

t(H,x)
nn—1)---(n—vg+3)°

tH(:Z?) =

If H= H; is a single edge, then ¢y (z) is twice the
number of edges of x. In the exponent this scaling of
counts matches [Bhamidi et al., 2011, Definition 1] and
[Chatterjee and Diaconis, 2013, Sections 3 and 4]. An
ERGM for the collection = € {0,1}" can be defined
as follows, see Reinert and Ross [2019].

Definition 1. Fixn € N and k € N. Let Hy be a sin-
gle edge and forl =2, ...,k let H; be a connected graph
on at most n vertices; set tj(x) = tg,(x). For f =
(Bi,-.-,Bk) € R* and t(z) = (t1(2),...,tx(x))" € R
X € Glab follows the exponential random graph model
X ~ ERGM(B,t) if for Vo € Glab,

1 k
ex Bit (x))
wmee (L

Here k,(8) is the normalisation constant.

P(X=2x)=

The vector 3 € R¥ is the parameter vector and the
statistics t(z) = (t1(x),...,tx(x))" € R* are sufficient
statistics. Moreover, exchangeability holds; letting
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[n] := {1,...,n}, for any permutation o : [N] — [N],

P(J,’l,...,.’L‘N) = P(xa(l),...,xJ(N)).

Many random graph models can be set in this frame-
work. The simplest example is the Bernoulli random
graph (ER graph) with edge probability 0 < p < 1;
in this case, | = 1 and H; is a single edge. ERGMs
can use other statistic in addition to subgraph counts,
and many ERGMs model directed networks. More-
over, ERGMs can model network with covariates such
as using dyadic statistics to model group interactions
between vertices [Hunter et al., 2008]. Here we re-
strict attention to the case which is treated in Reinert
and Ross [2019] because it is for this case that a Stein
characterization is available.

As the network size increases, the number of possi-
ble network configurations increases exponentially in
the number of possible edges, making the normalisa-
tion constant k,(83) usually prohibitive to compute in
closed form. Statistical inference on ERGM mainly re-
lies on MCMC type methods that utilise the density
ratio between proposed state and current state, where
the normalisation constant cancels.

2.2 Kernel Stein Discrepancies

We briefly review the notion of kernel Stein discrep-
ancy (KSD) for continuous distributions [Gorham and
Mackey, 2015; Ley et al., 2017] and its associated sta-
tistical test [Chwialkowski et al., 2016; Liu et al., 2016].

Let ¢ be a smooth probability density on R? that van-
ishes at the boundary. The operator 7, : (R? —
RY) — (R? — R) is called a Stein operator if the
following Stein’s identity holds: E4[T,f] = 0, where
f = (fi,---,fa) : R* = R? is any bounded smooth
function. The Stein operator 7 for continuous density
[Chwialkowski et al., 2016; Liu et al., 2016] is defined
as

d

Tl (@) = Y- (0) s osate) + o)) (1)

i=1

This Stein operator is also called Lagenvin-diffusion
Stein operator [Barp et al., 2019]. Since ¢ is assumed
to vanish at the boundary and f is bounded, the Stein
identity holds due to integration by parts. As the
Stein operator 7, only requires the derivatives of log ¢
and thus does not involve computing the normalisation
constant of ¢, it is useful for dealing with unnormalised
models [Hyvérinen, 2005].

A suitable class of functions F is such that if E,[7, f] =
0 for all functions f€ F, then p = ¢ follows. It is con-
venient to take F = Bq(H), the unit ball of a large
enough RKHS 7. In particular, the kernel Stein dis-
crepancies (KSD) between two densities p and ¢ based

on 7, is defined as

KSD(pllg,H) = sup E,[Tyf]. (2)

fEB1(H)

Under mild regularity conditions, KSD(pl||q,H) >
0 and KSD(p|l¢g,H) = 0 if and only if p = ¢
[Chwialkowski et al., 2016], making KSD a proper dis-
crepancy measure between probability densities.

The KSD in Eq.(2) can be used for testing the
model goodness-of-fit as follows. One can show that
KSD?(p|q, H) = Essplhy(z,7)], where z and 7 are
independent random variables with density p and
hqe(z,Z) is given in explicit form which does not in-
volve p;

d
o) = 3 (PB4 D,
=1

dlogq(Z) . ok(z,-)
T+ ) )

Suppose we have a set of samples {z1,...,z,} from an

unknown density p on R? and the goodness-of-fit test
aims to check whether p = ¢. Then KSD?(p||q, H)
can be empirically estimated by independent sam-
ples from p using a U-statistics or V-statistics. The
critical value is determined by bootstrap based on
weighted chisquare approximations for U-statistics or
V-statistics.

For goodness-of-fit test of discrete distributions, Yang
et al. [2018] proposed a kernel discrete Stein discrep-
ancy (KDSD). Essentially, the differential operator in
Eq.(1) is replaced by an appropriately defined differ-
ence operator. KDSD is a useful method for assessing
goodness-of-fit of ERGMs (as discrete random objects)
when a large set of networks are observed [Yang et al.,
2018, Figure 1(d)], but is not applicable when only one
single network is observed. More details can be found
in the Supplementary Material F.

2.3 The ERGM Stein Operator

Instead of using the Stein operator from Yang et al.
[2018] we employ the Stein operator from Reinert and
Ross [2019]. With N = n(n — 1)/2 let e, € {0,1}
be a vector with 1 in coordinate s and 0 in all others;
z(V = z + (1 — x,)e, has the s-entry replaced of
z by the value 1, and z(>9 = z — z e, has the s-
entry of x replaced by the value 0; moreover, z_; is
the set of edge indicators with entry s removed. Then
a (Glauber dynamics) Markov process on {0, 1} is
introduced with transition probabilities

1 1
P(x — 2V = N Pz — 2*0) = NQX(JJ(SJ)‘J})
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where gx (VY |z_) =P(X, =1|X_, =x_
ERGM(S,t) from Deﬁmtlon 1,

s). For the

k
gz V]z_,) == exp {Zﬂete(w(s’l))} x

{=1

k k -1
(eXP {Z 5ztz($(s’1))} + exp {Z Beto(z1>0) })
=1 =1

and similarly the probability of the new edge being
absent exchanges 1 and 0 in this formula to give
q(z=z_,). For h: {0,1}¥ — R let

Agh(z) = h(z®Y) — h(z(0).

The generator 73 ¢ of this Markov process is the desired
Stein operator and its expression simplifies to

Taif(x) = = Z T(é)f )
sE [N]
with
E(S)f(x) = q(.’L'(SJ)'-’E—s)ASf(x)

+ (1N @) ©)

When the ERGM is such that the Markov process is
irreducible, then its stationary distribution is unique,
and if E,[73,.f] = 0 for all smooth test functions f,

then p is the distribution of ERGM(,t). Thus, the
Stein operator characterises ERGM(5,t). Moreover,
for each s € [N],

E, 7. f =0. (6)

To see this, write

BT =Y, al@ ) (e a )T f)

(e a )T fa0)).

Substituting 2" and z(5:9 in (5) gives
a(a Ve )T F@ D) + ol Ola—) T £
= Dl )al@™ Vo) (£ - f@)
D) = Fat)) =0

and Eq.(6) follows.

Next, we introduce our kernel Stein statistic for test-
ing the goodness-of-fit of an ERGM based on a single
observed network as well as an estimator for it which
is based on re-sampling of edge indicators.

3 KERNEL STEIN STATISTICS
from RE-SAMPLING

Kernel Stein Statistics Based on the Stein op-
erator representation Eq.(4), we develop the kernel
Stein statistics (KSS)! for ERGMs. Similar to KSD
in Eq.(2), we use the functions in a unit ball of an
RKHS H as test functions.

The Stein operator in Eq.(4) can be written as expec-
tation over edge variables S with uniform probability
P(S = s) = +,Vse [N]:={1,..., N}, independently
of z, namely

Tof (@)= > P(S =T f(2) = Es[T f()].

SE[N]
(7)

Note that the expectation is taken over S, with the
network z fixed except for the coordinate S.

After algebraic manipulations, Eq (5) has the form

T f ()
= g(@®Vz_o) f@) + q(@ O]z ,) f(@) — f(x)
= Bpoplf(Xs, 29l —s)] — f (). (8)

Here Eyg 1) refers to the expectation taken only over
the value which X, takes on. Hence,

Tof (2) = Es [Epo iy [f(Xs,2—s2)]] = f(z).  (9)

For a fixed network z, we seek a function f € H, s.t.
Ifllx < 1, that best distinguishes the difference in
Eq.(9) when X does not have distribution ¢; this ra-
tionale is similar as for Eq.(2). We define the graph
kernel Stein statistics (gKSS) as

gKSS(g;z) = sup |Es[TFf(2)]|.  (10)

=<1

It is often more convenient to consider gKSS?(g;x).
Let the RKHS H have kernel K and inner product
(+,-)%. By the reproducing property of RKHS func-
tions, as for Eq.(3), algebraic manipulation allows the
supremum to be computed in closed form:

Zhss

s,s"€[N]

gKSS?(g; (11)

where h,(s,s’) = <771(S)K(:lc7 ~)77;(S/)K(-,x)>ﬂ.

"We avoid calling it a discrepancy since our expectation
is not taken over all ERGM samples as described in Yang
et al. [2018], but instead based on a single network.
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Stein Operator from Edge Re-sampling When
the distribution of X is known, the expectation in
Eq.(9) can be computed for networks with a small
number of vertices, but when the number of vertices is
large, exhaustive evaluation is computationally inten-
sive. For a fixed network x, we propose the following
randomised Stein operator via edge re-sampling. This
procedure mimics the Markov process which gives rise
to the Stein operator. Let B be the fixed number of
edges to be re-sampled. Our re-sampled Stein operator

=T (12)

be[B

TBf

where b € B and s; are edge samples from {1,..., N},
chosen uniformly with replacement, independent of

each other and of . The expectation of 7. f(x) with
respect to the re-sampling is

ElTP f(2)]=Es[T ¥ f(2)] = Ty f (x).
We introduce the corresponding re-sampling gKSS:

gKSS(q;x) = sup ’*ZT”’)JC ’ (13)

Ifllee<1

This is a stochastic Stein discrepancy, see Gorham
et al. [2020]. The supremum in Eq.(13) is achieved
by

55T k()
Hﬁzarﬁa o

Similar algebraic manipulations as for Eq.(11) yield

)=

gKSS q, Z h Sb75b’ (14)

b b’ €[B]

4 GOODNESS-OF-FIT TEST with
KERNEL STEIN STATISTICS

4.1 Goodness-of-fit Testing Procedures

We now describe the proposed procedure to assess the
goodness-of-fit of an ERGM for a single network ob-
servation. The ERGM can be readily simulated from
an unnormalised density via MCMC, see for example
Morris et al. [2008]. Suppose that g is the distribution
of ERGM(f, t) and x is the observed network for which
we want to assess the fit to g. We simulate independent
networks zi1,...,2, ~ ¢ and compare the observed
g/KﬁQ(q;m) with the set of g/KﬁQ(q; zi),i=1,...,m
using a Monte Carlo test. As gKKSS assesses the devia-
tion from the null distribution, the test is one-sided; we
reject the null model when the observed @ is large.
The detailed test procedure is given in Algorithm 1.

Algorithm 1 Kernel Stein Test for ERGM

Input:

Observed network x;

Null model g;

RKHS Kernel K;

Re-sample size B;

Confidence level a;

Number of simulated networks m;
Objective:

Test Hy : x ~ q versus H;
Test procedure:

1: Sample {sq,...,

cx g

sp} with replacement uniformly

from [N].
—2
2: Compute 7 = gKSS (g;x) in Eq.(14).
3: Simulate z1,..., 2, ~ q.

4: Compute 7; = g/Kﬁ2 (¢; zi) in Eq.(14). again with
re-sampling, choosing new samples {s1,...,5p5.}
uniformly from [N] with replacement.

5: Estimate the empirical (1 — a)-quantile ~v;_, of
Tly-+-5sTm-

Output:
Reject Hy if 7 > v1_4; otherwise do not reject.

4.2 Kernel Choices

Graph kernels Apart from using simple kernels be-
tween adjacency vectors in {0,1}", we apply graph
kernels that take into account graph topology via
various measures.  Various aspects of graph ker-
nels have been studied [Borgwardt and Kriegel, 2005;
Vishwanathan et al., 2010; Shervashidze et al., 2011;
Sugiyama and Borgwardt, 2015]. We provide a brief
review of some graph kernels in the Supplementary
Material B. In our implementation in R, we utilise the
ergm package related to Morris et al. [2008] for simu-
lating ERGMs and the graphkernels package associ-
ated with Sugiyama et al. [2018] for computing rele-
vant graph kernels.

Vector-valued RKHS As the operator in Eq.(9)
has embedded a notion of conditional probability, we
may tailor the RKHS accordingly. To incorporate the
notion of x4 conditioning on z_,, we consider a sepa-
rate treatment of x, and x_, and introduce a vector-
valued reproducing kernel Hilbert Space (vvRKHS).
Similar constructions are studied in Jitkrittum et al.
[2020] when testing goodness-of-fit for conditional den-
sities. In the Supplementary Material C, we provide a
review on the vwvRKHS we use as graph kernels; fur-
ther details can be found in Caponnetto et al. [2008],
Carmeli et al. [2010], or Sriperumbudur et al. [2011].
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4.3 Theoretical Properties of gKSS

Let X ~ g and Y ~ ¢, where ¢ is the distribution
of an appropriately chosen ER graph. Our theoreti-
cal approximation argument has three steps: The first
step, Theorem 1, is to approximate gKSS(g, X) by
gKSS(G,Y), with an explicit bound on the approxi-
mation error, as the number of vertices n — co. Sec-
ondly, Theorem 2 provides a normal approximation
for gKSS(G,Y)? of the approximating Bernoulli ran-
dom graph as n — oo, again with an explicit bound, so
that approximate confidence bounds for the test under
the null hypothesis can be obtained. Finally, a normal
approximation for g/Kﬁ(q7 X)? to a normal distribu-
tion with approximate mean gKSS(¢, X), as B — oo
with | B/N | fixed, is given in Proposition 2, again with
an explicit error bound. These three results combined
provide explicit control of the type 1 error.

In Chatterjee and Diaconis [2013] and Reinert and
Ross [2019] it is shown that under some conditions on
the parameters, an ERGM(f,t) is close to an approx-
priately chosen Bernoulli random graph, as follows.
For a € [0, 1], define the following functions [Bhamidi
et al., 2011; Eldan and Gross, 2018], with the notation
in Definition 1 for ERGM(S, ¢):

k
B@)i= Y fraa, o) = LHERD()
=1

where e; is the number of edges in H;. For a poly-
nomial f(z) = Z?:o coxt set |f(z)] = Zif:l o] eq 2t
Moreover, || f|| denotes the supremum norm. The class
of ERGM(,t) in this section are assumed to satisfy
the following standard technical assumption.
Assumption 1. (1) 1[®|'(1) < 1. (2) Ja* € [0,1]
that solves the equation ¢(a*) = a*.

The value a* will be the edge probability in the ap-
proximating Bernoulli random graph, ER(a*). Then
the following result holds.

Proposition 1. [Theorem 1.7 and Corollary 1.10
[Reinert and Ross, 2019]] Let ERGM(f,t) satisfy As-
sumption 1. Let X ~ ERGM(fS) and Y ~ ER(a*).
Then for h: {0,1}Y — R,

k
ER(X) — ER(Y)| < ||Ah|NC“*(\6ﬁ’f’m S B
(=2

Here Cy+(B,t,h) is an explicit constant.

Proposition 1 shows, that for large n, the ERGM can
be approximated well by an appropriate ER graph
for test functions h which are properly scaled. In
particular, if H is a connected graph and h(z) =
t(H,z)n~VUDI then there is an explicit constant

C = C(B,t,H) such that |[Eh(X) —ER(Y)| < C/\/n.
This result translates into an approximation for the
gKSS, as follows.

Theorem 1. Let g(x) = ERGM(S,t) satisfy Assump-
tion 1 and let ¢ denote the distribution of ER(a*). For
f € H equipped with kernel K, let

(Tq = Ta) K(z, )

1O =1 TR @,

Then there is an explicit constant C = C(8,t, K) such
that for all € > 0,

P(| gKSS(g, X) — gKSS(7,Y)| > ¢)
< {lIaEKSS(g, )21 + 112 gKSS(q. )

sasw (AL} (5) 20

As our goodness-of-fit test statistic is based on the
square of the gKSS, the asymptotic behaviour of
gKSS?(g,Y) is of interest. To approximate the dis-
tribution of gKSS? under the null hypothesis we make
some additional assumptions on kernel K of RKHS.

Assumption 2. Let H be the RKHS associated with
the kernel K : {0,1} x {0,1}Y — R and for s € [N]
let Hs be the RKHS associated with the kernel lg :
{0,1} x {0,1} — R. Then

i) H is a tensor product RKHS, H = ®e[n)Hs;
i) k is a product kernel, k(x,y) = @enils(®s, Ys);
i) (ls(zs,"), (s, ))u, = 1;

i) 15(1,-) = 15(0,-) # 0 for all s € [N].

These assumptions are satisfied for example for the
suitably standardised Gaussian kernel K(z,y) =

eXP{_712 Zse[N] (ms - y8)2}'

Letting || - ||1 denote L;-distance, and £ denote the
law of a random variable, in Supplementary Material
A, we show the following normal approximation.

Theorem 2. Assume that the conditions i) - iv) in
Assumption 2 hold. Let u = E[gKSS?*(¢,Y)] and 0% =
Var[gKSS*(g,Y)]. Set W = 1(gKSS*(q,Y)] — 1) and
let Z denote a standard normal variable, Then there
is an explicit constant C = C(a*,ls, s € [N]) such that

IEW) = £(2)|)1 < jjv

More details on p and o2 are given in the Supplemen-
tary Material A. This normal approximation could also
be used to assess the asymptotic distribution under an
alternative x ~ p where p(z) = ERGM(f’,t') satisfies
Assumption 1 with edge probability b* and b* # a*.
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Then asymptotically we can compare the correspond-
ing normal random variables with different means.

For the final step, the re-sampling version, let ks be
the number of times that s is included in the sample
B, where |B| = B. Then, from Eq.(14),

— > kikaha(s,s).

s,s’€[N]

gKSS (¢

In this expression, the randomness only lies in the
counts kg, where s € [N]. These counts are exchange-
able and k = (ks,s € [N]) follows the multinomial
(B; N~1,...,N~1) distribution. Hence the statistic
%Zs’tew] kskihy(s,t) is a sum of weakly globally
dependent random variables, although due to the net-
work x being fixed, this is not a classical V-statistic.
Instead, Stein’s method will be used to prove the fol-
lowing result in the Supplementary Material.

Proposition 2. Let

Y:% > (ko —

s,t€[N]

E(kskt)>ha:(87 t)'

Assume that hy is bounded such that Var(Y) is non-
zero. Then if Z is mean zero normal with variance
Var(Y), there is an explicitly computable constant
C > 0 such that for all three times continuously dif-
ferentiable functions g with bounded derivatives up to
order 3,

C

[Elg(¥)] ~El9(2)] < 5.

When the sampling fraction F' = % is kept approxi-
mately constant as N — oo, noting that

—2
gKSS (¢;z) = Y +gKSS? + e Z h(s,s)
s€[N]
1
"N 2 M
s,t€[N],s#t

—2
the normal approximation for gKSS (¢;x) with ap-
proximate mean gKSS?(g; z) follows for N — oc.

5 EXPERIMENTS

To assess the performance of the test, we replicate the
synthetic benchmark-type settings from [Lusher et al.,
2013; Rolls et al., 2015; Yang et al., 2018]. We then
apply our tests to three real data networks: Lazega’s
lawyer network [Lazega, 2001] and a friendship net-
work [Steglich et al., 2006] which are both studied in
[Yin et al., 2019], as well as a co-sponsorship network
from [Fowler, 2006a,b].

5.1 Synthetic Experiments

Model In the synthetic example, we assess the test
performance on relatively simple but useful ERGMs,
with three graphs H; in the statistic ¢, namely edge, 2-
star, and triangle; we abbreviate this model as E2ST.
Then the unnormalised density has the form

q(z) o exp (51Ed(x) + B2Sa(x) + B3TT(SE))7 (15)

where E4(x) denotes the number of edges in x; Sa(x)
denotes the number of 2-stars in « and T,.(z) denotes
the number of triangles in z. We choose the null pa-
rameter as (081,32, 03) = (—2,0.0,0.01), which satis-
fies Assumption 1 and gives a* = 0.1176. For the
alternative distributions, following similar settings in
[Yang et al., 2018], we fix the coefficient 51 = —2 and
Bs = 0.01 of the E2ST model in Eq.(15), and test
the null model of Hy : B3 = 0 against the alterna-
tive Hy : P2 # 0 with a perturbed [y so that the
alternative model satisfies Assumption 1 also. For this
model, Bresler and Nagaraj [2018] showed that even
when using a (constant number of) i.i.d. samples from
the network model are available, when B2v/n — 0 as
n — oo then there is no test which can distinguish
this model from the corresponding Bernoulli random
graph. Hence poor power for 35 close to 0 is to be
expected.

The Proposed Methods We apply the proposed
goodness-of-fit test procedures and compare with ex-
isting approaches. We use the following abbrevia-
tions: gKSS stands for the proposed test in Algo-
rithm 1; gKSS_B100 uses Eq.(14) as the test statis-
tic where B = 100, and gKSS_n20 denotes testing
the problem with n = 20 vertices. Results shown
in Fig. 1 are based on Weisfeiler-Lehman graph ker-
nels [Shervashidze et al., 2011]; results using other ker-
nels are shown in the Supplementary Material Section
E. EdgeKernel denotes the gKSS with a kernel be-
tween binary edges which corresponds to a test based
on edge counts. Re-sampling applies, e.g. EdgeK-
ernel_B100 indicates that 100 edges are re-sampled
from the network.

The Competing Approaches We list the goodness-
of-fit testing methods which serve as comparisons us-
ing the following abbreviations. Degree_full stands
for degree-based tests [Ouadah et al., 2020], where the
variance of degree counts on vertices are used as test
statistics. The suffix “full” indicates that all vertices
are used. The graphical tests for goodness-of-fit from
Hunter et al. [2008] simulate the null distribution of a
chosen network statistic from the null model as a visual
guideline for goodness-of-fit. We quantify this idea by
using total variation (TV) distance between distribu-
tions of network statistics of choice as test statistics;
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Figure 1: Simulation Results for E2ST Model

mGra stands for the modified graphical test, where
the TV distance is used to compare the distribution of
the summary statistics of choice. Full details are pro-
vided in the Supplementary Material D. We append
mGra by the summary statistics used, so that, for ex-
ample, mGraDegree uses the TV distance between
degree distributions as test statistics. Espart (or es-
partners) stands for edgewise shared partner [Hunter
et al., 2008]; MD_Degree stands for the test based on
Mahalanobis distance between chosen summary statis-
tics [Lospinoso and Snijders, 2019]. The suffix after
hyphen indicates that the vertex degree is used as net-
work statistics.

Test Results The main results are shown in Fig. 1(a).
We see that gKSS has higher power than the competi-
tors, while, as expected, larger re-sampling size per-
forms better. A denser networks can be easier to dis-
tinguish as higher subgraph counts are available com-
pared to sparser networks. In our experimental set-up,
the network size n = 20 is relatively small and the null
model, with 81 = —2, is fairly sparse. We observe that
mGraDegree has slightly higher power than gKSS
when (s < —0.3 so that the graph is sparser; it per-
forms poorly when the alternative model is closer to
the null, i.e. |B2| small 2. This may relate to using the
TV distance for comparing the degree distribution; the
phenomenon does not occur for MD_Degree. Over-
all, gKSS is more reliable and has typically higher
power compared to these competing methods.

Increasing Edge Re-sampling Size B Fig.1(b)
shows the test power of large networks up to n = 1000
vertices. The results show that the tests achieve
maximal power with a relatively small number of re-

2In particular, it did not identify the slightly denser
alternatives, which should be relatively easier problems.

sampling edges indicators. With the choice of re-
sampling size B and good test power with a relatively
small number of re-sampled edge indicators, gKSS is
applicable to networks with a large number of vertices,
beyond the reach of the graphical-based tests [Hunter
et al., 2008]. In particular, the proposed tests can
be useful in validating model assumptions in practical
problems where the networks have a large number of
vertices.

Computational Time The computational times for
each test are shown in Table 1. The gKSS tests are
faster than the mGra tests and of similar speed as the
less accurate full degree method. The slow mGra tests
are based on the computational demanding as well as
hard-to-scale estimation associate with the graphical-
based method in Hunter et al. [2008]. Its main com-
putational cost stems from simulating the null graphs
from ergm to compute the TV distances. Although
the Degree_full test is supposed to be fast with com-
putational complexity O(n) , due to the estimation of
the mean and variance of the degree statistics via sim-
ulating the null from ergm, its runtime is comparable
with gKSS_B50 with complexity O(B?) for B = 100.

n gKSS_B50 gKSS_B100 gKSS_B200
20 14.53 33.57 67.63
30 15.03 41.08 70.14
50 21.54 50.10 91.18
n Degree full mGraDegree mGraEspart
20 38.08 4596.67 4779.04
30 39.08 4840.66 4871.72
50 44.09 5127.74 5210.40

Table 1: The computational time for each test, in sec-
onds, for 500 trials.
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5.2 Real Data Applications

Next we apply our test to two benchmark social net-
work data sets which are analysed in Yin et al. [2019];
Lazega’s lawyer network [Lazega, 2001] consists of a
network between 36 laywers; the Teenager friendship
network [Steglich et al., 20006] is a friendship data set
of 50 secondary school students in Glasglow. More-
over, we apply our proposed test to large network, a
co-sponsorship network for pieces of legislation in the
U.S. Senate from Fowler [2006a,b]. The network data
used here are from Schmid and Desmarais [2017] and
consists of 2825 vertices and 28813 edges. For all three
networks we fit an ER model with the maximum like-
lihood estimate as edge probability, an E2ST model,
and an ER(a*) model using as edge probability a* cal-
culated from the E2ST fit, or, for the co-sponsorship
network, calculated from fitting an additional model
detailed below. Table 2 summarises the results.

For the Lawyer network, Lazega [2001] suggests an
ER model. Our test does not reject this null hypoth-
esis when testing against the best fitted ER graph,
with edge probability p = 0.055, which supports the
assumed model. The fitted E2ST model with g =
(—2.8547,—0.0003,0.6882) is rejected at a = 0.05.
This E2ST is close to an ER graph with g, = —2.774
and the corresponding ER(a*) model is not rejected at
significance level a = 0.05.

For the Teenager network, the fitted ER model with
p = 0.046 is rejected at o = 0.05; for the fitted E2ST
model in Eq.(15) with 8 = (—2.3029, —0.3445, 2.8240)
we do not have strong evidence to reject the null at
a = 0.05. The corresponding ER(a*) model is also
not rejected at a = 0.05. In particular the maximum
likelihood estimator does not give the best fitting ER
model.

The co-sponsorship network is well fitted by the ER
graph with edge probability p = 0.0072. In contrast,
the fitted E2ST with 8 = (—6.4126, —0.0240, 2.4684),
is rejected at a = 0.05. Additionally we fit the ERGM
proposed in Schmid and Desmarais [2017], which in-
cludes party homophily [Zhang et al., 2008] and the
alternating k-star statistic [Snijders et al., 2006]:

q" () < exp {B1Eq(x) + B2I'(z; P) + B3Sai(x: N},
(16)

where P denotes the party assignment information
between the pieces of legislations, and T'(x;P) =
Zij x;; P;j; with the k-star count Si(x), the alternat-

ing k-star statistic is Sag(z; \) = Z;;(—%)k’%% (z).
We use the model ¢* with parameters fitted in Schmid
and Desmarais [2017], f1 = —5.884, By = 1.440,

B3 = 0.124, and the parameter in alternating k-stars
A = 0.4975. This model (with p-value=0.022), as well

n ER | E2ST | ER(a*)
Lawyer 36 | 0.280 | 0.012 0.152
Teenager 50 | 0.016 | 0.060 0.336
Co-sponsor | 2825 | 0.612 | 0.002 0.036

Table 2: Rejection rates for real networks. The results
marked blue indicate not rejecting and red the null

hypothesis at o = 0.05, using gKSS? with B = 200.

as its corresponding ER(a*) model are rejected at sig-
nificance level a = 0.05.

6 CONCLUSIONS AND
DIRECTIONS FOR FURTHER
WORK

In this paper we provide a novel goodness-of-fit test
for exponential random graph models using Stein’s
method. A key feature is that the test relies on the ob-
servation of only one network. Probabilistic properties
of the test statistic are analysed through comparison
with Bernoulli random graphs.

Directions for future work include a thorough analy-
sis of the interplay of the graph kernels used in the
RKHS and the GKSD. Adaptive methods for tuning
graph kernel hyper-parameters would be interesting;
see for example Gretton et al. [2012] or Jitkrittum
et al. [2017a].

Further, a large contribution to the computational cost
of GKSD stems from sampling from the null model;
an issue which affects all main methods for assessing
goodness-of-fit for exponential random graph models.
Developing a goodness-of-fit testing procedure based
on a single network observation which does not require
simulations from the null model is an exciting future
challenge.

Finally, the approach is of independent interest and
holds promise for adaptation to other random graph
models.
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