Supplementary Material: On the Faster Alternating Least-Squares
for CCA

1 Theoretical Analysis

Theorem 3.1 Given data matrices (X,Y) € R%*" x Rdv*n_if a,% > 2¢/B = U,%+17 Algorithm 1 then computes
®; and ¥p which are estimates of top-k canonical subspaces (U, V) such that sinfy < e and @;Cm@T =

WC,, ¥y =1 in T = O

2
g . . . .
——t>—log iterations. If accelerated gradient descent is used as
k41

1
z e(ai—a§+l)coseo)

the least-squares solver, the overall running time is at most

2 1
O((dk? + knnz(X, Y)r? (X, Y)1 ace Tk 1
((dh” + kmnz(X, Y)r* (X, Y) log (o2 *O']%+1)COSG(]) Or— Ohiy & e(o,%fa,%Jrl)cosﬂo)7

where d = max{d,,d,}, nnz(X,Y) = nnz(X) + nnz(Y), £(X,Y) = max{x(Cys), c(Cyy)},

tan max{@t, Omax(ihA,U), alnax(‘i’t7v)}
€] = max

Omax (P:,U) Omax (Q:,V)
— = max = .
£ tan min{@max(Pt,U), Gxnax(Qtvv)} ’ ¢ ) }

and ¢y = max{max =
2 { t 0min(P,0) " ¢ Omin(Qe,V

Proof We now follow the proof sketch given in the main text to conduct the analysis. Note that 6, £
max {Omax(Pr, U), Omax (P, V) } and we need to show sinbpax(®:, U) < € and sin Oy (P4, V) < € hold si-
multaneously. Recall that our update is

{ ®;11R1p1 = C;Cry (Cpy Cy i + &) — A%, R +E,
@111Se1 = Cpy CF (Crf Coy ¥ +my) — BT 1S, +7,
It can be equivalently written as

11 R Ry = (C1Cuy () CL® +€,) - 6@, 1R +&,) R,
@, 11818 = (C,}C],(C;1Coy ¥, + 1) — B¥,1S7" +7,) S,

vy

)

where

ﬁt{ I+R;"R;Y)"%, t>0 5 { T+S;7S; )%, t>0
I, t=0

We now focus on the first equation. Together with @tﬁt = <I>tﬁh it leads to the following augmented system:

Pt+1ﬁt_+11Rt+1ﬁt = B;1A¢Pt + 0y,

— T
A _ Cmycyylcgcy 7ﬂcmz B¢ _ sz 0
¢ Cax 0 ’ 0 Cu /'

P . —1 £\ =
Pt — < t ) Rt7 (st — ( C:L’:E Cmygt +£t )Rt

where

‘I)tflRtfl 0

Since @, is C,,-orthonormal, it is easy to see that P is Bg-orthonormal. To continue, we can write the SVD of
C,y as follows:
Cuy=C, (USV'T + U, X, V])Cyy,
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where (U, ,X |,V ) consists of the (rank(C,,) — k) remaining triples of the left singular vector in metric C,,,
singular value, and right singular vector in metric C,,, other than those in (U, X, V). It thus holds that
C,,C,, C,, = Csr (UX*UT + U, I UJ) Cy,

and accordingly, by Lemma I in Section 2, A, has the following Schur decomposition in metric By:

A,=B,( U ﬁl)<§ ;)(ﬁ U, >HB¢,

where notations can be found in Lemma I. Further, since 3 and B, (see Lemma I in Section 2) don’t share
eigenvalues by assumption that oy > ogy1, there exists (Golub and Van Loan, 2013) a matrix = such that

IEERICR

YE-EX,| = —3 and thus
Plugging the above equation and the Schur decomposition of A4 into the augmented system and then pre-multiply

= [1]

(2 2)-(4

=\ ', . _ \H
both sides by ( (I) '; ) ( U U, ) By, results in the following equation:
I = -1 - - H ~_ ~
< oI > ( U U, ) B¢Pt+1Rt+1Rt+1Rt =
0 I =2\ '/~ ~ \H I =\, . - \H
(01) (U UL)B¢Pt+<OI> (U ©.) B

Letting

=~ [

-1
1 . H
- (0 ) (U UL) B,P,
H
I —-E ) ~ o \H WyBsPy
= U U, ByP; = ( ~ )
( 0 I ( ) UEB(th
where Wy = U-U 1= the above equation then can be split into the following two equations:
{ it+1ﬁ;_|_11Rt+lﬁt = i )’V(t + W%Bas(st
?t—&-lﬁ;ﬁlRt—b—lﬁt = il?t + ﬁﬂ{_Bqﬁt
Hence, we have that
~ -~ -~ - -~ SN |
21 = Yt+1Xt_+11 = (Yt+1Rt_+11Rt+1Rt> (Xt+1Rt_+11Rt+1Rt>
-~ - — ° -1
= (ELYt + UJ_B¢6t) (2 X, + WUB¢,6t)
~ o~ ~ - ~ - -1
= (EJ_YtX;I + UEI_B(z,(stX;l) (2 + W%B¢6tX;1)
-~ o~ ~ SR - - -1
= (ELZt + UEBqﬂstXt_l (Z%{Zt) Z?Zt) (2 + W%B¢6tX;1)
S rTH 51 (75 \ o) 5 (s H < -1}
_ (2L +UUB,6,X, (zt zt) 7! ) Z: (2 +WHB,4,X; ) :
and thus that
- 0 - - - =L\ o b ~
Zzr =[] <2l +UUB,6,X; ! (thzt) z?) Zo [] (2 + WIHJB¢5t/X;,1)
t=T-1 /=0

-1



By Lemma 12 in Ge et al. (2016), sin HmaX(Pt7I~J') = ||ﬁIB¢Pt||2. We then can write that
510 Omax (P, U) = || Y|, < || Zr |, [ Xr ),
where

~ — ~ ~ H
[Xell, = [|(1 =) (T 0. ) B,

IN

0 =] (0 0], Pdas 120

1 ~
where the last equality with ||P[|, = [|[BZP¢|[2 = 1 is by the Bg-orthonormality of both ( U U, ) and Py.
What’s more, we have permutation matrix II, constant 1+~ = S048) " and diagonal matrix I' = diag (diag(l, 1+

ey
7),diag(1, 1+ 7),I) such that
IS, 17 = diag(Spi1,--, 5,,1), THS, T = diag(Egﬁl, . ,25”)71),

where aji is defined in Lemma I of Section 2, and

oh)?
s (7 “M+E@Y g of -
J O O.J— b .

Thus, we can write that

0
|Zrl|, = |mrt I (ro.mTret s rooiB,s,
t=T-1
I -1 o
X (20Z) "z rnzZ, [ (S+ WiBeeeX; ') |
t’'=0
T o N
Tl 1T l2]| Zo]l, T [|(Z + WEB6: X, ) ||2(||rnz:lnTrfl||2
t=0

HIT T 2| U L 108,21 X (ZHZ) T ZH, ),
(o)

IN

where ||T||2][ T2 = 1+~ and ||INJLHB¢72 = 1. The remaining factors above can be derived as follows. First,
note that Wy spans the top-k generalized eigenspace of the matrix pair (Ag,B,b) which has Bg-orthonormal

basis 6 (see Lemma I in Section 2). In fact, by the Schur decomposition of Ay, it holds that

A(I;WU = B¢([~I ﬁl)< ;H ;1)(1 _E)H:B¢(ﬁ INJL)((E—EEL)H>
1

B,(U U, ) ( (—§E)H ) — B,WyS.

1

Letting G = (I + Z2")2, we have that |G| < 1 due to G = I, and WyG~! = UO for a certain unitary
matrix O € C¥**¥. Consequently,

1Zoll, = [[¥oX5*[l, < X5 [l, = [(WuG H"ByPo) "G,
~ H —1 —1 1
< IO BaPo) I, = [[(DAUCoa®o) I, =~ 5r5mE, a0
1 B2+ (of)?
<

<
Umin(D(ﬁ))Umin (UHCmrQO) - U];i_o'min (UHwaq’0> ’
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where Umin(j represents the minimum singular value of a matrix. Similarly,

~ ~ H _
X, < (1T BsP) |,

IN

Qg

~ H
U ByP,) (U"B,P UByP) |, = — =
1(T B,P,)  (THB4P,) |, (T"BP,) |, 03 Omne(P1. 0)

IN

)

~ H 1~
where ag ¢ = H (U ByPy) ! (UHB4P) H2 and Lemma 12 in Ge et al. (2016) is used in the last equality. Noting
that ||C|l < oy <1 and ||Ry||2 < 1 as 0 < Ry < L, it holds that

1 CLlCLE +E ) R
18¢ll,.2 = Bi< e £t>Rt < (IClalé o, G 2) IRz
2
< oy, 2+ [lEdle,,
~ o 1
(E+WEBo X)), < S X,
|| U ki ||2 Umin(z)_HWUHB¢>72||5||B¢’2HXt1H2
1

<

o — apa(L+ [E2) (€ llcy, 2 + €l o)/ 08 fmax(Pr, O)

Also, we have that

ST B i _ ™) 4 Lt6
IPIE I T, = k+r{12jx<r 1257112 < kﬁlg%r('% I+ 1+’Y)
+_
VBt +B = VB+ 2 v,
and that
X720z 2, = XX X) T X, = (YY) Y
~e 1 e 1~ ~ e 1
= OY) 2L () 2 Y, = (1YY ) 2,
- ~ _1 . _1
= [[((UIBP)"(ULB,Py)) *[|, = [|(T- P'B,UU"BsP:) |,
o 1 _ 1 _ Co,t
\/1 _ Ur%lax(P%{Bqﬁﬁ) sin gmin(Pt; U) Cot sin Qmin(Pt, U)
< Co,t _ _ Co,t _
T sin(cy Omin(Pr, U))  sinbOpax (Py, U)’
where ¢y = %ﬁ“g;, the inequality is by the fact that |sin(nz)| < nsin(x) for any natural number and real

x, and the fifth equality is due to that ( U INJL ) is unitary in non-Euclidean metric By, i.e.,

(0 0.) '8, (0 0.)=B}(0 0.)(0 0.) Bl-1

and thus
BiU,UYB: —1-BIUU"B;.
If
~ VB Omax(Py, U) sin Opax(Py, U)
ag COS S1n
< k . { max ty max ty }
werlleden s e, .} < G i3 TR age o



we then get from the results derived above that

B2+ (07)2)orf .

sSin ( T ) ( +FY)( +|| ‘|2)0min(UHCxazq)())

i ot —yp | 2esatEnmax{llg oy, 2 ||& o, )
Tl \/B+ : 8 + $in bpax (P, U) e
bubir U+ _ 2&¢,t(1+|\5|‘2)max{Hstuczy’2’||€‘| cm,z}
k €08 Omax (P, U)
T
8+ (07 /ot B+ 52
< Q4+y0a+ = ’
< @+NA+(E[-2) Tmin (UHC,, B0 of — U:;\/g
T

where
L T
Y (a,j+3ﬁ)T<<1_2(a,j—\/B)>
3o +vVB) 3o + VB

Oy — 7 2
(1M)T§exp{ % ~VBT,
o

IN

k

and
VS VIR B /ot —2v5( w,wmwzm
o - op /o op +

\/01%_2\/B'Uk_ —2 O’k+1
20,% (Tk (Tk

Thus, we have that
L+ ) +Ell2)4/ B2 + (o) /o

i Oax (P, U) <
sin Omax (P, U) min {omin (URC, @), omin (VEC,, ¥o) }

+
— o2
Y e/ H—:
o ky/1+ (o)
and thus sin O, (P71, U) < € by Lemma 3.4. Solving the last equation for T yields that

2 B(L+7)(1+ B2y (1+ ()2) (82 + (o7)?)

T=4 k1o
Or = Oriq & (07)2ecos Oy

max {Qmax (<I>0, U) Omax(\Ilo, )} By SE-EY, = —E, we have that (Golub and Van Loan, 2013)

where 6y =
~ - - o IZE-ESr .
1X]r =28 -EX,||lr = ”:HFW > ||| Fsepp (2, 21) ,
and that
< min|AE) = ML) < off —oy = /ot —48

SepF(ia EL)

Vot—ot =02+t —ot,)
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where sepp(+,-) represents the separation between two matrices in Frobenious norm and A(-) represent an ar-
bitrary eigenvalue of a matrix. Thus, we have that ||E|ly = O(——=2—). Besides, 1 + vy = —18 _ <
Tk~ %k+1 8(o —vB)
1+8 i
ey Thus, we can write that

T=0 % !
= (0] .
op —0py & (o7 — o7, )ecosby

~ + v
Analogously, we also have sinfn,.x(Qr,V) < kgi’“e, where Q; = ( !

U, St

oD )St, and thus

Sin Opax (P, V) < €. Therefore, we get that
sin O7 = sin max{Omax (@7, U), Opnax (P, V)} < €.
On the other hand, in each iteration, we need to solve four least-squares subproblems in order to make the error

conditions on, e.g., £, and Et, satisfied. This part of complexity can be obtained using Lemmas 3.2-3.3 as follows.
First, by Lemma 3.2, the complexity of getting &, as small as required previously is

o (2,")
O (nnz(X) +nnz(Y)4/k(Cyy) log NANA

and the ratio of the initial to final error can be further written as

(0) 2
v { Vv
log Et( ¢ ) = O(log tan max{amax(q)g ) Omax (P, )})
Et(‘IIt) ||£tHny,F

c? tan? O ax (Py, I~J)

= 0| log - _
(O.+ o \/B)z min { cos* Gmax(Pt;U) sin ma2x(Pt7U)}
k (75 . ) 2,
-2 i
S HIII X P b U 1
= 0 [ tog (LptCottl pype S PP 1), —1) ),
O — Uk—i—l COS4 emaX(Ph U) COSQ emax(Pta U)

where the numerator in the second equation is by c¢;’s definition in the theorem, and

5111 emax(PuU) 1 _
0 (log max{ cos? Omax (P, U) cos? Omax(Pt,ﬁ)} - O(
O(1). Also, we have that

log m) when GmaX(Pt7I~J') is large, otherwise

ase = [|(0 BoP,) " (UBP) |, < (T BsP) ',
1 1 1
<

=~ ~ H
€08 Omax(Py, U) - cosbOnax(Po, U)o, (U ByPy)

\/52 (o7) /Ok

Omin (U Cax q’O

1 B 1 o VIO

Ccos emax(Po, ﬁ) Omin (ﬁHB¢P0) " Omin (U Cm‘I’o)

( see Page 3 on ||ZOH2 )

and similarly,

Thus, we can write that

(0)
€t (\I’t ) C1C2
10g ———2 = 0 IOg
Gt(‘Ilt) (UI% - 0'1%+1)0'min (UHC:pz‘I’O)

O|lo )
& (0} — o}, ) min {0min (UNCuu®0), 0min (VIC,, ¥o) } |



where ¢o = max{max¢{cg}, max;{cy}}. Similarly, by Lemma 3.3, the complexity of getting €, as small as
required previously is

~ (&0
O<nnz( + nnz(X)+/k(Cq,) log ((I) )>

t t
&(®)

()

(@)

and log can be further written as

(U% + ”51‘”20 7F) tan2 max{omax(&)t, U)7 omax(‘/I\lta V)}
O(log e

€. <

_ Oflog tan? max{Gax (21, U), Omax (Tr, V)}

),

€1, r

Ty

where we have used that oy < 1 and [|§;]|c,,,r < 1. The cases for n, and 7, are similar as well. We thus have
the following overall complexity:

O | dk®T + kTnnz(X,Y K2 X,Y)lo a2 ) ,
( ( e ( ) log (07 — 0741)cos b
where d = max{d,,d,}, nnz(X,Y) = nnz(X) + nnz(Y), and £(X,Y) = max{x(Cys), k(Cyy)}. O

Lemma 3.3 Consider the least-squares subproblem rr}Ii)nlAt((I)), for which the minimizer and the objective sub-

C;lCuy ¥, and &(®) = 1(®) — 1(®}) = 3|® — ®}[|%, p. We have

optimality gap can be expressed as </I\>§
that

—~ /= (0 N
&(@") < 8k(o? +Il€,]12,, ») tan? 8,

a(®”)
R R o R R R & (®e)
complexity to get the final sub-optimality €;(®;), where <I>,EO) = @t(QItTCm{)t)’l({)tTCmy\Ilt), lAllB2 =
IB2zA|2, and 6; = max{fmax (P, U), Omax (¥, V)}. Parallel results hold for m‘Iiln hi(¥) as well.

for the initial sub-optimality, and accelerated gradient descent takes O(nnz(Y) + nnz(X)k? (Cyy ) log

Proof Noting that ;I\>f = C;lezy\/I\’t and

~ o~

1 - N I
I(®7) = —5tr (‘I’tTC;yC;xlCzy‘I’t) + %”YT‘I’tH%
we have that

||<I> o7, r

TT

%tr ((@ — ) Cuu(® - @;))
= tr (;qﬂcm ~®7C.®; + ;@:)Tcm‘f’?)
= tr (;qﬂcmgb -37C,, ¥, + ;@Ic;ycmcmy@t)
= L(®) - 1(®]) =@(®).

Setting B%Z\t(‘/f'tf) = @;Cm‘/ﬁtf — @:ny\ilt = 0 yields the optimal

— (®/C,. ) '®/C,,T,.
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Thus, °) = &,T*. Noting that C,, = C,,(USVT + U, X, V])C,,, it holds that

2¢,(®(")

IN

Gt

= | UTCa(®.F — &)} + UL Can(®.T - &7)][3,

= ||UIC.&T - UlC, ¥ (letT=(UTC.Ld) 'UTC,.®; )
— ||UIC.®(UTCd,) 'BVTC,, ¥, - £]V]C,, ¥

< 2(|[UICL B (UTCo®) " [SISIBIVTIZ,, o T,

~ - ~ - ~ 1
HIS LB VIC,, BT Cyy @)~ ]| (87 €, 1) 2 13)

= 2k<a%tan29max(<f’t,U)+J,%H si]f129nmx(\il,g,V))H\f’tH?j )
Yy

2

< 4]4:”@t N tan? max {Omax(II\Jt,U),Hmax(lilt,V)},

Yy

where we have used that o1 < 1 and additionally,

1®,,2 = 1CnCLe +&lc

Yy Y yy72

IA

2(|[cI3e

2 2
2 + ||£t’ ny,Q) - 2(0—% + ||£t| C?/?/72).

Ty

Thus, we can write that
R 2 =~ =~
& (®7) <sk(o?+ e lg, ) tan® max {Buax(B1, U), s (¥4, V) }.

The proof completes by noting that lAt(<I>) i8 Amax(Cgz)-smooth and Apin(C,.)-strongly convex and using the
complexity of Nesterov’s accelerated gradient descent (Nesterov, 2014). The case for the least-squares subproblem

ming Et(\Il) is analogous. O

~ ~ 2, /A
Lemma 3.4 If sin max{fmax(P7,U),0max(Qr, V)} < k\/% where o = W, it holds that
sin max{fmax (®7, U), Gnax (T, V) } < €. '

~ +
Proof We only show that if sin 6,5 (P, U) < —~2°— then it holds that sin 0., (®7, U) < ¢, because the

N ky/14+(o})2

case of Opnax(Qr, V) is analogous and then it is easy to see the lemma holds.

Note that
[T"BsPr|} = k—|UIBPr|} >k — k| UIB,Prlf3
) - a.+ 262
= k—Eksin®Opax(P7,U) > k — W
and
T 2
@Bt = | (W) B g, " )R

2

IA
N
~
—
-
N—
e
N
Q
8
8
]
~
N—
_|

2
= 1 (1)? | @ Copry ||, + v5(1)? | @], Cronss




for any j = 1,--- ,k, where u; is the j-th column of U, pj(c) and () are given in Lemma I of Section 2. If

2 2 .
@7 Caeuy ||, < 1— 5 for some 5/, there must be

~ 2 2
@ BsPrl3 < 1 (1)? || @7 Canuyr||, + v (1)? || @71 Cawuyr |,
2 e? 2 2 2 2 €
<y (U7 = ) v (1) = e (17 + vy (1) = g (1)
2 (U+)262
< 1—pp(1)?—=1- k ;
et K1+ (o))
and then
k
. _ (o )2¢ (o} )%
HUHB¢PT|\%: ||uHB¢PTH§ <l-——+4+k-1=k— —2F——|
jz:; ! k(1 + (07)?) k(1 + (07)%)
contradiction. We thus have ||'1>;Cmuj||z >1-— % for all j =1,--- ,k and then

k 2
2 2 €
(70Ul = L |7 Cucny [ > k1~ =k

We thus get that

Sin Opax (P17, U) < [|sin@(®7, U)|l2 = |[U] Cou®rl|lr < \/k —[[UTCu®r||% =€

2 Auxiliary Lemma

Lemma I. Ay and Ag have the following Schur decompositions in non-Euclidean metric B:

A, =B, (T m)(% s J(v o )",

= = K X = = H
A§:B¢(U UL)<0 i, (U UL) By,
respectively, where both ( U U n ) and ( 6’ 6‘ n ) are By-unitary, U | represents U’s B-orthogonal com-

a?:l:, /0'?745
P} ;

plement, and J;t =

5 _ (UD()) & _ (UD(p) of a
UZ(UJ(11)>’ U= (—UJ(B))’ Mj(a)z\/ma Vj(a)z\/m,

D(a) = diag(p(a), -, pr(a)), J(a) = diag(vi(a), - ,v(a)),
/3t LY o (3 Le) o
S = 0o = o |, A= 0o =7 o |,
0o o0 0 0 ¥
S—A=3t S=(0 0 -1+81), A=(0 0 (1+8)),

1
=t =diag(of, - ,0)), ZT = diag(ofeﬁrl, coy0d ), La)=al+ —(Z7])?%
® «
37 =diag(oy, - ,0,), X = diag(a,;l, e vJ;dJ)'

If o; = 24/ then corresponding entries in blocks L(—1) and L(3) are replaced with (14 f).



Manuscript under review by AISTATS 2021

Proof We have that

C.,C;Cl, —BC.. C.. O
A¢< o e ) Bl e )

where CmyC;lc;ry = C,, (U§)2U—r + UJ_EiUI) C... We can assume that ( U U, ) = (ug, - ,uy,) are

y
orthogonal in metric C,, with 3, = diag(og41,---,0.,0,---,0) € R(de—k)x(dz=k) *where r = rank(Cgy).
Similar to Proposition 9 in Xu et al. (2018), (A4, By)’s generalized eigenpairs can be written as (O'ji, uf) where

24, /foi—4 fu;
a]jF = w and qu = ( Uﬂu Y ) Note that when 0]2 = 2B, ie, Uf with algebraic multiplicity
J

of 2, uf supplies only one generalized eigenvector u;r, ie., O'j+ with geometric multiplicity of only 1. One

“generalized” generalized eigenvector of (Ay,Bg) corresponding to O’;-r = /B, i.e., the solution to the equation

(Ay — V/PBBy)z; = By, ( \/Euj ) in z;, is needed. It is easy to see z; = ( l(l)J ) For notational convenience,
J

denote u; = z; in this case. (Ay,By)’s 2d, generalized eigenvectors or “generalized” generalized eigenvectors
now can span C2% in metric B, and thus we can write that

+ .- + 44— + - + 1) d of & or  On
A¢(u1,u1,-~-,un,un):B¢(u1,u1,--~,un,un)dlag 0 N R ° ,
0y On
where §; = 0 if 0,7 # o, otherwise 1. Letting (u}', u;) = (g1, ﬁgj)f{j representing B-orthonormalization of

(u;r, u;) in C?*, we then can write that

3 s

~ + 5 ~ ~ + ~
A¢ :Bti) (ﬁla"' 7ﬁ2dm)diag<R1 (Jol 0_11—)R1_17"’ aRn (Jn o )Rn1> (ﬁla"’ 7ﬁ2dm)HB¢
2B, USUB,,

where U is By-unitary and thus ﬁﬁHB¢ = I. After some algebraic manipulations and permutations, we will

arrive at USUH = (U, U.)2(U, U )", where (U, U,) is B,-unitary and

o= ( U3 ) Ez(% ii)

as described in the lemma. Thus, we have that

A, =B, (0 ih)(% 2 )(ﬁ 0. ) B

»

It is analogous for (Ag, B,), except for the generalized eigenpair being (Uj-t, uf) with ujﬁ = ( iﬂﬁlllli ) O
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