
On the Faster Alternating Least-Squares for CCA

Zhiqiang Xu, Ping Li
Cognitive Computing Lab

Baidu Research
No. 10 Xibeiwang East Road, Beijing 100193, China
10900 NE 8th St, Bellevue, Washington 98004, USA

{xuzhiqiang04,liping11}@baidu.com

Abstract

We study alternating least-squares (ALS) for
canonical correlation analysis (CCA). Recent
research shows that the alternating least-
squares solver for k-CCA can be directly
accelerated with momentum and prominent
performance gain has been observed in prac-
tice for the resulting simple algorithm. How-
ever, despite the simplicity, it is difficult for
the accelerated rate to be analyzed in theory
in order to explain and match the empirical
performance gain. By looking into two neigh-
boring iterations, in this work, we propose an
even simpler variant of the faster alternating
least-squares solver. Instead of applying mo-
mentum to each update for acceleration, the
proposed variant only leverages momentum
at every other iteration and can converge at
a provably faster linear rate of nearly square-
root dependence on the singular value gap of
the whitened cross-covariance matrix. In ad-
dition to the high consistency between the-
ory and practice, experimental studies also
show that our variant of the alternating least-
squares algorithm as a block CCA solver is
even more pass efficient than other variants.

1 Introduction

Canonical correlation analysis (CCA) is a statistically
ubiquitous technique for finding maximally correlated
components of a pair of data sources to characterize
the common variability. It has been widely used in
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the high-dimensional data analysis including regres-
sion (Kakade and Foster, 2007), clustering (Chaud-
huri et al., 2009), classification (Karampatziakis and
Mineiro, 2014), and word embedding (Dhillon et al.,
2011), among others. Formally, given two data matri-
ces X ∈ Rdx×n and Y ∈ Rdy×n, the empirical cross-
covariance matrix and two empirical auto-covariance
matrices can be written as follows:

Cxy = 1
nXY>, Cxx = 1

nXX> + rxI,

Cyy = 1
nYY> + ryI,

respectively, where rx and ry are regularization param-
eters for avoiding ill-conditioned matrices, and I rep-
resents the appropriately-sized identity matrix. The
goal of the block CCA, or k-CCA where k ≥ 1, then is
to find projection matrices Φ ∈ Rdx×k and Ψ ∈ Rdy×k
such that the sum of the top-k correlation coefficients
between X and Y is maximized after projections:

max
Φ>CxxΦ=Ψ>CyyΨ=I

tr(Φ>CxyΨ). (1)

The maximizer of Problem (1), denoted as (U,V),
can be given by the k-SVD of the whitened empirical

cross-covariance matrix C = C
−1/2
xx CxyC

−1/2
yy . That

is, if (U,Σ,V)
k−SVD

== svds(C, k) in MATLAB format
where U and V represent the top-k left and right sin-
gular subspaces of C, respectively, and diagonal entries
of the diagonal matrix Σ are the top-k singular values
of C, then we have that

(U,V) = (C
− 1

2
xx U,C

− 1
2

yy V)

and the maximum value is tr(Σ), where (U,V) is
actually the top-k singular subspace pair in non-
Euclidean metric (Cxx,Cyy) of the space Rdx × Rdy ,
often called the top-k canonical subspace pair. In
the high-dimensional data analysis, both the formation
(i.e., whitening of the cross-covariance matrix) and k-
SVD of C are computationally prohibitive.
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Recent research has been focusing on addressing the
above issue in various settings (Yger et al., 2012; Lu
and Foster, 2014; Ma et al., 2015; Ge et al., 2016;
Wang et al., 2016; Allen-Zhu and Li, 2017; Gao et al.,
2019; Arora et al., 2017; Chen et al., 2019; Bhatia
et al., 2018; Xu and Li, 2019), by exploiting the data
sparsity and leveraging stochastic optimization meth-
ods such as SGD (stochastic gradient descent, Bottou
(2010)) or fast stochastic optimization methods such
as SVRG (stochastic variance reduced gradient, John-
son and Zhang (2013)) and accelerated SVRG (Frostig
et al., 2015; Lin et al., 2015). In this work, we fol-
low Xu and Li (2019) to consider the block and offline
setting, i.e., k ≥ 1 and the data pair (X,Y) is ready
for use. Alternating least-squares (ALS) as a block
CCA solver (Ge et al., 2016) is probably most popular
in this setting, by virtue of the simplicity and guaran-
tee of convergence (Ge et al., 2016; Xu and Li, 2019).
In particular, Xu and Li (2019) proposed the faster
alternating least-squares (FALS) with momentum ac-
celeration. However, despite the excellent performance
in practice, the FALS has not been theoretically justi-
fied, due to lack of a theoretical convergence rate that
can match better empirical performance than that of
the plain ALS. This seems quite difficult to tackle di-
rectly. Nonetheless, by looking into two neighboring
steps of the current FALS, we find that there actu-
ally exists an even simpler algorithm that we call ac-
cALS. Instead of applying momentum to every update
as with the FALS, the accALS essentially leverages mo-
mentum only at every other iteration. Importantly,
this change makes it amenable to a theoretical analy-
sis that eventually yields a provably faster linear rate
of nearly square-root dependence on the singular value
gap of the whitened cross-covariance matrix. For prac-
tice of the proposed algorithm, two pragmatic strate-
gies from Xu and Li (2019), i.e., coupling the update
equation pair and adaptively estimating the momen-
tum parameter, are considered. We conduct experi-
ments on the commonly used real datasets to evaluate
our practical algorithm and compare it with the latest
variants of alternating least-squares for CCA. Experi-
mental results show a high consistency between theory
and practice, and the accALS is even more pass effi-
cient than the FALS.

The rest of the paper is organized as follows. Sec-
tion 2 discusses recent literature on the CCA solver.
Section 3 derives our simpler variant of the faster alter-
nating least-squares and then proceeds with its anal-
ysis. The practical implementation of the algorithm
is presented in Section 4 and then followed by experi-
mental evaluations in Section 5. The paper concludes
in Section 6.

2 Related Work

To accommodate different settings, there exist various
types of CCA solvers (Yger et al., 2012; Gao et al.,
2019; Arora et al., 2017; Chen et al., 2019; Bhatia
et al., 2018; Arora and Marinov, 2019). For readers
who are not familiar with CCA, we make a succinct
comparison between them. The ALS solver (Ge et al.,
2016) derived from the power method is simple, easy-
to-use, and theoretically guaranteed to work without
acceleration. But it only works for the off-line setting
where data needs be ready for use. The streaming
solver (Bhatia et al., 2018) can work for the on-line
setting but converge very slowly (sub-linear rate). The
(SGD) solver lifted via convex relaxation (Arora et al.,
2017) requires a huge per-iteration cost and consumes
significantly much more memory, albeit with guaran-
tee of low iteration complexity. The (shift-and-invert)
preconditioning solver (Wang et al., 2016) requires a
non-trivial estimate on singular value gap and can only
deliver the solution in a recursive and sequential way
via deflation when k > 1.

We next focus on the recently proposed off-line k-
CCA algorithms. The randomized CCA algorithm for
two tall and thin matrices proposed in Avron et al.
(2014) first reduces the dimensionality of the matri-
ces by random projection and then feeds them to an
existing CCA algorithm. The drawback of this algo-
rithm lies in quite a high complexity in theory and not
working for large dx and dy. Noticing this issue, Lu
and Foster (2014) decomposed the problem into a se-
ries of iterative least-squares subproblems. However,
the coarse approximation leads to only sub-optimal
results. Ma et al. (2015) proposed the stochastic opti-
mization of CCA with a cheap per-iteration cost but
lacks of guarantee of global convergence. Moreover,
the empirical performance seems not good compared
to the subsequent CCA solver like CCALin (Ge et al.,
2016). Wang et al. (2016) proposed inexact alternating
least squares for 1-CCA but achieved only a sub-linear
convergence rate. Ge et al. (2016) considered inexact
alternating least-squares for k-CCA with block size 2k
and achieved a linear convergence rate. Using nota-
tions of Section 3.1, update equations can be written
as {

Φt+1Rt+1 = C−1
xxCxyΨt + ξt

Ψt+1St+1 = C−1
yy C>xyΦt + ηt

,

where Rt+1 makes Φt ∈ Rdx×2k Cxx-orthonormal1

and St+1 makes Ψt ∈ Rdy×2k Cyy-orthonormal for
t ≥ 0. As noted in Xu and Li (2019), it is not memory

1That is, Φ>
t CxxΦt = I.
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efficient enough and can be improved as:{
Φt+1Rt+1 = C−1

xxCxyΨt + ξt

Ψt+1St+1 = C−1
yy C>xyΦt+1 + ηt+1

, (2)

such that Φt ∈ Rdx×k and Ψt ∈ Rdy×k. Xu and
Li proposed the inexact Riemannian gradient method
for dominant generalized eigenspace computation and
applied to k-CCA. However, the theoretical complex-
ity depends quadratically on the eigengap. Wang
et al. (2016) extended the shift-and-invert precon-
ditioning from 1-PCA (principal component analy-
sis) (Garber et al., 2016) to 1-CCA. Allen-Zhu and
Li (2017) extended the preconditioning method to k-
CCA with deflation, i.e., delivering maximally corre-
lated components one after another instead of simul-
taneously. Although the preconditioning method can
achieve greater performance than alternating least-
squares, the sequential delivery may not be suitable
for some of the downstream tasks. Also, this method
is not easy to use in practice due to the non-trivial
parameter estimation (e.g., singular value gap) (Wang
et al., 2016), and even more so in the block case. Con-
trastingly, the faster alternating least-squares outper-
forms the plain alternating least-square without those
limitations for k-CCA (Xu and Li, 2019), because it is
nearly as simple as the plain alternating least-squares
and can run with the adaptively estimated momen-
tum parameter to find the approximate top-k canon-
ical subspace pair at a time. However, as we men-
tioned in Section 1, the faster rate of convergence is
not theoretically justified. In this work, we put for-
ward an even simpler algorithm than the current faster
alternating least-squares, with a provably faster rate.
Empirically, our practical version further improves the
pass efficiency over the predecessor.

3 Proposed Algorithm and Analysis

In this section, we derive a simpler and faster alter-
nating least-squares algorithm for k-CCA to sidestep
the difficulty of the analysis on the current faster al-
ternating least-squares, and then show its theoretically
faster rate of convergence.

3.1 Algorithm

Recall that on top of the vanilla (truly) alternating
least-squares, i.e., Eq. (2), Xu and Li (2019) proposed
the following update equations of the faster alternating
least-squares for k-CCA with momentum acceleration:{

Φt+1Rt+1 = C−1
xxCxyΨt − βΦt−1 + ξt

Ψt+1St+1 = C−1
yy C>xyΦt+1 − βΨt + ηt+1

,

where Φt ∈ Rdx×k is Cxx-orthonormal and Ψt ∈
Rdy×k is Cyy-orthonormal for t ≥ 0, Rt+1 =

(Φ̃>t+1CxxΦ̃t+1)1/2 with Φ̃t+1 = C−1
xxCxyΨt−βΦt−1+

ξt, and St+1 = (Ψ̃>t+1CyyΨ̃t+1)1/2 with Ψ̃t+1 =
C−1
yy C>xyΦt+1 − βΨt + ηt+1. In the above update

equations, ξt and ηt+1 are errors in approximat-
ing C−1

xxCxyΨt and C−1
yy C>xyΦt+1 by a least-squares

solver, respectively. In addition, −βΦt−1 and −βΦt

are momentum terms with β being momentum param-
eter. The algorithm of this faster alternating least-
squares, i.e., Algorithm 2 in Xu and Li (2019), is ex-
pected to have a theoretically faster linear convergence
rate than the plain alternating least-squares, i.e., Al-
gorithm 1 in Xu and Li (2019). However, only a local
and even worse linear rate in Theorem 4.1 in Xu and
Li (2019) was given that does not match the empirical
performance at all. It seems quite difficult to analyze
it directly in theory. Particularly, we expand the up-
date equations for two consecutive steps and then get
that

Φt+1Rt+1 = C−1
xxCxy

(
C−1
yy C>xyΦt − βΨt−1

+ηt
)
S−1
t − βΦt−1 + ξt

Ψt+1St+1 = C−1
yy C>xy

(
C−1
xxCxyΨt − βΦt−1

+ξt
)
R−1
t+1 − βΨt + ηt+1

.

Since the right-hand side of each equation above in-
volves both Φt and Ψt at one to two time steps, the
analysis would be much more complicated than that of
the update equations without momentum where only
one term at a single time step is present (see the proof
of Theorem 1 in Xu and Li (2019)). For this reason, we
consider the following simpler two-step update equa-
tions instead:

Φt+1Rt+1 = C−1
xxCxy

(
C−1
yy C>xyΦt + ξt

)
−βΦt−1R

−1
t + ξ̂t

Ψt+1St+1 = C−1
yy C>xy

(
C−1
xxCxyΨt + ηt

)
−βΨt−1S

−1
t + η̂t

, (3)

where ξt and ξ̂t now are errors in approximating

C−1
yy C>xyΦt and C−1

xxCxyΨ̂t with Ψ̂t = C−1
yy C>xyΦt +

ξt, respectively. Similarly, ηt and η̂t are the errors

in approximating C−1
xxCxyΨt and C−1

yy C>xyΦ̂t with

Φ̂t = C−1
xxCxyΨt + ηt, respectively. Rt+1 and St+1

are defined the same way as before, except that now

Φ̃t+1 = C−1
xxCxyΨ̂t − βΦt−1R

−1
t + ξ̂t,

Ψ̃t+1 = C−1
yy C>xyΦ̂t − βΨt−1S

−1
t + η̂t.

This means that the resulting algorithm, denoted it
as accALS, alternates between the update equations
of the plain alternating least-squares and those of the
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Algorithm 1 accALS

1: Input: data matrices (X,Y), block size k, momentum parameter β, iteration number T .

2: Output: approximate top-k canonical subspaces (ΦT ,ΨT ).

3: Set Φ−1 = 0, Ψ−1 = 0, Φ0 = Φ̃(Φ̃>CxxΦ̃)−
1
2 , Ψ0 = Ψ̃(Ψ̃>CyyΨ̃)−

1
2 , where Φ̃ and Ψ̃ are entry-wise i.i.d.

standard normal

4: for t = 0, 1, · · · , T − 1 do

# Perform plain alternating least-squares updates

5: Φ̂t ≈ arg min
Φ∈Rdx×k

lt(Φ) which starts from the initial Φt(Φ
>
t CxxΦt)

−1(Φ>t CxyΨt) to approximately

minimize lt(Φ) = 1
2n‖X

>Φ−Y>Ψt‖2F + rx
2 ‖Φ‖

2
F

6: Ψ̂t ≈ arg min
Ψ∈Rdy×k

ht(Ψ) which starts from the initial Ψt(Ψ
>
t CyyΨt)

−1(Ψ>t C>xyΦt) to approximately

minimize ht(Ψ) = 1
2n‖Y

>Ψ−X>Φt‖2F +
ry
2 ‖Ψ‖

2
F

# Perform faster alternating least-squares updates

7: ̂̂Φt ≈ arg min
Φ∈Rdx×k

l̂t(Φ) which starts from the initial Φ̂t(Φ̂
>
t CxxΦ̂t)

−1(Φ̂>t CxyΨ̂t) to approximately

minimize l̂t(Φ) = 1
2n‖X

>Φ−Y>Ψ̂t‖2F + rx
2 ‖Φ‖

2
F

8: Cxx-orthonormalize ( ̂̂Φt − βΦt−1R
−1
t ) such that ( ̂̂Φt − βΦt−1R

−1
t ) = Φt+1Rt+1,

where Rt+1 = (( ̂̂Φt − βΦt−1R
−1
t )>Cxx( ̂̂Φt − βΦt−1R

−1
t ))

1
2

9: ̂̂Ψt ≈ arg min
Ψ∈Rdy×k

ĥt(Ψ) which starts from the initial Ψ̂t(Ψ̂
>
t CyyΨ̂t)

−1(Ψ̂>t C>xyΦ̂t) to approximately

minimize ĥt(Ψ) = 1
2n‖Y

>Ψ−X>Φ̂t‖2F +
ry
2 ‖Ψ‖

2
F

10: Cyy-orthonormalize ( ̂̂Ψt − βΨt−1S
−1
t ) such that ( ̂̂Ψt − βΨt−1S

−1
t ) = Ψt+1St+1,

where St+1 = (( ̂̂Ψt − βΨt−1S
−1
t )>Cyy( ̂̂Ψt − βΨt−1S

−1
t ))

1
2

11: end for

faster alternating least-squares. We next elaborate on
the proposed algorithm.

The pseudo code of the accALS algorithm is described
in Algorithm 1. It starts from initializing Φt and Ψt

for the first two steps t = −1, 0 in Line 3. Partic-
ularly, Φ−1 = 0,Ψ0 = 0, and Φ0 is obtained from
Cxx-orthonormalizing an entry-wise standard normal
matrix Φ̃ of size dx × k. The case of Ψ0 is similar.
Each step2 of Algorithm 1 first performs the plain
alternating least-squares updates: C−1

xxCxyΨt is ap-

proximated, in Line 5, with Φ̂t = C−1
xxCxyΨt + ηt by

a least-squares solver; C−1
yy C>xyΦt is approximated, in

Line 6, by Ψ̂t = C−1
yy C>xyΦt + ξt similarly. In general,

a few iterations suffice for the least-squares solver. The
faster alternating least-squares updates are then per-
formed, starting from approximating C−1

xxCxyΨ̂t witĥ̂Φt = C−1
xxCxyΨ̂t+ ξ̂t by a least-squares solver in Line

7. Line 8 proceeds to Cxx-orthonormalize Φ̃t+1 =̂̂Φt−βΦt−1R
−1
t and get Cxx-orthonormal Φt+1. Like-

2It corresponds to two steps of the algorithms in Xu
and Li (2019)

wise, C−1
yy C>xyΦ̂t is approximated in Line 9 with ̂̂Ψt =

C−1
yy C>xyΦ̂t + η̂t by a least-squares solver, followed by

Cyy-orthonormalizing Ψ̃t+1 = ̂̂Ψt − βΨt−1S
−1
t and

getting Cyy-orthonormal Ψt+1 in Line 10.

3.2 Analysis

Before proceeding to analysis, a few definitions are in-
troduced.

Notions and notations The ground-truth canon-
ical subspaces U and V are the top-k left and right
singular subspaces3 of C in non-Euclidean metrics
Cxx and Cyy, respectively, corresponding to Σ =
diag(σ1, · · · , σk), where σi, i = 1, · · · , rank(C), are
indexed in descending order, i.e., σi ≥ σj for 1 ≤
i < j ≤ rank(C). Note that U and V are Cxx-
orthonormal and Cyy-orthonormal, respectively. Let
θmax(Φ,U) and θmin(Φ,U) represent the largest and
smallest principal angle between the subspace spanned
by Φ and the subspace spanned by U, respectively, in

3For brevity, a subspace and one of its bases share the
notation throughout the paper.
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the underlying metric Cxx, i.e.,

θmax(Φ,U) = cos−1(σmin(U>CxxΦ(Φ>CxxΦ)−
1
2 )),

θmin(Φ,U) = cos−1(σmax(U>CxxΦ(Φ>CxxΦ)−
1
2 )),

where σmin(·) and σmax(·) represent the maximum
and minimum singular value of a matrix, respectively.
Note that the largest principal angle is commonly used
to gauge the distance between subspaces. Define

θt , max {θmax(Φt,U), θmax(Ψt,V)}

and let nnz(X) represent the number of nonzero entries
in X and κ(Cxx) the condition number of Cxx. The
analysis will depend on the following matrices:

Aφ =

(
CxyC

−1
yy C>xy −βCxx

Cxx 0

)
,

Aψ =

(
C>xyC

−1
xxCxy −βCyy

Cyy 0

)
,

Bφ =

(
Cxx 0

0 Cxx

)
, Bψ =

(
Cyy 0

0 Cyy

)
,

Pt =

(
Φt

Φt−1R
−1
t

)
R̃t, Qt =

(
Ψt

Ψt−1S
−1
t

)
S̃t ,

where

R̃t =

{
(I + R−>t R−1

t )−
1
2 , t > 0

I, t = 0
,

S̃t =

{
(I + S−>t S−1

t )−
1
2 , t > 0

I, t = 0
.

Moreover, let Ũ and Ṽ represent the top-k generalized
eigenspaces of matrix pairs, (Aφ,Bφ) and (Aψ,Bψ),
respectively.

We then have the following theorem for Algorithm 1.

Theorem 3.1 Given data matrices (X,Y) ∈ Rdx×n×
Rdy×n, if σ2

k > 2
√
β = σ2

k+1, Algorithm 1 then
computes ΦT and ΨT which are estimates of top-
k canonical subspaces (U,V) such that sin θT ≤
ε and Φ>TCxxΦT = Ψ>TCyyΨT = I, in T =

O(

√
σ2
k

σ2
k−σ

2
k+1

log 1
ε(σ2

k−σ
2
k+1) cos θ0

) iterations. If Nes-

terov’s accelerated gradient descent is used as the least-
squares solver, the overall running time is at most

O
((
dk2 + knnz(X,Y)κ

1
2 (X,Y) log c1c2

(σ2
k−σ

2
k+1) cos θ0

)√
σ2
k

σ2
k−σ

2
k+1

log 1
ε(σ2

k−σ
2
k+1) cos θ0

)
,

where d = max{dx, dy}, nnz(X,Y) = nnz(X) +
nnz(Y), κ(X,Y) = max{κ(Cxx), κ(Cyy)}, and

c1 = max
t

tan max{θt, θmax(Φ̂t,U), θmax(Ψ̂t,V)}
tan min{θmax(Pt,Ũ), θmax(Qt,Ṽ)} ,

c2 = max{max
t

θmax(Pt,Ũ)

θmin(Pt,Ũ)
,max

t

θmax(Qt,Ṽ)

θmin(Qt,Ṽ)
}.

Proof Sketch We shall sketch the proof idea of the
theorem here, and have the complete and long proof
deferred to the supplementary material. Note that Al-
gorithm 1 is induced by the proposed update (3). It
is easy to check that update (3) can be rewritten as
two equivalent equations in those previously defined
matrices, i.e.,{

Pt+1R̃
−1
t+1Rt+1R̃t = B−1

φ AφPt + δt,

Qt+1S̃
−1
t+1St+1S̃t = B−1

ψ AψQt + ρt,

where δt = ((C−1
xxCxyξt + ξ̂t)

>,0>)>R̃t and ρt =

((C−1
yy C>xyηt + η̂t)

>,0>)>S̃t. This boils down to run-
ning the inexact power method on the augmented
matrix pairs (Aφ,Bφ) and (Aψ,Bψ) with errors δt
and ρt introduced into the iterates Pt+1 and Qt+1,
respectively. Note that Aφ and Aψ are asymmet-
ric. We then can leverage the Schur decomposi-
tions of the matrix pairs in non-Euclidean metrics
Bφ or Bψ to get the iteration complexity T =

O(

√
σ2
k

σ2
k−σ

2
k+1

log 1
ε(σ2

k−σ
2
k+1) cos θ0

). Besides, the errors

δt and ρt can be well controlled by the least-squares
solver, according to the following two lemmas.

Lemma 3.2 (Xu and Li, 2019) Consider the least-
squares subproblem min

Φ
lt(Φ), for which the minimizer

and objective sub-optimality gap can be expressed as
Φ?
t = C−1

xxCxyΨt and εt(Φ) = lt(Φ)−lt(Φ?
t ) = 1

2‖Φ−
Φ?
t ‖2Cxx,F

, respectively. We have that

εt(Φ
(0)
t ) ≤ 2kσ2

1 tan2 max{θmax(Φt,U), θmax(Ψt,V)},

for the initial sub-optimality, and accelerated gradient

descent takes O
(
nnz(Y)+nnz(X)κ

1
2 (Cxx) log

εt(Φ
(0)
t )

εt(Φ̂t)

)
complexity to get the final sub-optimality εt

(
Φ̂t

)
, where

Φ
(0)
t = Φt(Φ

>
t CxxΦt)

−1(Φ>t CxyΨt) and ‖A‖B,F =

‖B 1
2 A‖F . Parallel results hold for min

Ψ
ht(Ψ) as well.

Lemma 3.3 Consider the least-squares subproblem
min
Φ

l̂t(Φ), for which the minimizer and the objec-

tive sub-optimality gap can be expressed as Φ̂?
t =

C−1
xxCxyΨ̂t and ε̂t(Φ) = l̂t(Φ) − l̂t(Φ̂

?
t ) = 1

2‖Φ −
Φ̂?
t ‖2Cxx,F

. We have that

ε̂t(Φ̂
(0)
t ) ≤ 8k(σ2

1 + ‖ξt‖2Cyy,2
) tan2 θ̂t,
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Table 1: Comparison of theoretical convergence rates. Õ(·) hides log factors for brevity.

CCALin ALS FALS accALS
(Ge et al., 2016) (Xu and Li, 2019) (Xu and Li, 2019) (Ours)

# iterations Õ( 1
ρ ) Õ( 1

ρ ) Õ( 1
ρ ) Õ( 1√

ρ )

runtime (AGD) Õ(ndk
√
κ

ρ ) Õ(ndk
√
κ

ρ ) Õ(ndk
√
κ

ρ ) Õ(ndk
√
κ√

ρ )

runtime (SVRG) Õ(dk(n+κ̄)
ρ ) Õ(dk(n+κ̄)

ρ ) Õ(dk(n+κ̄)
ρ ) Õ(dk(n+κ̄)√

ρ )

runtime (accSVRG) Õ(dk(n+
√
nκ̄

ρ ) Õ(dk(n+
√
nκ̄)

ρ ) Õ(dk(n+
√
nκ̄)

ρ ) Õ(dk(n+
√
nκ̄)√

ρ )

global convergence yes yes no yes

where ρ = σk−σk+1

σk
∈ (0, 1), κ = max{κ(Cxx), κ(Cyy)}, and κ̄ = max{maxi ‖xi‖22

λmin(Cxx) ,
maxi ‖yi‖22
λmin(Cyy) }.

for the initial sub-optimality, and accelerated gradient

descent takes O
(
nnz(Y)+nnz(X)κ

1
2 (Cxx) log

ε̂t(Φ̂
(0)
t )

ε̂t(
̂̂
Φt)

)
complexity to get the final sub-optimality ε̂t(

̂̂Φt), where

Φ̂
(0)
t = Φ̂t(Φ̂

>
t CxxΦ̂t)

−1(Φ̂>t CxyΨ̂t), ‖A‖B,2 =

‖B 1
2 A‖2, and θ̂t = max{θmax(Φ̂t,U), θmax(Ψ̂t,V)}.

Parallel results hold for min
Ψ

ĥt(Ψ) as well.

Note that Lemmas 3.2-3.3 handle the errors with the
plain alternating least-squares updates and the faster
alternating least-square updates, respectively, in Algo-
rithm 1. Particularly, Lemma 3.3 shows that the error
ξt contained in Ψ̂t from the plan alternating least-
squares update will be brought to the faster alternat-
ing least-square update via the warm start. The iter-
ation complexity and the complexities of least-squares
solvers in a single iteration jointly give us the overall
running time of Algorithm 1. Last, when the iterates
PT and QT get sufficiently close to Ũ and Ṽ, respec-
tively, we can conclude that ΦT and ΨT also have been
sufficiently close to the target U and V, respectively,
by the following lemma.

Lemma 3.4 If sin max{θmax(PT , Ũ), θmax(QT , Ṽ)} <
σ+
k ε

k
√

1+(σ+
k )2

where σ+
k =

σ2
k+
√
σ4
k−4β

2 , it holds that

sin max{θmax(ΦT ,U), θmax(ΨT ,V)} < ε.

�

Remark 1 The complexity of the plain alternating
least-squares (ALS) in the same setting (Xu and Li,
2019) is

O
(

kσ2
k

σ2
k−σ

2
k+1

nnz(X,Y)κ
1
2 (X,Y)

(
log 1

(σ2
k−σ

2
k+1) cos θ0

· log 1
cos θ0

+ log 1
ε log 1

σ2
k−σ

2
k+1

)
+

dk2σ2
k

σ2
k−σ

2
k+1

log 1
ε cos θ0

)
,

which is a complexity of type Õ( σk

σk−σk+1
). It’s a sim-

ilar case for the CCALin (Ge et al., 2016). More-
over, due to the difficulty of analysis, the FALS was

only shown to have complexity of the same type as
ALS in Xu and Li (2019). Contrastingly, the com-
plexity of the accALS (i.e., Algorithm 1) in this
work is subsumed within the type of accelerated rates

Õ(
√

σk

σk−σk+1
), which matches the empirical perfor-

mance of the faster alternating least-squares for k-
CCA. As the same random initializations to Φ0 and
Ψ0 are used as with the alternating least-squares in Xu
and Li (2019), the accALS algorithm is globally con-
vergent as well.

Remark 2 For comparison to Ge et al. (2016); Xu
and Li (2019) which used accelerated gradient de-
scent (AGD) as the least-squares solver to state the
running time, we use AGD here as well. In fact,
other least-squares solvers, such as stochastic vari-
ance reduced gradient (SVRG) and accelerated SVRG
(accSVRG), are applicable as well, and corresponding
running times can be similarly figured out. All com-
parisons are summarized in Table 1.

Remark 3 Although the desired momentum param-
eter β = σ4

k+1/4 is unknown, it could be estimated dy-
namically during iterations as mentioned in Section 4,
and the overall performance remains sufficiently good
as indicated by experimental results in Section 5.

4 Practical Implementation

We now consider practical implementation of our ac-
cALS algorithm by introducing two sensible strate-
gies proposed in Xu and Li (2019): coupling up-
date equations and adaptively estimating the momen-
tum parameter. The pseudo code is given in Algo-
rithm 2. The coupling strategy simply means the op-
eration of using the latest versions of relevant vari-
ables at all occurrences. As for the second strategy,
note that we can write the SVD of Cxy as Cxy =
Cxx

(
UΣV> + U⊥Σ⊥V>⊥

)
Cyy, where (U⊥,Σ⊥,V⊥)
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Algorithm 2 Practical implementation of the accALS

1: Input: data matrices (X,Y), block size k, iteration number T .

2: Output: approximate top-k canonical subspaces (ΦT ,ΨT ).

3: Set Φ−1 = 0, Ψ−1 = 0, Φ0 = Φ̃(Φ̃>CxxΦ̃)−
1
2 , Ψ0 = Ψ̃(Ψ̃>CyyΨ̃)−

1
2 , where Φ̃ and Ψ̃ are entry-wise i.i.d.

standard normal

4: for t = 0, 1, · · · , T − 1 do

# Perform plain alternating least-squares updates

5: Φ̂t ≈ arg min
Φ∈Rdx×k

lt(Φ) which starts from the initial Φt(Φ
>
t CxxΦt)

−1(Φ>t CxyΨt) to approximately

minimize lt(Φ) = 1
2n‖X

>Φ−Y>Ψt‖2F + rx
2 ‖Φ‖

2
F

6: Ψ̂t ≈ arg min
Ψ∈Rdy×k

ht(Ψ) which starts from the initial Ψt(Ψ
>
t CyyΨt)

−1(Ψ>t C>xyΦ̂t) to approximately

minimize ht(Ψ) = 1
2n‖Y

>Ψ−X>Φ̂t‖2F +
ry
2 ‖Ψ‖

2
F

# Perform faster alternating least-squares updates

7: βφt = 1
4 min

1≤j≤k
(Σφt

jj )2, where Σφt = (Φ̂>t CxxΦ̂t)
−1(Φ̂>t CxyΨ̂t)

8: ̂̂Φt ≈ arg min
Φ∈Rdx×k

l̂t(Φ) which starts from the initial Φ̂tΣ
φt to approximately

minimize l̂t(Φ) = 1
2n‖X

>Φ−Y>Ψ̂t‖2F + rx
2 ‖Φ‖

2
F

9: Cxx-orthonormalize ( ̂̂Φt − βφt
Φt−1) such that ( ̂̂Φt − βφt

Φt−1) = Φt+1Rt+1

where Rt+1 = (( ̂̂Φt − βφt
Φt−1)>Cxx( ̂̂Φt − βφt

Φt−1))1/2

10: βψt = 1
4 min

1≤j≤k
(Σψt

jj )2, where Σψt = (Ψ̂>t CyyΨ̂t)
−1(Ψ̂>t C>xy

̂̂Φt)

11: ̂̂Ψt ≈ arg min
Ψ∈Rdy×k

ĥt(Ψ) which starts from the initial Ψ̂tΣ
ψt to approximately

minimize ĥt(Ψ) = 1
2n‖Y

>Ψ−X> ̂̂Φt‖2F +
ry
2 ‖Ψ‖

2
F

12: Cyy-orthonormalize ( ̂̂Ψt − βψtΨt−1) such that ( ̂̂Ψt − βψtΨt−1) = Ψt+1St+1

where St+1 = (( ̂̂Ψt − βψt
Ψt−1)>Cyy( ̂̂Ψt − βψt

Ψt−1))1/2

13: end for

consists of the (rank(Cxy)− k) remaining triples of the
left singular vector in metric Cxx, singular value, and
right singular vector in metric Cyy, other than those
in (U,Σ,V). Thus, it holds that

Σ = (U>CxxU)−1U>CxyV

= (V>CyyV)−1V>C>xyU,

which motivates us to estimate Σ dynamically as fol-
lows:

Σφt = (Φ>t CxxΦt)
−1(Φ>t CxyΨt),

Σψt = (Ψ>t CyyΨt)
−1(Ψ>t C>xyΦt).

Accordingly, σ̂φt

k = min1≤j≤k Σφt

jj and σ̂ψt

k =

min1≤j≤k Σψt

jj are dynamic estimates of σk. Note that

it almost always holds that max{σ̂φt

k , σ̂
ψt

k } < σk in a
finite number of iterations and meantime σk+1 < σk,
which suggests that we may use σ̂φt

k and σ̂ψt

k as dy-
namic estimates of σk+1. For the momentum pa-

rameter, the ideal value β = 1
4σ

4
k+1 implies esti-

mates βφt = 1
4 (σ̂φt

k )4 and βψt = 1
4 (σ̂ψt

k )4, which how-

ever overly underestimates β because max{σ̂φt

k , σ̂
ψt

k } <
σk ≤ 1. For compensation, we use βφt

= 1
4 (σ̂φt

k )2 and

βψt = 1
4 (σ̂ψt

k )2 instead, which we found works well in
practice. More details can be found in Algorithm 2.

5 Experiments

We conduct experiments on three often used real
datasets (Snoek et al., 2006; R. Westbury, 1994; Lecun
et al., 1998) for CCA (Ge et al., 2016; Wang et al.,
2016; Arora et al., 2017; Xu and Li, 2019) to evalu-
ate the accALS Algorithm 2. The data description
is given in Table 2. Fixed regularization parameters
rx = ry = 0.1 are used unless otherwise stated. We
compare the accALS to two recent variants of the al-
ternating least-squares for k-CCA, i.e., CCALin (Ge
et al., 2016) and the practical version of the FALS (Xu
and Li, 2019), where k > 1 and the latest FALS
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Table 2: Statistics of real data.

Data Description dx dy n
Memdiamill images and its labels 100 120 30000

JW11 acoustic and articulation 273 112 30000
MNIST images’ left and right halves 392 392 60000
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Figure 1: Performance of (faster) alternating least-squares algorithms for k-CCA.

algorithm is well-performed. We use the SVRG as
our least-squares solver running 2 epochs for all the
CCA algorithms. Each epoch runs n iterations with
constant step-sizes αφ = 1/maxi ‖xi‖22 for Φt and
αψ = 1/maxi ‖yi‖22 for Ψt, where xi represents X’s
i-th column. All the algorithms were implemented in
MATLAB and run on a laptop. Each k-CCA solver
runs T = 30 iterations with the same initials which
are generated as in Algorithm 2. We use the following
three quality measures:

• ∆f , tr(Σ)−tr(Φ>t CxyΨt)
tr(Σ) , relative error of the ob-

jective value in Problem (1),

• sin2 θu , sin2 θmax(Φt,U), squared sine of the
largest principal angle between Φt and U,

• sin2 θv , sin2 θmax(Ψt,V), squared sine of the
largest principal angle between Ψt and V,

where the ground-truth information (U,Σ,V) is ob-
tained using the output of the MATLAB’s svds func-
tion for benchmarking purpose. For each measure,
smaller is better.

The performance of three algorithms, averaged on 5
runs with different random initializations, is reported
in Figure 1 which consists of a 3 × 3 array of figures
with a row for each measure and a column for each
dataset. The x-axis is the number of data passes, and
the y-axis is the value of a quality measure. The block
size used for each dataset is indicated in figures, i.e.,
k = 4, 10, 10 for three datasets, respectively. We can
see that faster alternating least-squares algorithms,
i.e., FALS and accALS, need significantly less passes
over data than the plain alternating least-squares algo-
rithm CCALin. CCALin does not converge in terms of
the first measure ∆f , because it does not directly solve
Problem (1) and thus is not in favour of the first mea-
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Figure 2: Influence of regularization parameter r on
the performance of the accALS.

sure. For the two faster algorithms, according to Ta-
ble 1, the accALS corresponding to blue curves in fig-
ures has performance consistent with the theory (i.e.,
the nearly square-root dependence of the rate on the
relative gap ρ well explains the faster convergence4),
but the FALS is not the case. Particularly, the accALS
is even more pass efficient in terms of each measure
across datasets, due to the greater simplicity without
loss of the faster convergence rate.

We also would like to study the influence of the regu-
larization parameters rx and ry on the performance of

the accALS. For simplicity, we fix r , rx = ry. Three
choices of r, i.e., r = 10−1, 10−2, 10−3, are tested on
the Memdiamill dataset with k = 4. Figure 2 shows
the influence of this parameter. It is clear that larger
r gives better performance. To understand this phe-
nomenon, we notice that both Cxx and Cyy, and thus

also C = C
−1/2
xx CxyC

−1/2
yy vary with r. This means

that r can affect the relative gap ρ = σk−σk+1

σk
∈ (0, 1)

of C. In fact, ρ is increasing with r as shown in the
legend of Figure 2, and in turn the performance of
the accALS is increasing with ρ by Theorem 3.1, thus
demystifying the effect of r.

6 Conclusion

Faster alternating least-squares with momentum accel-
eration, due to the simplicity and great performance
in practice, has been advocated recently for solving

4FALS’s empirical performance in Figure 1 is much bet-
ter than that of the CCALin and supposed to have an ac-
celerated rate to match in theory, but its theoretical rate
that was achieved previously is only on par with that of
the CCALin as shown in Table 1. This gap is filled by our
accALS.

the k-CCA problem, though the rationale behind the
empirical success has not been well understood yet.
To gain a theoretical insight towards fully understand-
ing the rationale, in this work, we examined the two-
step update equations of the current faster alternat-
ing least-squares and found an even simpler algorithm
which only needs to apply momentum at every other
iteration on top of the plain alternating least-squares.
We demonstrated that the new algorithm has a prov-
ably faster linear convergence rate that is characterized
by the nearly square-root dependence on the singular
value gap of the whitened cross-covariance matrix. Ex-
perimental evaluation showed the high consistency be-
tween theory and practice of the proposed algorithms,
and our algorithm is even more successful than the
state-of-the-art in terms of the pass efficiency.
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7016–7025, Montréal, Canada, 2018.
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