
Optimal Query Complexity for Private Sequential Learning Against
Eavesdropping: Supplementary Materials

1 Statements of Results

In this section we give the general statements of our results under both the noiseless response and noisy response
models. When the responses are noisy, we give the precise constant multipliers.
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Theorem 2 (Noiseless responses, deterministic setting). If 2ε ≤ δ ≤ 1/L, then
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Theorem 3 (Noisy responses, Bayesian setting). Let p be the probability that each responses is corrupted. If
4ε ≤ δ ≤ 1/L, Then
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where
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It follows from (1) and (2) and the basic inequality max{a, b} ≥ (a+ b)/2 that
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where �p denotes matching upper and lower bounds up to multiplicative constants that depend on p. Note that
c1(p), c2(p), c3(p) and c4(p) are all on the order of (p− 1/2)2 for p close to 1/2. Therefore all the multiplicative
constants in the upper and lower bounds go to infinity at the rate of (p− 1/2)−2 as p→ 1/2.
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2 Proofs of Theorem 1 and Theorem 2 (noiseless responses)

In this section we prove our results on the optimal query complexity for the sequential learning model, under
the Bayesian setting (Theorems 1) and the deterministic setting (Theorem 2).

2.1 Analysis under the Bayesian setting

Proof of Theorem 1. Upper bound: To prove the upper bound of Theorem 1, we construct the following
multistage querying strategy for the learner (precise description in Algorithm 1):

1. Run bisection search on [0, 1] for K1 steps to locate X∗ within an interval I of length 2−K1 ≈ Lδ;

2. Divide I into L subintervals I1, ..., IL of equal length (about δ). Query the L − 1 endpoints of all the
subintervals (the two endpoints of I were already queried in stage 1) to determine which subinterval contains
X∗.

3. Say Ii∗ is the true subinterval which contains X∗. Run bisection search on the Ii∗ for K2 steps until
ε-accuracy is achieved, while submitting cloned queries in the other L− 1 subintervals in parallel.

See Fig. 1 for a graphical illustration.

Figure 1: An example of the querying strategy with L = 5, K1 = 3, K2 = 3 under the Bayesian setting. The
learner first runs K1 steps of bisection to locate X∗ within I. Divide I into L equal length subintervals I1, ..., IL.
By querying the endpoints q4, ..., q7 of the subintervals, the learner locates the subinterval that contains X∗, in
this case I4. She then proceeds to submit K2 batches of queries. The first, second and third batches of queries
submitted are labeled 1©, 2©, 3© respectively. On I4, the queries are submitted via bisection while clones are
submitted on the other subintervals in parallel.

Next we show that Algorithm 1 achieves the upper bound in Theorem 1. Under algorithm 1, the total number
of queries submitted is

K1 + L− 1 + LK2 =
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matching the desired upper bound. It suffices to show that algorithm 1 is both ε-accurate and (δ, L)-private.
First we establish accuracy. From the responses to all the queries, the learner can narrow down the possible
values of X∗ to an interval I(final) of length∣∣∣I(final)

∣∣∣ =
1

L
2−K12−K2 =

1

L
2−(blog(1/Lδ)c+dlog(δ/ε)e+1) ≤ 1

L
2− log(1/Lε) = ε. (3)

The learner can then take X̂ to be the midpoint of this interval so that |X̂ −X∗| ≤ ε/2.

Next we show privacy. Recall that the learner performs parallel bisections on the L intervals I1, ..., IL. Since
the adversary only observes the queries and the querying strategy φ, she learns that X∗ is contained in one of
L intervals J1, ..., JL where Jj = [aj , bj ] ⊆ Ij . But she cannot tell which one of them X∗ is in. Therefore she
cannot guess the location of X∗ with probability higher than 1/L. More precisely, the posterior distribution of



Algorithm 1: Our querying strategy under the Bayesian setting

K1 := blog(1/(Lδ))c; I := [0, 1];

for i = 1 to K1 do // bisection to an interval I of length 2−K1

qi := the midpoint of I = [a, b];
if ri = 1 then I := [qi, b] else I := [a, qi];

for i in 1 to L do // divide I into L equal-length subintervals I1, ..., IL
Ii := [a+ (i− 1)(b− a)/L, a+ i(b− a)/L], where [a, b] = I;
Ji := Ii;

for i in 1 to L-1 do // query the endpoints of I1, ..., IL
qK1+i := the right endpoint of Ii;

Inspect the responses to find i∗ ∈ {1, ..., L} such that X∗ ∈ Ii∗ ;
K2 := dlog(δ/ε)e+ 1;
for i in 1 to K2 do // replicated bisection on I1, ..., IL

for j in 1 to L do
qK1+L−1+(i−1)L+j := the midpoint of Jj ;

if rK1+L−1+(i−1)L+i∗ = 1 then
for j in 1 to L do the left endpoint of Jj := qK1+L−1+(i−1)L+j ;

else
for j in 1 to L do the right endpoint of Jj := qK1+L−1+(i−1)L+j ;

X̂ := the midpoint of Ji∗ ;

X∗ given all the query sequence is uniform over the union of J1, ..., JL. Use | · | to denote the Lebesgue measure
of subsets of [0, 1]. We have

P{|X̃ −X∗| ≤ δ/2 | the query sequence} =

∣∣∣(∪i≤LJi) ∩ [X̃ − δ/2, X̃ + δ/2
]∣∣∣

|∪i≤LJi|
. (4)

Since the queries on I1, ..., IL are exact copies of each other, J1, ..., JL are also equidistant translations on the
real line. The left endpoints a1, ..., aL of J1, ..., JL satisfy ai+1 = ai + |I1| for all i where |I1| = 2−K1/L ≥ δ.
Moreover, note that the lengths of all Ji are equal, and because the adversary does not observe the response to
the last batch of queries, |Ji| = 2|I(final)|. From (3) we have |Ji| ≤ 2ε. Therefore under the assumption that
δ ≥ 2ε, any interval of length δ can only intersect with ∪iJi on a set of Lebesgue measure at most |J1|. Deduce
that the right hand side of (4) is upper bounded by |J1|/| ∪i Ji| = 1/L. Therefore

P{|X̃ −X∗| ≤ δ/2} = E
(
P{|X̃ −X∗| ≤ δ/2 | the queries}

)
≤ 1/L.

Lower bound: Suppose φ is an ε-accurate and (δ, L)-private strategy that submits at most n queries. De-
note n(X∗, Y ) as the number of queries submitted when X∗ is the truth and the random seed is Y , so

n = supX∗,Y n(X∗, Y ). The goal is to bound n from below. Consider the querying strategy φ̃ that concatenates
trivial queries at 0 to the query sequence so that the length of query sequence is always n, i.e., q̃i = qi for
i ≤ n(X∗, Y ) and q̃i = 0 for n(X∗, Y ) < i ≤ n. Clearly φ̃ is also ε-accurate and (δ, L)-private, because the trivial
queries at 0 do not provide the adversary with any extra information. Moreover the maximum number of queries
submitted by φ̃ equals that submitted by φ. Hence for the rest of this proof, without loss of generality, we can
assume that the learner always submits exactly n queries under φ.

Since φ is (δ, L)-private, we have P{|X̃ −X∗| ≤ δ/2} ≤ 1/L for each adversary X̃. Consider the adversary that

adopts the truncated proportional-sampling strategy described in Section 4.1 in the main text: let X̃ = qJ where
J ∼ Unif{K + 1, ..., n}. Choose K = blog(1/(Lδ))c. Let us point out that n must be larger than K so truncated
proportional-sampling can be run. We will show later in the proof that n > K always holds for any strategy φ
that is ε-accurate. By construction,

P
{∣∣∣X̃ −X∗∣∣∣ ≤ δ/2} = E

∑n
i=K+1 1{|qi −X∗| ≤ δ/2}

n−K
≤ 1

L
.
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Deduce that
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We claim that

(i)
∑
i≤n P{|qi −X∗| ≤ δ/2} ≥ log(δ/4ε).

(ii)
∑
i≤K P{|qi −X∗| ≤ δ/2} ≤ 1/L.

(iii) n > K, so that the truncated proportional-sampling strategy is valid.

The desired lower bound immediately follows.

Proof of (i) and (iii): The statement (i) claims that on average, there are at least log(δ/4ε) queries in the interval
[X∗ − δ/2, X∗ + δ/2]. One would expect this to be true because [X∗ − δ/2, X∗ + δ/2] is an interval of length δ.
In order for the learner to achieve ε-accuracy, it needs to submit at least log(δ/ε) queries by optimality of the
bisection method. Next we make this argument rigorous. The randomness of the interval [X∗ − δ/2, X∗ + δ/2]
complicates the proof. We will instead show something stronger than (i). We claim that for each fixed interval
I ⊆ [0, 1], we have ∑

i≤n

P{qi ∈ I | X∗ ∈ I} ≥ log(|I|/2ε). (5)

To see why (i) follows from (5), note that for each interval I of length δ/2,∑
i≤n

P {|qi −X∗| ≤ δ/2 | X∗ ∈ I} ≥
∑
i≤n

P{qi ∈ I | X∗ ∈ I} ≥ log(|I|/2ε) = log(δ/4ε).

Moreover, claim (iii) also follows from (5) by taking I = [0, 1]:

n =
∑
i≤n

P{qi ∈ [0, 1]} ≥ log(1/2ε) > blog(1/(Lδ))c = K,

where the strict inequality holds because by assumption 2ε ≤ δ and L ≥ 2.

It remains to show (5). Since φ is ε-accurate, we have

P
{∣∣∣X̂ −X∗∣∣∣ > ε/2 | X∗ ∈ I, Y = y

}
= 0

for all but a negligible (zero-measure) set of the random seed Y , denoted as N y. For y /∈ N y, conditioning on

Y = y, the estimator X̂ is only a function of the responses r1, ..., rn. Further conditioning on X∗ ∈ I, since
X∗ is independent from the random seed Y , X∗ is distributed uniform in I. By the continuous version of Fano
inequality [2, Proposition 2],

P
{∣∣∣X̂ −X∗∣∣∣ > ε/2 | X∗ ∈ I, Y = y

}
≥ 1− I(X∗; r1, ..., rn | X∗ ∈ I, Y = y) + 1

log(|I|/ε)
.

Hence

H(r1, ..., rn | X∗ ∈ I, Y = y) ≥ I(X∗; r1, ..., rn | X∗ ∈ I, Y = y) ≥ log(|I|/ε)− 1 = log(|I|/2ε). (6)

Using the entropy chain rule, the left hand side can also be written as

H(r1, ..., rn | X∗ ∈ I, Y = y)

=H(r1|X∗ ∈ I, Y = y) +

n−1∑
i=1

H(ri+1 | X∗ ∈ I, Y = y, r1, ..., ri). (7)



Expand each summand:

H (ri+1 | X∗ ∈ I, Y = y, r1, ..., ri)

=
∑
ρ1,..,ρi

P {r1 = ρ1, ..., ri = ρi | X∗ ∈ I, Y = y}H (ri+1 | X∗ ∈ I, Y = y, r1 = ρ1, ..., ri = ρi) . (8)

Write I = [a, b]. On the event X∗ ∈ I, if qi+1 = φi(ρ1, ..., ρi, y) is smaller than a, then ri+1 = 1. Similarly if
qi+1 > b, then ri+1 = 0. In other words, the value of ri+1 is completely determined by ρ1, ..., ρi if qi+1 /∈ I and
X∗ ∈ I. Hence the summation (8) equals∑

ρ1,..,ρi:φ(ρ1,...,ρi,y)∈I

P {r1 = ρ1, ..., ri = ρi | X∗ ∈ I, Y = y}H (ri+1 | X∗ ∈ I, Y = y, r1 = ρ1, ..., ri = ρi)

≤P {qi+1 ∈ I | X∗ ∈ I, Y = y} .

With Y = y fixed, we have q1 = f0(y) is deterministic. Similarly argue that H(r1|X∗, Y = y) ≤ 1{q1 ∈ I}.
Combine with (6) and (27) to deduce that∑

i≤n

P{qi ∈ I | X∗ ∈ I, Y = y} ≥ H(r1, ..., rn | X∗ ∈ I, Y = y) ≥ log(|I|/2ε).

The above holds for all y /∈ N y. Since N y is a negligible set, we have∑
i≤n

P{qi ∈ I | X∗ ∈ I} =

∫
[0,1]\Ny

∑
i≤n

P{qi ∈ I | X∗ ∈ I, Y = y}dy ≥ log(|I|/2ε).

The proof of (5) is complete.

Proof of (ii): To show (ii) we introduce the notion of learner intervals, which stands for the sequence of intervals
that the learner knows X∗ is in, as the learner submits queries sequentially. Start from I0 = [0, 1]. If r1 = 1,
then the learner learns that X∗ ∈ [q1, 1] and I1 is defined as [q1, 1]. Otherwise I1 = [0, q1]. For all i,

P
{
|qi −X∗| ≤

δ

2

}
=E

[
P
{
|qi −X∗| ≤

δ

2
| r1, ..., ri−1

}]
=E

[
|Ii−1 ∩ [qi − δ/2, qi + δ/2]|

|Ii−1|

]
≤δE(1/|Ii−1|).

Next we show that E(1/|Ii|) ≤ 2i for all i by induction. Suppose it is true for i = 0, ..., k. For i = k + 1,

E(1/|Ik+1|) = E
[
E
(

1/|Ik+1|
∣∣∣ r1, ..., rk

)]
.

Conditioning on r1, ..., rk, the learner interval Ik is deterministic and so is qk+1. Let Ik = [ak, bk]. There are
three possibilities for Ik+1:

1. qk+1 /∈ Ik. In this case the rk+1 provides no additional information on the location of X∗. Therefore
Ik+1 = Ik.

2. qk+1 ∈ Ik and rk+1 = 1. The learner learns that X∗ ≥ qk+1 and Ik+1 = [qk+1, bk].

3. qk+1 ∈ Ik and rk+1 = 0. In this case Ik+1 = [ak, qk+1].

Therefore

E (1/|Ik+1| | r1, ..., rk) =1 {qk+1 /∈ Ik}
1

|Ik|
+ 1 {qk+1 ∈ Ik}P {X∗ ≥ qk+1 | r1, ..., rk}

1

bk − qk+1

+ 1 {qk+1 ∈ Ik}P {X∗ < qk+1 | r1, ..., rk}
1

qk+1 − ak

=1 {qk+1 /∈ Ik}
1

|Ik|
+ 1 {qk+1 ∈ Ik}

1

|Ik|
+ 1 {qk+1 ∈ Ik}

1

|Ik|
≤ 2

|Ik|
.
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Hence E(1/|Ik+1|) ≤ E(2/|Ik|) ≤ 2 · 2k = 2k+1. Deduce that P{|qi −X∗| ≤ δ/2} ≤ δE(1/|Ii−1|) ≤ δ2i−1 for all i.
Therefore

K∑
i=1

P
{
|qi −X∗| ≤

δ

2

}
≤ δ

K∑
i=1

2i−1 ≤ δ2K ≤ 1/L,

where the last inequality is from K = blog(1/(Lδ))c ≤ log(1/(Lδ)).

2.2 Analysis under the deterministic setting

Proof of Theorem 2. Upper bound: Recall that under the deterministic setting, a querying strategy is called
(δ, L)-private if for each query sequence q̄, the δ-covering number of the information set I(q̄) is at least L. To
achieve (δ, L)-privacy, we design a strategy where the learner submits L guesses. Recall from Section 4 in the
main text that a guess at q consists of a pair of queries at q and q+ ε. Below is the construction of our querying
strategy. The precise description of the querying strategy is given in algorithm 2 (for δ ≤ 2−L) and algorithm 3
(for δ > 2−L).

1. Submit L guesses that are at least δ apart. This further breaks down into two cases, depending on the value
of δ:

If δ ≤ 2−L, submit the guesses via a bisection search. That is, the first guess is at 1/2, the second guess
is at 1/4 if X∗ < 1/2 and at 3/4 otherwise, etc. However if at any point a guess turns out to be correct
(X∗ ∈ [s, s+ ε) for a guess at s), then in order to hide this knowledge from the adversary, the learner keeps
submitting guesses via a fake bisection search using random responses distributed i.i.d. Bernoulli(1/2).

If δ > 2−L, submit the first guess at 0. The next K guesses are submitted via a bisection search, locating
X∗ in a interval I of length 2−K . As in the previous case, transition into a fake bisection search whenever a
guess is found to contain X∗. Submit the rest of the (L−K − 1) guesses through a grid search on I. Here
K is chosen to be an integer in {0, 1, ..., L− 1} for which 2−K/(L−K) ∈ [δ, 2δ]. We will show that such K
always exists. In fact the initial guess at 0 is to ensure existence of an integer solution for K. This way of
submitting guesses ensures that the closest pair of guesses are made as close as possible, while still being at
least δ apart.

2. If none of the L guesses made in stage 1 is correct, then through the L guesses the learner should locate X∗

within an interval J of length about max{2−L, δ}. Run a bisection search on J until ε-accuracy is reached.
If any of the guesses is correct, replace this step with a fake bisection search on a simulated interval J .
When δ ≤ 2−L, J is obtained from the last step of the fake bisection search in stage 1; when δ > 2−L, J is
selected from the L−K subintervals of I uniformly at random.

Examples of the above querying strategy is illustrated in Fig. 2 (when δ ≤ 2−L) and Fig. 3 (when δ > 2−L).

Bisection with Bernoulli responses

Figure 2: An example of the querying strategy under the deterministic setting when δ ≤ 2−L, with L = 3. From
the response to the first four queries the learner deduces that X∗ is between q3 and q4 = q3 + ε. The learner
proceeds to run a “fake” bisection in [q3, q5) by generating Bernoulli responses to confuse the adversary. From
the perspective of the adversary, X∗ could be in any of the three length-ε subintervals.

Next we show that the querying strategy above achieves the upper bound in Theorem 2. First consider the case
δ ≤ 2−L. Under algorithm 2, the learner first submits L guesses (2L queries). She then conducts a bisection
search within an interval of length 2−L, taking d2−L/εe queries to achieve ε-accuracy. The total number of
queries submitted is L+ dlog(1/ε)e.

Because the guesses I1, ..., IL are all of length ε, algorithm 2 is ε-accurate. It suffices to show it is also (δ, L)-
private. Firstly, note that the adversary cannot rule out the possibility that X∗ ∈ Ii for some i = 1, .., L, so the



Bisection here

Figure 3: An example of the querying strategy under the deterministic setting when δ > 2−L, with L = 7 and
K = 2. The first guess is at 0. The learner submits the next K guesses via bisection to locate X∗ in [q3, q5). She
then partitions [q3, q5) into L−K equal length subintervals. Eventually through bisection the learner is able to
approximate X∗ up to accuracy ε. But from the perspective of the adversary, X∗ could be in [q2i−1, q2i) for any
i ≤ L.

information set contains the union of I1, ..., IL. That is, for each query sequence q,

I(q) ⊇ ∪i≤L[q2i−1, q2i).

When δ ≤ 2−L, these L intervals do not overlap. Since their left endpoints are submitted via a bisection search,
legitimate or fake, they are at least 2−L ≥ δ apart from each other. Therefore the δ-covering number for I(q) is
at least L. We have shown that algorithm 2 is (δ, L)-private.

Next consider the case δ > 2−L. Again algorithm 3 is clearly ε-accurate. To show that it is also (δ, L)-private,
note that algorithm 3 is designed so that the closest pair of guesses are of distance [δ, 2δ] apart. Hence

(i) The intervals Ii = [q2i−1, q2i), i = 1, ..., L do not overlap, and their left endpoints are at least δ from each
other;

(ii) After the L guesses are submitted, the learner can always narrow down the possibilities for X∗ to an interval
of length at most 2δ.

We claim that (i) ensures (δ, L)-privacy. As in the δ ≤ 2−L case, we have for each q, I(q) ⊇ ∪i≤L[q2i−1, q2i).
Assuming (i), the δ-covering number of ∪i≤L[q2i−1, q2i) is at least L.

Given (ii), the learner only needs to submit at most dlog(2δ/ε)e queries to achieve ε-accuracy in stage 2. The
total number of queries submitted under algorithm 3 is at most 2L + dlog(δ/ε)e + 1. Moreover, as we can see
from algorithm 3 the learner always submits q1 = 0. Omit this first trivial query to obtain the desired query
complexity upper bound 2L+ dlog(δ/ε)e.

We still need to show that (i) and (ii) are satisfied by algorithm 3. The first K guesses locate X∗ within an
interval I of length 2−K . The remaining L−K − 1 odd queries then divide I into L−K subintervals of equal
length. Therefore the closest pair of odd queries among q1, q3, ..., q2L−1 are at distance 2−K/(L −K). In stage
2, the learner conducts a bisection search in one of the L−K subintervals, which is also of length 2−K/(L−K).
Therefore (i) and (ii) translate to δ ≤ 2−K/(L − K) ≤ 2δ. It remains to show that we can find at least one
K ∈ {0, 1, ..., L− 1} for which

`K :=
2−K

L−K
∈ [δ, 2δ]. (9)

Observe that

1. `0 = 1/L ≥ δ;

2. `L−1 = 2−(L−1) ≤ 2δ;
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Algorithm 2: Our querying strategy under the deterministic setting when δ ≤ 2−L

GuessedIt := False;
I := [0, 1];
for i = 1 to L do // submit L guesses via (possibly partially fake) bisection

q2i−1 := the midpoint of I = [a, b];
q2i := q2i−1 + ε;
if not GuessedIt then

Inspect the responses r2i−1 and r2i;
if r2i−1 = 1 then I := [q2i−1, b] else I := [a, q2i−1];
if r2i−1 = 1 and r2i = 0 then GuessedIt := True;

else // once guessed correctly, proceed with a fake bisection

Sample R ∼ Bernoulli(1/2);
if R = 1 then I := [q2i−1, b] else I := [a, q2i−1];

i := 2L+ 1, J := I;
while |J | > ε do // run (possibly fake) bisection on J

qi := the midpoint of J = [a, b];
if not GuessedIt then

if ri = 1 then J := [qi, b] else J := [a, qi];
else

Sample R ∼ Bernoulli(1/2);
if R = 1 then J := [qi, b] else J := [a, qi];

i := i+ 1;

X̂ := the midpoint of J ;

3. for all K < L− 1,
`K
`K+1

=
2−K

2−(K+1)

L−K − 1

L−K
≤ 2.

These facts above ensure that there is at least one solution to (9) in {0, 1, ..., L− 1}.

Lower bound: The lower bound dlog(δ/ε)e + 2L − 4 has already been proven in [16, Theorem 4.1]. As in
the upper bound proof we separately consider the cases δ > 2−L and δ ≤ 2−L. When δ > 2−L, the term
dlog(δ/ε)e + 2L − 4 is always larger than dlog(1/ε)e + L − 8. Thus we only need to show that when δ > 2−L,
optimal query complexity is lower bounded by dlog(1/ε)e+ L− 8.

It suffices to show the lower bound holds for all realizations of the random seed Y so the dependences on Y are
suppressed for the rest of the proof. Fix any querying strategy φ that is both ε-accurate and (δ, L)-private. Let
Q(X∗) denote the set of queries when the true value is X∗. We want to show there is at least one X∗ for which
|Q(X∗)| ≥ L+ log(1/ε)− 8. To this end, we will prove the following claims:

(i) There exists an interval I of length 2δ and Q̃ = {q̃1, ..., q̃K} where K ≥ log(1/δ) − 3 and |q̃i − q̃j | > δ for

all i 6= j, such that for each X∗ ∈ I, Q(X∗)\I ⊇ Q̃.

(ii) For each interval I of length 2δ and each X∗ ∈ I, there exist at least L − 5 distinct pairs of queries
{s1, t1}, ...{sL−5, tL−5} ⊆ Q(X∗)\I for which |si − ti| ≤ ε for all i.

(iii) For each interval I of length 2δ, there exists X∗ ∈ I such that Q(X∗) contains at least log(δ/ε) queries in
I.

Claims (i) and (ii) together imply that there exists an interval I of length 2δ such that for all X∗ ∈ I,

Q(X∗)\I ⊇ Q̃ ∪ (∪i≤L−5{si, ti}) .

Since all members of Q̃ are at least δ-apart and |si − ti| ≤ ε, at least one of si and ti is outside of Q̃. To show

that on top of Q̃, each pair {si, ti} contributes at least one extra member to Q(X∗)\I, we only need to rule out



Algorithm 3: Our querying strategy under the deterministic setting when δ > 2−L

q1 := 0; q2 := ε; // submit initial guess at 0

K := an integer solution in {0, 1, ..., L− 1} to `K = 2−K/(L−K) ∈ [δ, 2δ];
if r1 = 1 and r2 = 0 then GuessedIt := True else GuessedIt := False;
I := [0, 1];
for i=2 to K+1 do // submit the next K guesses via bisection

q2i−1 := the midpoint of I = [a, b];
q2i := q2i−1 + ε;
if not GuessedIt then

if r2i−1 = 1 then I := [q2i−1, b] else I := [a, q2i−1];
if r2i−1 = 1 and r2i = 0 then GuessedIt := True;

else
Sample R ∼ Bernoulli(1/2);
if R = 1 then I := [q2i−1, b] else I := [a, q2i−1];

Divide I into L−K equal length subintervals I1, ..., IL−K ;
for i = (K+2) to L do // submit the next L−K − 1 guesses via grid search

q2i−1 := the right endpoint of Ii−K−1;
q2i := q2i−1 + ε;
if r2i−1 = 1 and r2i = 0 then GuessedIt := True;

if not GuessedIt then
J := the subinterval Ii∗ that contains X∗;

else
J := Ii∗ where i∗ is sampled uniformly from {1, ..., L−K};

i := 2L+ 1;
while |J | > ε do // run (possibly fake) bisection on J

qi := the midpoint of I = [a, b];
if not GuessedIt then

if ri = 1 then J := [qi, b] else J := [a, qi];
else

Sample R ∼ Bernoulli(1/2);
if R = 1 then J := [qi, b] else J := [a, qi];

i := i+ 1;

X̂ := the midpoint of J ;
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the case where two pairs {si, ti} and {sj , tj} are such that si, sj ∈ Q̃ and ti = tj . This cannot happen because
otherwise,

δ < |si − sj | ≤ |si − ti|+ |sj − ti| = |si − ti|+ |sj − tj | ≤ ε+ ε,

contradicting the assumption δ ≥ 2ε. Thus Q(X∗)\I contains at least K + L− 5 distinct members. From claim
(iii) there exists X∗ ∈ I for which |Q(X∗) ∩ I| ≥ log(δ/ε). We have

|Q(X∗)| = |Q(X∗) ∩ I|+ |Q(X∗)\I| ≥ log(δ/ε) +K + L− 5 ≥ L+ log
1

ε
− 8,

which equals 2L+ log(max{2−L, δ}/ε)− 8 when δ ≤ 2−L. It remains to prove the three claims.

Proof of (i): To prove this claim, we first construct for each X∗ ∈ [0, 1] a subsequence q̃ of q where all the queries
in q̃ are at least δ apart from each other.

Let q̃1 = q1. If X∗ ∈ [q̃1 − δ, q̃ + δ], then declare the construction finished, i.e. the subsequence q̃ = (q̃1) is of
length one. Otherwise look at q2 = φ1(r1). If q2 ∈ [q̃1 − δ, q̃1 + δ], then q̃1 and q2 must be on the same side of
X∗ and r2 = 1{X∗ ≥ q2} must be equal to r1. Proceed to look at q3 = φ2(r1, r2) = φ2(r1, r1), q4 = φ3(r1, r1, r1)
and so on, until qi /∈ [q̃1 − δ, q̃1 + δ]. Let q̃2 = qi. Similarly define the rest of q̃ as follows: For k ≥ 2 if q̃k is
chosen to be qik , then let q̃k+1 = qik+1

, where

ik+1 = min
j
{j > ik : qj /∈ ∪k′≤k[q̃k′ − δ, q̃k′ + δ]} .

Repeat this process until [q̃k − δ, q̃k + δ] contains X∗. Note that such a k always exists, as φ is ε-accurate and
hence there exists at least one query that is within ε distance to X∗.

Let r̃i = 1{X∗ ≥ q̃i}. Next we argue that q̃ is completely determined by r̃. Indeed, given r̃ = (r̃1, ..., r̃k), we
have q̃j = qij for all j ≤ k, where i1 = 1 and

i2 = min
j
{j > i1 : φj−1(r̃1, ..., r̃1) /∈ [q̃1 − δ, q̃1 + δ]}.

Thus q̃2 = qi2 = φi2−1(r̃1, ..., r̃1). To determine i3, inspect qi2+1 = φi2(r1, ..., ri2) = φi2(r̃1, ..., r̃1, r̃2). If
qi2+1 /∈ ∪j=1,2[q̃j− δ, q̃j + δ], the we have i3 = i2 + 1. Otherwise if qi2+1 ∈ [q̃1− δ, q̃1 + δ], then we have ri2+1 = r̃1

and qi2+2 = φi2+1(r̃1, ..., r̃1, r̃2, r̃1); similarly if qi2+1 ∈ [q̃2 − δ, q̃2 + δ], then qi2+2 = φi2+1(r̃1, ..., r̃1, r̃2, r̃2). As
such we can reconstruct the queries qi2+3, qi2+4 and so on until we find j > i2 where φj /∈ ∪j=1,2[q̃j − δ, q̃j + δ].
Then we have determined i3 = j and q̃3 = qj , which is completely determined by (r̃1, r̃2). Following the same
argument, the entire q̃ sequence can be reconstructed from r̃. Consequently,

|{q̃ : X∗ ∈ [0, 1]}| ≤ |{r̃ : X∗ ∈ [0, 1]}| .

Suppose K + 1 is the maximum length of q̃ ≡ q̃(X∗) among all X∗ ∈ [0, 1]. Then the total number of distinct
binary r̃ sequences is at most

∑
k≤K+1 2k < 2K+2. In addition if q̃ is of length k, then X∗ ∈ [q̃k − δ, q̃k + δ] by

construction. Hence

1 = |[0, 1]| ≤
∣∣∪X∗∈[0,1] [q̃k − δ, q̃k + δ]

∣∣ ≤ 2δ |{q̃ : X∗ ∈ [0, 1]}| ≤ 2δ · 2K+2.

Deduce that K ≥ log(1/δ) − 3. In other words, there exists X∗ ∈ [0, 1] for which q̃ is of length k where
k ≥ K+ 1 ≥ log(1/δ)−2. We choose I = [q̃k− δ, q̃k + δ] for such q̃ and show that it satisfies the statement in (i).
By construction all the queries in q̃ are more than δ apart; therefore, all the queries in q̃ except q̃k are all outside
of I. As a result for all X ∈ I and i ≤ k − 1, 1{X ≥ q̃i} yields the same response as 1{X∗ ≥ q̃i}. Deduce that

q̃(X) = q̃(X∗) for all X ∈ I. To complete the proof of (i), take Q̃ = {q̃1, ..., q̃k−1} to obtain a subset of Q(X∗)\I
of size at least K ≥ log(1/δ)− 3.

Proof of (ii): For q = q(X∗) = (q1, ..., qn), let Q(X∗) = {q1, ..., qn, 0, 1}. The key observation is that for each x
in the information set I(q), there must be two queries s, t ∈ Q(X∗) with s ≤ x, t > x and t− s ≤ ε. Otherwise
when x is the truth, the learner could not have achieved ε-accuracy through the query sequence q. The inclusion
of 0, 1 in Q(X∗) is because even if they are never queried, they could still serve in these (s, t) pairs.

Let
P = {(s, t) : s, t ∈ Q(X∗), 0 < t− s ≤ ε}



denote the set of all pairs of queries that are no more than ε-apart. We have

I(q) ⊆ ∪(s,t)∈P [s, t].

From the definition of (δ, L)-privacy, the δ-covering number of ∪(s,t)∈P [s, t] is at least L, which immediately
implies |P| ≥ L. However since we want to lower bound the number of pairs (s, t) where both s and t are outside
of I, the proof is slightly more complicated. Write I = [a, b]. If one of s, t is in I, then [s, t] ⊆ [a − ε, b + ε] ⊆
[a− δ/2, b+ δ/2]. This is an interval of length 3δ. We also need to discount the pairs that use 0 or 1 as one of
the endpoints. Let

P̃ ={(s, t) : s, t ∈ Q(X∗)\(I ∪ {0, 1}), 0 < t− s ≤ ε}
⊇{(s, t) ∈ P : [s, t] ⊆ [0, 1]\([a− δ/2, b+ δ/2] ∪ [0, δ] ∪ [1− δ, 1])}.

The δ-covering number for [a− δ/2, b+ δ/2]∪ [0, δ]∪ [1− δ, 1]) is at most 5. Deduce that the δ-covering number

for ∪(s,t)∈P̃ [s, t] is at least L− 5. Thus |P̃| ≥ L− 5.

Proof of (iii): The part of the proof is similar to the proof of (i). We take q̃(X∗) to be the subsequence of q(X∗)
that contains all the queries in Q(X∗) that are in I. Let J(X∗) be the interval formed by the two queries in q(X∗)
to the left and right of X∗ that are the closest to X∗. For all X∗ ∈ I, X∗ ∈ J(X∗) and thus I ⊆ ∪X∗∈IJ(X∗).
Since |I| = 2δ and the querying strategy φ is ε-accurate so that |J(X∗)| ≤ ε, we have that {J(X∗) : X∗ ∈ I}
contains at least 2δ/ε distinct members.

Let r̃i(X
∗) = 1{X∗ ≥ q̃i(X∗)}. Next we show that for each X∗ ∈ I, J(X∗) is completely determined by r̃(X∗).

Indeed given any X∗ ∈ I, the responses to the queries outside of I can be deduced from their position relative to
I. Therefore from only r̃(X∗), which only contains responses to the queries in I, one can reconstruct the entire
query sequence q(X∗), from which one can infer J(X∗). Thus

|{r̃(X∗) : X∗ ∈ I}| ≥ |{J(X∗) : X∗ ∈ I}| ≥ 2δ/ε.

Suppose T is the maximal length of q̃(X∗) among all X∗ ∈ I. Then r̃(X∗) can take no more than
∑
t≤T 2t < 2T+1

distinct values. Deduce that T ≥ log(δ/ε). Recall that q̃(X∗) is a subsequence of q(X∗) and only contains queries
in I. Conclude that there exists X∗ ∈ I for which the querying strategy φ submits at least log(δ/ε) queries that
are in I.

3 Proof of Theorem 3 (noisy responses)

3.1 Proof of the upper bounds

The construction of our querying strategies with noisy responses relies heavily on an existing search algorithm
known as the Burnashev-Zigangirov(BZ) algorithm [1]. For completeness, we give in Section 3.1.1 a brief de-
scription of the BZ algorithm and its statistical properties.

3.1.1 Background: the Burnashev-Zigangirov algorithm

Suppose [0, 1] is divided into 1/∆ (assumed to be an integer) equal length subintervals, labeled I1, ..., I1/∆ from
left to right. Let J denote the subinterval that contains the true value X∗. The BZ algorithm is a selection
procedure that returns Ĵ , an estimator of J .

Since X∗ is distributed uniformly on [0, 1], the algorithm starts from a uniform distribution µ1 on [0, 1], which
can be viewed as a priori belief distribution on the location of X∗. Each time the learner observes a response Rj
to a query Xj , where Rj ∼ Bernoulli(p) if X∗ ≥ Xj and Rj ∼ Bernoulli(1− p) if X∗ < Xj for some p ∈ (1/2, 1).
Then the belief distribution is updated as follows:

dµj+1

dµj
(x) =

{
2(1−α)1{x∈[0,Xj)}+2α1{x∈[Xj ,1]}∫

(2(1−α)1{y∈[0,Xj)}+2α1{y∈[Xj ,1]})µj(dy)
if Rj = 1;

2α1{x∈[0,Xj)}+2(1−α)1{x∈[Xj ,1]}∫
(2(1−α)1{y∈[0,Xj)}+2α1{y∈[Xj ,1]})µj(dy)

if Rj = 0,

where α ∈ (1/2, p) is a parameter whose value will be later specified. Note that if α = p, the display above is
exactly the posterior update rule for the distribution of X∗ given the responses. The intuition behind choosing
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α < p is to tilt the update rule in the more conservative direction, so that the effect of “incorrect” responses can
be mitigated.

The query Xj is selected to be close to the median of µj . Specifically, if Ij = [s, t) is the subinterval that
contains the median of µj , then Xj is chosen to be the left endpoint s of Ij with probability π1 = (µj [0, t) −
µj [t, 1])/(2µj(Ij)), and Xj = t with probability π2 = 1 − π1 = (µj [s, 1] − µj [0, s))/(2µj(Ij)). Here π1 and π2

are chosen so that the conditional mean of Xj is exactly the median of µj . Since the learner only queries the
endpoints of the subintervals, the density of µj is a piecewise-constant function whose change points can only

occur at the endpoints of the subintervals. Suppose n queries are submitted, the estimator Ĵ is taken to be the
subinterval with the highest µn+1 density, ties broken arbitrarily.

For simplicity write p = 1−p, α = 1−α. It has been shown that the error probability of Ĵ decreases exponentially
in the number of queries [1, Eq (3.24)]:

P{X∗ /∈ Ĵ} ≤ 1−∆

∆

[
p

2α
+

p

2α

]n
≤ 1

∆

[
p

2α
+

p

2α

]n
. (10)

The factor p/(2α) + p/(2α) is minimized at

α =

√
p

√
p+
√
p
, with

p

2α
+

p

2α
=

1

2
+
√
pp.

It follows from (10) that

P{X∗ /∈ Ĵ} ≤ 1

∆

(
1

2
+
√
pp

)n
≤ 1

∆

(
1− (p− 1/2)2

)n ≤ 1

∆
exp

(
−(p− 1/2)2n

)
. (11)

The last two inequalities are due to the basic inequalities
√
x(1− x) ≤ 1/2 − (x − 1/2)2 for x ∈ [0, 1] and

1 + x ≤ ex for all x ∈ R.

The lemma below follows from (11) via a simple scaling argument.

Lemma 1. Suppose the BZ algorithm is run on an interval I divided into ∆-length subintervals. The output
estimator Ĵ satisfies

P{X∗ /∈ Ĵ} ≤ |I|
∆

2−c3(p)n,

where c3(p) = (p− 1/2)2 log e.

3.1.2 Proof of the upper bound in (1)

The idea behind the construction of the querying strategies inherits from the construction under the noiseless
response setting. Recall that when the responses are noiseless, the learner first runs bisection search to locate
X∗ within a length Lδ interval. She then runs replicated bisection on the L length δ subintervals, submitting
queries via the bisection search in the true subinterval containing X∗ and cloning those queries in the other
L−1 subintervals. When the responses are noisy, firstly we replace the bisection searches with the BZ algorithm.
Moreover, the learner can no longer discern the true interval by querying the endpoints of the subinterval only
once. Instead we need to query each endpoint enough times, so that via a maximum-likelihood type procedure,
the learner can estimate the true subinterval with high enough certainty.

Under the requirement that the learner is accurate on average, as per definition (a), we construct the following
multi-stage querying strategy.

1. Let L′ = 7L. Divide [0, 1] into (L′δ)-length subintervals1 and run the BZ algorithm to estimate the subinter-
val that contains X∗. The BZ algorithm is run for K1 = 1

c3(p) log 8
7εLδ iterations. Write I for the subinterval

returned by the BZ algorithm.

1For simplicity, we assume (L′δ)−1 is an integer. If not, the analysis can be repeated by dividing [0, 1] into subintervals
of length (b(L′δ)−1c)−1.



2. Divide I into L′ δ-length subintervals, labeled J1, ..., JL′ from left to right. Label the endpoints as x0, ..., xL′

so that Jk = [xk−1, xk). Submit m = 1
c4(p) log 64δ

ε queries at each of the L′−1 endpoints x1, ..., xL′−1, where

c4(p) = D(Bern(1/2)||Bern(p)) = (log 1
2p + log 1

2(1−p) )/2.

Write mk for the sum of the m responses to the query at xk. In other words, mk denotes the number of
times the learner receives the response to “X∗ ≥ xk” being 1. Let

k̂ = arg max
1≤k≤L′

k−1∑
i=1

mi +

L′−1∑
i=k

(m−mi),

and take Jk̂ as the estimator for the subinterval that contains X∗.

3. Divide Jk̂ into length (ε/4) subintervals and run the BZ algorithm, while submitting queries in parallel in
the other L′ − 1 subintervals {Jk}k 6=k̂, as one would do in the replicated bisection. Run the BZ algorithm

for K2 = 2
c3(p) log 4

√
2δ
ε iterations and obtain the output J ⊆ Jk̂.

4. Define the estimator X̂ as the midpoint of J .

It suffices to show that under definition (a) of ε-accuracy, the multi-stage querying strategy above is ε-accurate,
(δ, L)-private, and achieves the upper bound in (1).

Accuracy: Discuss the following events:

1. E1: the BZ algorithm returns the wrong subinterval in stage 1. In other words, X∗ /∈ I.

2. E2,j for j = 1, ..., L′ − 1: stage 1 does not incur an error, but stage 2 returns a subinterval out of J1, ..., JL′

that does not contain X∗, with k̂ at distance j away from the correct index. In other words, E2,j = {X∗ ∈
Jk∗ for some k∗ ∈ [L′], and |k̂ − k∗| = j}.

3. E3: the BZ algorithm makes an error in stage 3: X∗ ∈ Jk̂ but X∗ /∈ J .

4. E4: X∗ ∈ J .

The events above are disjoint, and their union forms the entire probability space. It is also easy to see that
|X̂ −X∗| is upper bounded by 1, (j + 1)δ, δ, ε/8 on E1, E2,j , E3, E4 respectively. Hence

E
∣∣∣X̂ −X∗∣∣∣ ≤ P {E1}+

L′−1∑
j=1

(j + 1)δP {E2,j}+ δP {E3}+ ε
8P {E4} . (12)

We claim that all events but E4 occur with low probability. Firstly, it follows from Lemma 1 that

P {E1} ≤
1

L′δ
2−c3(p)K1 ≤ ε

8
, (13)

P {E3} ≤
δ

ε/4
2−c3(p)K2 ≤ ε

8δ
(14)

from the choice of K1,K2.

To handle E2,j , note that conditional on X∗ ∈ Jk∗ ,

mi
indep∼

{
Binomial(m, p) for 1 ≤ i ≤ k∗ − 1;

Binomial(m, 1− p) for k∗ ≤ i ≤ L′.

Hence k̂ = arg max1≤k≤L′
∑k−1
i=1 mi +

∑L′−1
i=k (m−mi) is the maximum likelihood for k∗, and for all k 6= k∗,

P
{
k̂ = k|X∗ ∈ Jk∗

}
≥P


k−1∑
i=1

mi +

L′−1∑
i=k

(m−mi) ≤
k∗−1∑
i=1

mi +

L′−1∑
i=k∗

(m−mi)


=P
{
B ≤ |k − k

∗|m
2

}
, for some B ∼ Binomial(|k − k∗|m, p),
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which is further bounded by 2−c4(p)|k−k∗|m from the binomial tail bound [9, Theorem 2.1]. Deduce that

P {E2,j} ≤ P{X∗ ∈ Jk∗ , k̂ = k∗ − j}+ P{X∗ ∈ Jk∗ , k̂ = k∗ + j} ≤ 2 · 2−c4(p)jm. (15)

Thus

L′−1∑
j=1

(j + 1)δP {E2,j} ≤2

L′−1∑
j=1

(j + 1)δ2−c4(p)jm

≤2δ

 ∞∑
j=1

2−c4(p)jm +

∞∑
i=1

∞∑
j=i

2−c4(p)jm


=

2δ2−c4(p)m

1− 2−c4(p)m

(
1 +

1

1− 2−c4(p)m

)
(16)

≤8δ2−c4(p)m ≤ ε/8, (17)

where the last two inequalities are due to the choice m = 1
c4(p) log 64δ

ε and δ ≥ 2ε.

Combining (12)-(17) yields that

E
∣∣∣X̂ −X∗∣∣∣ ≤ ε/8 + ε/8 + ε/8 + ε/8 = ε/2.

Privacy: The goal is to show that for all adversary’s estimators X̃ that could depend on q,

P
{
|X̃ −X∗| ≤ δ/2

}
≤ 1

L
.

In the multi-stage algorithm the learner first runs the BZ algorithm on a L′δ-fine grid to obtain an interval
estimator I, then runs replicated BZ on the L′ subintervals J1, ..., JL′ of I. Write I∗ for the true subinterval on
the L′δ-fine grid that contains X∗. When X∗ ∈ I, i.e. I∗ = I, we used k∗ to index the true subinterval out of
J1, ..., JL′ that contains X∗. For the proof of (δ, L)-privacy, we need to expand the definition of k∗ to incorporate
the case X∗ /∈ I as well. Label the L′ length-δ subintervals of I∗ as J∗1 , ..., J

∗
L′ and define k∗ so that X∗ ∈ J∗k∗ .

Recall that k̂ is the learner’s estimator of k∗. We have

P
{
|X̃ −X∗| ≤ δ/2

}
≤P{X∗ /∈ I} (18)

+P
{
|X̃ −X∗| ≤ δ/2, k̂ < k∗, X∗ ∈ I

}
(19)

+P
{
|X̃ −X∗| ≤ δ/2, k̂ > k∗, X∗ ∈ I

}
(20)

+P
{
|X̃ −X∗| ≤ δ/2, k̂ = k∗, X∗ ∈ I

}
. (21)

Of the four terms above, the first term equals the probability that the algorithm makes a mistake in the BZ
algorithm in the first stage:

(18) = PE1 ≤
1

L′δ
2−c3(p)K1 ≤ 1

L′

where the last inequality holds due to K1 = 1
c3(p) log 8

L′εδ ≥
1

c3(p) log(1/δ) in view of 2ε ≤ 1/L.

For the second term, use the Bayes rule to write

(19) = P
{
k̂ < k∗, X∗ ∈ I

}
P
{
|X̃ −X∗| ≤ δ

2
| k̂ < k∗, X∗ ∈ I

}
. (22)



Since X̃ is a function of q,

P
{
|X̃ −X∗| ≤ δ/2 | k̂ < k∗, X∗ ∈ I

}
≤Eq

(
sup
t∈[0,1]

P
{
X∗ ∈ [t− δ/2, t+ δ/2] ∩ I | k̂ < k∗, X∗ ∈ I, q

})

≤2Eq
(

max
k≤L′

P
{
k∗ = k | k̂ < k∗, X∗ ∈ I, q

})
. (23)

The last inequality is because all intervals of the form [t− δ/2, t+ δ/2] ∩ I must be covered by the union of two
consecutive subintervals Jk ∩ Jk+1 for some k.

Next we show that for all q and k,

P
{
k∗ = k | k̂ < k∗, X∗ ∈ I, q

}
= P

{
k∗ = k | k̂ < k∗, X∗ ∈ I

}
, i.e.,

L(q | k∗ = k, k̂ < k∗, X∗ ∈ I) = L(q | k̂ < k∗, X∗ ∈ I).

In other words, k∗ is independent of q conditional on k̂ < k∗ and X∗ ∈ I. Denote the queries submitted in the
three stages as q(1), q(2) and q(2). We will establish conditional independence in two steps:

1. Show that (q(1), q(2)) is independent of k∗ conditional on k̂ < k∗ and X∗ ∈ I:

note that given I∗, the conditional distribution of X∗ is uniform on I∗. Therefore k∗ is distributed uniformly
on [L′] and is independent of I∗. Since the BZ algorithm only queries the endpoints of the subintervals, the
distribution of the responses in the first stage r(1) only depends on X∗ through I∗. Hence k∗ is independent
of the tuple (I∗, r(1)). Moreover, r(1) completely determines I, so that k∗ is independent of (I∗, I, r(1)). On

the other hand, when X∗ ∈ I, k̂ is can be written as f(k∗,noise(2)), a function of only k∗ and the binary
noise variables in the second stage. We have

L
(
r(1) | k∗ = k, k̂ < k∗, X∗ ∈ I

)
=L

(
r(1) | k∗ = k, f(k∗,noise(2)) < k∗, I∗ = I

)
=L

(
r(1) | k̂ < k∗, I∗ = I

)
.

The second equality is because by the independence of (k∗,noise(2)) and (I∗, I, r(1)), (k∗,noise(2)) and r(1)

are conditionally independent given I∗ = I.

We have shown that r(1) and k∗ are independent conditional on k̂ < k∗ and X∗ ∈ I. Notice that (q(1), q(2))
is a deterministic function of r(1). Thus (q(1), q(2)) and k∗ are also conditionally independent.

2. Show that q(3) is independent of k∗ conditional on k̂ < k∗, X∗ ∈ I, q(1) and q(2):

conditional on k̂ < k∗ and X∗ ∈ I, all the queries submitted in Ĵ = Jk̂ are smaller than X∗. Therefore the

joint distribution of the queries in the third stage that fall in Ĵ does not depend on k∗. Since the queries in
the other subintervals are only copies of those in Ĵ , we have that q(3) is independent of k∗, conditional on
k̂ < k∗, X∗ ∈ I, q(1) and q(2).

We have shown that the entire query sequence q is independent of k∗ conditional on k̂ < k∗ and X∗ ∈ I. Thus

P
{
k∗ = k | k̂ < k∗, X∗ ∈ I, q

}
= P

{
k∗ = k | k̂ < k∗, X∗ ∈ I

}
.

Combine with (22) and (23) to obtain

(19) ≤P
{
k̂ < k∗, X∗ ∈ I

}
· 2 max

k≤L′
P
{
k∗ = k | k̂ < k∗, X∗ ∈ I

}
=2 max

k≤L′
P
{
k∗ = k, k̂ < k∗, X∗ ∈ I

}
≤2 max

k≤L′
P {k∗ = k} = 2/L′.
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where the last inequality is because k∗ is distributed uniformly on [L′].

Following the same arguments, (20) ≤ 2/L′. Next we handle term (21).

Once again because X̃ is a function of q, we have

(21) ≤ 2E
(

max
k≤L′

P
{
k∗ = k | k̂ = k∗, X∗ ∈ I, q

})
.

We claim that k∗ and q are independent conditional on k̂ = k∗ and X∗ ∈ I. By the same arguments as in the
analysis of (19) we can show that k∗ is independent of (q1, q(2)) conditional on k̂ = k∗ and X∗ ∈ I. It remains

to show that k∗ is independent of q(3) conditional on k̂ = k∗, X∗ ∈ I and (q(1), q(2)). In other words,

L
(
q(3) | k∗ = k, k̂ = k∗, X∗ ∈ I, q(1), q(2)

)
= L

(
q(3) | k̂ = k∗, X∗ ∈ I, q(1), q(2)

)
To show the above, first note that conditional on k∗ = k, k̂ = k∗, X∗ ∈ I and (q(1), q(2)), X∗ is distributed
uniformly on Jk. The queries sequence q(3) are generated from running the BZ algorithm on Jk, and replicating
in the other subintervals. The conditional distribution of the q(3) is therefore independent of the value of k. Thus

(21) =P
{
|X̃ −X∗| ≤ δ/2 | k̂ = k∗, X∗ ∈ I

}
P
{
k̂ = k∗, X∗ ∈ I

}
≤2 max

k≤L′
P
{
k∗ = k | k̂ = k∗, X∗ ∈ I

}
P
{
k̂ = k∗, X∗ ∈ I

}
=2 max

k≤L′
P
{
k∗ = k, k̂ = k∗, X∗ ∈ I

}
≤2 max

k≤L′
P {k∗ = k} = 2/L′.

Collect all the terms to deduce that

P
{
|X̃ −X∗| ≤ δ/2

}
≤ 1

L′
+

2

L′
+

2

L′
+

2

L′
=

1

L

by picking L′ = 7L.

Query complexity: the total number of queries submitted by the querying strategy is

K1 + (L′ − 1)m+ L′K2 =
1

c3(p)
log

8

7εLδ
+ (7L− 1)

1

c4(p)
log

64δ

ε
+

14L

c3(p)
log

4
√

2δ

ε

≤ 1

c3(p)
log

8

7εLδ
+

(
14

c3(p)
+

7

c4(p)

)
L log

64δ

ε

≤
(

14

c3(p)
+

7

c4(p)

)(
log

1

ε
+ L log

64δ

ε

)
.

where the last inequality is because Lδ ≥ 2δ ≥ 2ε.

3.1.3 Proof of the upper bound in (2)

When the learner needs to be accurate with high probability, as per definition (b), we adopt the same multi-stage
querying strategy as in the upper bound proof in (1), with a slightly modified set of parameters. Let

K1 =
1

c3(p)
log

3M

δ
, m =

1

c4(p)
log(12M), K2 =

1

c3(p)
log

12Mδ

ε
. (24)

Next we show that the querying strategy is (ε,M)-accurate and (δ, L)-private with the desired query complexity.
The proof is similar to that of the upper bound in (1).



Accuracy: Recall the events E1, E2,j , E3, E4 defined in the proof of (1). We have

P
{
|X̂ −X∗| > ε/2

}
≤PEc4 = PE1 +

L′−1∑
j=1

PE2,j + PE3

≤ 1

L′δ
2−c3(p)K1 + 2

L′−1∑
j=1

2−c4(p)jm +
δ

ε/4
2−c3(p)K2

≤ 1

L′δ
2−c3(p)K1 + 4 · 2−c4(p)m +

δ

ε/4
2−c3(p)K2

where the second inequality follows from (13), (14) and (15). Plug in the the values of K1,K2 and m to conclude

that P{|X̂ −X∗| > ε/2} ≤ 1/(3M) + 1/(3M) + 1/(3M) = 1/M .

Privacy: the proof for (δ, L)-privacy is almost identical to the proof of (1). The only part that differs is in the
treatment of the term (18) due to a different choice of K1. We have

(18) = P{X∗ /∈ I} = PE1 ≤
1

L′δ
2−c3(p)K1 ≤ 1

L′

for K1 = 1
c3(p) log(3M/δ).

Query complexity: the total number of queries submitted is

K1 + (L′ − 1)m+ L′K2 =
1

c3(p)
log

3M

δ
+ (7L− 1)

1

c4(p)
log(12M) +

7L

c3(p)
log

12Mδ

ε

≤
(

8

c3(p)
+

7

c4(p)

)(
log

1

ε
+ L log

12Mδ

ε

)
.

3.2 Proof of the lower bounds

3.2.1 An auxiliary lemma

The lower bound proofs rely heavily on the following auxiliary lemma, which connects the expected number of
queries near X∗ with the learner’s error probability.

Lemma 2. For each deterministic interval J and η > 0,

E (the number of queries in J | X∗ ∈ J) ≥ 1

c2(p)

((
1− P{|X̂ −X∗| > η | X∗ ∈ J}

)
log
|J |
2η
− 1

)
.

Proof. Step 1: discretize w.r.t. Y .

By the independence between X∗ and the random seed Y , we can write

E (the number of queries in J | X∗ ∈ J)

=

∫ 1

0

E (the number of queries in J | X∗ ∈ J, Y = y) dy

=

∫ 1

0

∑
i≤n

P {qi ∈ J |X∗ ∈ J, Y = y} dy. (25)

Step 2: establish a rate of information transfer.

In this step we show that for all y ∈ [0, 1],

I(X∗; r1, ..., rn|X∗ ∈ J, Y = y) ≤ c2(p)
∑
i≤n

P {qi ∈ J | X∗ ∈ J, Y = y} . (26)

Recall that c2(p) = h(1/2) − h(p) where h(t) = H(Bern(t)) = −t log t − (1 − t) log(1 − t). The intuition
behind (26) is that since the observed responses are passed through a binary symmetric channel that flips the
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noiseless responses with probability 1 − p, each query reveals at most h(1/2) − h(p) bits of information about
X∗. Next we prove (26). We abbreviate {X∗ ∈ J, Y = y} as EJ,y. Start from the left-hand side:

I(X∗; r1, ..., rn|EJ,y)

=I(X∗; r1|EJ,y) +

n−1∑
i=1

I(X∗; ri+1|EJ,y, r1, ..., ri)

=H(r1|EJ,y)−H(r1|X∗, EJ,y)+

n−1∑
i=1

(H(ri+1|EJ,y, r1, ..., ri)−H(ri+1|X∗, EJ,y, r1, ..., ri)) . (27)

To analyze the i’th summand in (27), write

H(ri+1|EJ,y, r1, ..., ri) =
∑

ρ1,...,ρi

P{r1 = ρ1, ..., ri = ρi|EJ,y}H(ri+1|EJ,y, r1 = ρ1, ..., ri = ρi).

Recall that qi+1 = φi(r1, ..., ri, Y ). Therefore with the values of r1, ..., ri, Y fixed, the i+ 1’th query is determin-
istic. If it lands to the left of J , then conditional on X∗ ∈ J , we have X∗ ≥ qi+1 with (conditional) probability
1, implying that ri+1 ∼ Bern(p). We have

H(ri+1|EJ,y, r1 = ρ1, ..., ri = ρi) = h(p), if φi(ρ1, ..., ρi, y) is to the left of J.

By the same logic, the equality also holds if φi(ρ1, ..., ρi, y) is to the right of J . If φi(ρ1, ..., ρi, y) lands inside of
J , we can use h(1/2) to bound the conditional entropy of ri+1 since it is a binary random variable. Deduce that

H(ri+1|Ej,y, r1, ..., ri) ≤h(1/2)
∑

ρ1,...,ρi:φi(ρ1,...,ρi,y)∈J

P{r1 = ρ1, ..., ri = ρi|EJ,y}+

h(p)
∑

ρ1,...,ρi:φi(ρ1,...,ρi,y)/∈J

P{r1 = ρ1, ..., ri = ρi|EJ,y}

=h(1/2)P{qi+1 ∈ J |EJ,y}+ h(p)P{qi+1 /∈ J |EJ,y}.

On the other hand, if we condition on EJ,y, r1, ..., ri and the value of X∗, then not only is qi+1 deterministic, so
is 1{X∗ ≥ qi+1}. As a result, ri+1 is distributed Bernoulli with success probability either p or 1− p depending
on the relative position of qi+1 to X∗. Hence

H(ri+1|X∗, EJ,y, r1, ..., ri) = h(p).

We have shown that

H(ri+1|EJ,y, r1, ..., ri)−H(ri+1|X∗, EJ,y, r1, ..., ri)

≤h(1/2)P{qi+1 ∈ J |EJ,y}+ h(p)P{qi+1 /∈ J |EJ,y} − h(p)

=(h(1/2)− h(p))P{qi+1 ∈ J |EJ,y}. (28)

Similarly we obtain the following bound:

H(r1|EJ,y)−H(r1|X∗, EJ,y) ≤ (h(1/2)− h(p))P{q1 ∈ J |EJ,y}. (29)

Combine (27), (28) and (29) to finish the proof of (26).

Step 3: apply Fano’s inequality to connect the learner’s probability of error with the expected
number of queries in J .

From the continuous Fano’s inequality [2, Proposition 2],

P
{
|X̂ −X∗| > η|EJ,y

}
≥ 1− I(X∗; r1, ..., rn|EJ,y) + 1

log |J|2η

.



Combining the above with (26) yields

∑
i≤n

P {qi ∈ J |EJ,y} ≥
1

c2(p)

((
1− P

{
|X̂ −X∗| > η|EJ,y

})
log
|J |
2η
− 1

)
. (30)

Step 4: integrate w.r.t. Y .

Combine (32) with (30), and integrate w.r.t. Y to obtain

E (the number of queries in J | X∗ ∈ J)

≥
∫ 1

0

1

c2(p)

((
1− P

{
|X̂ −X∗| > η|EJ,y

})
log
|J |
2η
− 1

)
dy

=
1

c2(p)

((
1− P{|X̂ −X∗| > η | X∗ ∈ J}

)
log
|J |
2η
− 1

)
.

3.2.2 Proof of the lower bound in (1)

Suppose φ is an ε-accurate and (δ, L)-private querying strategy that submits at most n queries. As in the noiseless
case, we can assume WLOG that the learner always submits exactly n queries by concatenating trivial queries
at 0 to the end of the query sequence.

We will split the lower bound in (1) into the following two inequalities, which we will prove in order.

(i) n ≥ 1
2c2(p)L log δ

16ε .

(ii) n ≥ 1
2c2(p) log 1

8ε .

Proof of (i). Consider the adversary who adopts the proportional-sampling strategy [18], i.e., X̃ is the sampled
from the empirical distribution of all the queries. We have

P{|X̃ −X∗| ≤ δ/2} ≥ 1

n
E (the number of queries in the interval [X∗ − δ/2, X∗ + δ/2]) .

For a querying strategy to be (δ, L)-private, we must have P{|X̃ −X∗| ≤ δ/2} ≤ 1/L. Hence

n ≥ LE (the number of queries in the interval [X∗ − δ/2, X∗ + δ/2]) . (31)

Divide [0, 1] into length δ/2 subintervals labeled J1, ..., J2/δ (again ignoring non-divisibility issues). Suppose J∗

is the subinterval that contains X∗, then J∗ is distributed uniformly on {J1, ..., J2/δ}, and it must be a subset
of [X∗ − δ/2, X∗ + δ/2]. Therefore

E (the number of queries in [X∗ − δ/2, X∗ + δ/2])

≥E (the number of queries in J∗)

≥δ
2

∑
j≤2/δ

E (the number of queries in Jj |X∗ ∈ Jj) . (32)

By applying Lemma 2 with J = Jj and η = ε, we have for all j ∈ [2/δ],

E (the number of queries in Jj | X∗ ∈ Jj) ≥
1

c2(p)

((
1− P{|X̂ −X∗| > ε | X∗ ∈ Jj}

)
log

δ

4ε
− 1

)
.
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Plug into (32) to obtain

E (the number of queries in [X∗ − δ/2, X∗ + δ/2])

≥δ
2

∑
j≤2/δ

1

c2(p)

((
1− P{|X̂ −X∗| > ε | X∗ ∈ Jj}

)
log

δ

4ε
− 1

)

=
1

c2(p)

((
1− P{|X̂ −X∗| > ε}

)
log

δ

4ε
− 1

)
≥ 1

2c2(p)
log

δ

16ε
,

where the last inequality is from P{|X̂ −X∗| > ε} ≤ E|X̂ −X∗|/ε ≤ 1/2. We have arrived at the desired lower
bound

n ≥ LE (the number of queries in [X∗ − δ/2, X∗ + δ/2]) ≥ 1

2c2(p)
L log

δ

16ε
.

Proof of (ii). Apply lemma 2 with J = [0, 1] and η = ε, we have

n ≥ 1

c2(p)

((
1− P{|X̂ −X∗| > ε}

)
log

1

2ε
− 1

)
≥ 1

c2(p)
log

1

8ε
,

where the second inequality is from P{|X̂ −X∗| > ε} ≤ 1/2.

3.2.3 Proof of the lower bound in (2)

Suppose φ is an (ε,M)-accurate and (δ, L)-private querying strategy that submits at most n queries. Argue as
in the proof of (1) that we can assume WLOG that the learner always submits exactly n queries. We will split
the lower bound in (2) into the following three inequalities and prove them in order.

(i) n ≥ L
c2(p) log δ

8ε .

(ii) n ≥ 1
c2(p) log 1

4ε .

(iii) n ≥ 1
c1(p)L logM.

Proof of (i). The proof is essentially identical to the proof of (i) in Section 3.2.2. Since the query complexities
Navg() and Nwhp() are defined with the same notion of (δ, L)-privacy, the proportional sampling argument used
in the proof of (1) remains valid here. As before, by considering a proportionally-sampling adversary and
partitioning [0, 1] into length δ/2 subintervals J1, ..., J2/δ, we have

n ≥LE (the number of queries in [X∗ − δ/2, X∗ + δ/2])

≥L · δ
2

∑
j≤2/δ

E (the number of queries in Jj | X∗ ∈ Jj) .

Applying Lemma 2 with J = Jj and η = ε/2 yields

E (the number of queries in Jj | X∗ ∈ Jj) ≥

(
1− P

{
|X̂ −X∗| > ε/2 | X∗ ∈ Jj

})
log
(
δ
2ε

)
− 1

c2(p)
.

It follows that

n ≥L · δ
2

∑
j≤2/δ

(
1− P

{
|X̂ −X∗| > ε/2 | X∗ ∈ Jj

})
log
(
δ
2ε

)
− 1

c2(p)

=
L

c2(p)

((
1− P

{
|X̂ −X∗| > ε/2 | X∗ ∈ Jj

})
log

(
δ

2ε

)
− 1

)
.

From the definition of (ε,M)-accuracy, P{|X̂ −X∗| > ε/2} ≤ 1/M ≤ 1/2. Plug in to yield (i).



Proof of (ii). Apply Lemma 2 with J = [0, 1] and η = ε/2. We have

n ≥ 1

c2(p)

((
1− P

{
|X̂ −X∗| > ε/2

})
log(1/ε)− 1

)
.

Combine with P{|X̂ −X∗| > ε/2} ≤ 1/2 to yield (ii).

Proof of (iii). As we have argued in the first two steps of the lower bound proof of (i) in Section 3.2.2,

n ≥ L · δ
2

∑
j≤2/δ

∫ 1

0

E(the number of queries in Jj |Ej,y)dy. (33)

Fano’s inequality is no longer sufficient to yield a n = Ω(logM) lower bound on the expected number of queries
in Jj . Instead our proof strategy is to reduce the estimation problem to a binary hypothesis test.

Denote Jj = [aj , bj ] with midpoint mj = (aj + bj)/2. Let I0 = [aj ,mj − ε/2) and I1 = [mj + ε/2, bj ] be two

subintervals of Jj that are ε apart. Then any learner that achieves |X̂ − X∗| ≤ ε/2 must also be able to test
between the two hypotheses X∗ ∈ I0 and X∗ ∈ I1. Indeed,

P
{
|X̂ −X∗| > ε/2|Ej,y

}
≥ |I0|
|Jj |

P
{
X̂ ≥ mj |X∗ ∈ I0, Y = y

}
+
|I1|
|Jj |

P
{
X̂ < mj |X∗ ∈ I1, Y = y

}
=

2|I0|
|Jj |

(
1
2P
{
X̂ ≥ mj |X∗ ∈ I0, Y = y

}
+ 1

2P
{
X̂ < mj |X∗ ∈ I1, Y = y

})
, (34)

where the last equality comes from |I0| = |I1|. The term in the parentheses is the average error probability of the

test T̂ = 1{X̂ ≥ mj} under the uniform prior on the hypotheses. Furthermore, it can be viewed as an average
error probability of a family of simple tests by symmetry of I0 and I1:

1
2P
{
X̂ ≥ mj |X∗ ∈ I0, Y = y

}
+ 1

2P
{
X̂ < mj |X∗ ∈ I1, Y = y

}
= 1

2

∫
1{x ∈ I0}
|I0|

P
{
X̂ ≥ mj |X∗ = x, Y = y

}
dx+ 1

2

∫
1{x ∈ I1}
|I1|

P
{
X̂ < mj |X∗ = x, Y = y

}
dx

=

∫
1{x ∈ I0}
|I0|

(
1
2P
{
X̂ ≥ mj |X∗ = x, Y = y

}
+ 1

2P
{
X̂ < mj |X∗ = 2mj − x, Y = y

})
dx

≥
∫

1{x ∈ I0}
|I0|

inf
T̂

(
1
2P
{
T̂ (r(n)) = 1|X∗ = x, Y = y

}
+ 1

2P
{
T̂ (r(n)) = 0|X∗ = 2mj − x, Y = y

})
dx. (35)

We have reduced the problem to lower bounding the minimum error probability of the simple test

H0 : X∗ = x against H1 : X∗ = 2mj − x.

From [4, Eq (49)] we have the lower bound

inf
T̂

(
1
2P
{
T̂ (r(n)) = 1|H0, Y = y

}
+ 1

2P
{
T̂ (r(n)) = 0|H1, Y = y

})
≥ ρ2

4
, (36)

where ρ is the Bhattacharyya coefficient:

ρ =
∑

r(n)∈{0,1}n

√
P{r(n)|H0, Y = y}P{r(n)|H1, Y = y} = E

(
2Λ/2|H0, Y = y

)
with

Λ = log
P{r(n)|H1, Y = y}
P{r(n)|H0, Y = y}

= log

∏
i≤n

(
1{2mj − x ≥ qi}pri(1− p)1−ri + 1{2mj − x < qi}p1−ri(1− p)ri

)∏
i≤n (1{x ≥ qi}pri(1− p)1−ri + 1{x < qi}p1−ri(1− p)ri)

=

n∑
i=1

1{qi ∈ (x, 2mj − x]}
(
ri log

p

1− p
+ (1− ri) log

1− p
p

)
.
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By Jensen’s inequality,

2 log ρ ≥ E (Λ|H0, Y = y) =
∑
i≤N

P {qi ∈ (x, 2mj − x]|H0, Y = y}
(

(1− p) log
p

1− p
+ p log

1− p
p

)
≥ −c1(p)E(the number of queries in Jj |H0, Y = y)

where c1(p) = p log p
1−p + (1− p) log 1−p

p is always nonnegative. We have arrived at

ρ2 ≥ 2E(Λ|H0,Y=y) ≥ 2−c1(p)E(the number of queries in Jj |H0,Y=y).

Together with (34), (35) and (36) we have

P
{
|X̂ −X∗| > ε/2|Ej,y

}
≥ |I0|

2|Jj |

∫
1{x ∈ I0}
|I0|

2−c1(p)E(the number of queries in Jj |X∗=x,Y=y)dx

≥ |I0|
2|Jj |

2−c1(p)E(the number of queries in Jj |X∗∈I0,Y=y),

where the last inequality follows from Jensen’s inequality. By symmetry the same inequality holds for I1.
Therefore

E(the number of queries in Jj |Ej,y)

≥P{X∗ ∈ I0|Ej,y}E(the number of queries in Jj |X∗ ∈ I0, Y = y)

+ P{X∗ ∈ I1|Ej,y}E(the number of queries in Jj |X∗ ∈ I1, Y = y)

≥2|I0|
|Jj |

· 1

c1(p)

(
− logP

{
|X̂ −X∗| > ε

2
|Ej,y

}
+ log

|I0|
2|Jj |

)
.

Recall that |Jj | = δ/2 and |I0| = |Jj |/2 − ε/2. We have |I0|/|Jj | ≥ 1/4 from the assumption δ ≥ 4ε. Combine
the inequality above with (33) to obtain

n ≥− L

2c1(p)
· δ

2

∑
j≤2/δ

∫ 1

0

log
(

8P{|X̂ −X∗| > ε/2|Ej,y}
)

≥− L

2c1(p)
log

δ
2

∑
j≤2/δ

∫ 1

0

8P{|X̂ −X∗| > ε/2|Ej,y}dy


=− L

2c1(p)
log
(

8P{|X̂ −X∗| > ε/2}
)
≥ L

2c1(p)
log

M

8
,

where the second inequality is due to Jensen’s inequality and the last inequality follows from the definition of
(ε,M)-accuracy.

4 Extensions to multidimensions

In this section we extend our results for noiseless responses to d dimensions for d > 1, under both the Bayesian
and the deterministic settings. Suppose the true value X∗ is in Rd. The closeness of estimators to X∗ is
measured with respect to the ‖ · ‖∞ norm, and the accuracy and privacy levels of a querying strategy are defined
accordingly. By using the ‖ · ‖∞ norm to measure the adversary’s accuracy, we are allowing the adversary to
accurately estimate one or some of the coordinates of X∗. That is because in high dimensions, a single coordinate
of the model parameter often does not provide meaningful predictive power. As a result, we only declare privacy
breach when the adversary gets “close” to X∗ in Rd. Here we use the ‖ · ‖∞ norm to measure closeness. But we
comment that as a consequence of our result, if the Euclidean norm were used, the complexity would only differ
by a multiplicative constant.

We assume that the learner is only allowed to ask questions of the type “is X∗i ≥ q?” for some i ∈ [d] and
q ∈ [0, 1]. Denote the optimal query complexity in d-dimensions as Nd(ε, δ, L). Next we present our results for
the Bayesian and deterministic settings.



Bayesian setting Suppose X∗ is uniformly distributed on [0, 1]d. We say a querying strategy φ is

• ε-accurate for ε > 0, if P{‖X̂ −X∗‖∞ ≤ ε/2} = 1;

• (δ, L)-private for δ > 0 and an integer L ≥ 2, if there is no adversary X̃ such that P{‖X̃ −X∗‖∞ ≤ δ/2} >
1/L.

We focus on the parameter regime 2ε ≤ δ ≤ 1/dL1/de. Once gain 2ε ≤ δ is reasonable to assume, since the
accuracy of the adversary is not expected to beat that of the learner. To justify the other end of the spectrum,
note that if δ > 1/L1/d, then the naive estimator X̃ = 1/2 achieves P{‖X̃ −X∗‖∞ ≤ δ/2} = δd > 1/L, making
it impossible to fulfill the privacy constraint.

Denote γ = γ(L, d) = L1/d. Below is our main result on the multidimensional optimal query complexity in the
Bayesian setting.

Theorem 4 (Bayesian setting). If 2ε ≤ δ ≤ 1/dγe, then

Nd(ε, δ, L) ≤ d
(⌊

log
1

dγeδ

⌋
+ dγe

(⌈
log

δ

ε

⌉
+ 2

)
− 1

)
.

Furthermore, assuming that the queries on X∗i depend only on the responses to the previous queries on X∗i and
some random seed Yi, with Y1, ..., Yd mutually independent, then

Nd(ε, δ, L) ≥ d
(⌊

log
1

γδ

⌋
+ γ

(
log

δ

ε
− 2

)
− 1

)
.

Deterministic setting Suppose X∗ ∈ [0, 1]d is deterministic, we say a querying strategy φ is

• ε-accurate for ε > 0, if P{‖X̂ −X∗‖∞ ≤ ε/2} = 1 for all X∗ ∈ [0, 1]d;

• (δ, L)-private for δ > 0 and an integer L ≥ 2, if for each query sequence q̄, the δ-covering number of the
information set I(q̄) is at least L. 2

Theorem 5 (Deterministic setting). If 2ε ≤ δ ≤ 1/dγe, then

d

(
2γ + log

max{2−dγe, δ}
ε

− 8

)
≤ Nd(ε, δ, L) ≤ d

(
2 dγe+

⌈
log

max{2−dγe, δ}
ε

⌉
+ 1

)
.

From the upper and lower bounds in the theorem statements, we see that in d-dimensions the optimal query
complexity suffers from a multiplicative factor of d. This is consistent with the optimal query complexity
d log(1/ε) when there is no privacy constraint. The query complexity for each dimension depends on γ = L1/d.
As d grows, the price to pay for privacy per dimension decreases. In the extreme case where d → ∞ with L
fixed, the optimal query complexity behaves like d log(1/ε) in both the Bayesian and the deterministic settings,
making the privacy constraint obsolete in high dimensions.

One interesting direction to strengthen Theorem 4 and Theorem 5 is to allow the learner to query “is X∗ in
H?” where H is an arbitrary half-space in Rd. The upper bounds are still valid since every comparison query
corresponds to a half-space. However for both the Bayesian and the deterministic setting, our current lower
bound proof strategies do not accommodate this wider class of queries. This variant of the problem was studied
by [19, Theorem 2] under the Bayesian setting, where the author gives a lower bound of c1δ

d−1L log(δ/ε)− c2L
for constants c1, c2 that depend on d. The lower bound is obtained via a hyperplane transversality argument.
More specifically, divide [0, 1]d into δ-wide cubes and consider an adversary who samples from the cubes that
intersect with the queried hyperplanes. The maximum number of cubes each hyperplane can intersect with grows
like δ−(d−1), resulting in the δd−1 factor in the lower bound. However this dependence on δ and the dimension
is far from desirable. We conjecture that allowing the learner to query arbitrary half-spaces does not help lower
the query complexity, and that the querying strategies we construct for the proofs of Theorem 4 and Theorem 5
remain optimal.

Next we prove Theorem 4 and Theorem 5. To avoid repetition we only outline the proofs and highlight the parts
that differ from the one-dimensional case.

2Here the δ-covering number is defined in terms of the ‖ · ‖∞ norm in Rd.
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Proof of Theorem 4. Upper bound: Consider the following multistage querying strategy:

1. For each i = 1, ..., d, submit K1 = blog(1/(dγeδ))c queries on X∗i via bisection. This stage locates X∗ in a
cube J = [a1, b1]× ...× [ad, bd] of diameter 2−K1 ≥ dγeδ. This stage involves dK1 queries.

2. For each i = 1, ..., d, run replicated bisection on [ai, bi]: First evenly split [ai, bi] into dγe subintervals. For
all q that are endpoints of the subintervals, query the events {X∗i ≥ q}. From the responses determine the
true subinterval X∗i is in. Run bisection on this subinterval to find X∗i up to ε-accuracy and submits cloned
queries in all the other subintervals. This stage involves d(dγe − 1 + dγedlog(2δ/ε)e) queries.

To show this strategy is (δ, L)-private, notice that from the adversary’s perspective, for each i there are dγe
subintervals that contain X∗i with equal probability. That creates L′ = dγed cubes J1, ..., JL′ that are at least δ

apart in ‖ · ‖∞ distance. Since L′ ≥ L, the adversary cannot achieve ‖X̃ −X∗‖∞ ≤ δ with probability greater
than 1/L.

Lower bound: Suppose φ is an ε-accurate and (δ, L)-private strategy that submits at most n queries. By
assumption the query sequence on X∗i depends only on X∗i and Yi. Thus we can write ni(X

∗
i , Yi) for the number

of queries submitted on the i’th coordinate. Let ni = supX∗i ,Yi
ni(X

∗
i , Yi), so that n ≥

∑
i≤d ni. As in the

one-dimensional proof we can assume that the learner always submits exactly ni queries on X∗i by filling up the
end of the query sequence with trivial queries on {X∗i ≥ 0}.

Consider an adversary that adopts the truncated proportional-sampling scheme on each coordinate. Let qi =
(qi,1, ..., qi,ni

) denote the sequence of queries submitted on X∗i . The adversary obtains X̃i by sampling from the
empirical distribution of qi,K2+1, ..., qi,ni with K2 = blog(1/(γδ))c. Since qi only depends on X∗i and Yi with
{(X∗i , Yi)}i≤d mutually independent, we have that the sequences q1, ..., qd are also mutually independent. Thus

P
{∥∥∥X̃ −X∗∥∥∥

∞
≤ δ/2

}
=E

∏
i≤d

(∑Ni

j=K2+1 1{|X∗i − qi,j | ≤ δ/2}
ni −K2

)

=
∏
i≤d

(∑Ni

j=K2+1 P{|X∗i − qi,j | ≤ δ/2}
ni −K2

)
≤ 1

L
.

Via the same analysis as in the one-dimensional proof,

ni∑
j=K2+1

P{|X∗i − qi,j | ≤ δ/2} ≥ log(δ/4ε)− δ2K2 .

Deduce that ∏
i≤d

(ni −K2) ≥ L
(
log(δ/4ε)− δ2K2

)d
.

Given the lower bound on
∏
i≤d(ni−K2), the minimal value for

∑
i≤d(ni−K2) is achieved when all the summands

are equal. Hence the total number of queries is at least∑
i≤d

ni ≥ dK2 + dγ
(
log(δ/4ε)− δ2K2

)
≥ d

(
K2 + γ

(
log

δ

ε
− 2

)
− 1

)
,

where the second inequality is from the choice of K2.

Proof of Theorem 5. Upper bound: As in the one-dimensional proof, the upper bound is proved by constructing
a querying strategy that first submits L guesses (intervals of length ε) that are at least δ apart. In [0, 1]d, we
submit dγe guesses on the location of X∗i for each coordinate i ≤ d. These guesses across the d coordinates form
L′ = dγed cubes of diameter ε, all of which are contained in the information set I(q̄). Moreover the centers of
these L′ cubes are at least δ away from each other in ‖ · ‖∞ norm. Since L′ ≥ L, the δ-covering number of I(q̄)
is at least L.

The way the guesses are submitted following algorithm 2 when δ ≤ 2−dγe and algorithm 3 when δ > 2−dγe, except
that L is replaced with dγe in the algorithms. Each guess consists of two queries ε away from each other. In total



it takes 2ddγe queries to submit all the guesses. If none of the guesses is correct, the guesses help the learner
narrow down the range of X∗i to an interval Ji. Via similar analysis as in the one-dimensional proof, we have
|Ji| = 2−dγe when δ ≤ 2−dγe and |Ji| ∈ [δ, 2δ] otherwise. The next stage of the strategy simply runs bisection in
Ji to achieve ε-accuracy on X∗i , which requires at most log(|Ji|/ε) ≤ log(max{2−dγe, δ}/ε) + 1 queries.

Lower bound: First consider the case δ ≤ 2−dγe. From the lower bound proof of Theorem 2, we have for each
i ≤ d,

(i) There exists an interval Ji of length 2δ such that if X∗i is in Ji, then there are at least log(1/δ)− 3 queries
on X∗i that are outside of Ji and are separated from each other by at least δ;

(ii) For each interval J of length 2δ, there exists xi ∈ J such that if xi is the true value for X∗i , then there are
at least log(δ/ε) queries on X∗i that are in J .

The above guarantee that there are at least d(log(1/ε) − 3) queries in total. The extra queries arise from
the privacy requirement. For a point x to enter the information set I(q̄), there must be at least 2 queries
on X∗i surrounding xi, that are ε-close to each other. Hence I(q̄) is contained in the union of d-dimensional
hyperrectangles

∏
i≤d[si, ti], where si, ti are pairs of queries on X∗i with 0 < ti − si ≤ ε. Suppose aside from the

queries identified by (i), there are mi extra queries on X∗i outside of Ji. Approximately speaking, the queries
outside of

∏
i≤d Ji form at most

∏
i≤dmi hyperrectangles that are contained in I(q̄). Therefore the δ-covering

number of I(q̄) is at most
∏
i≤dmi. Deduce that

∏
i≤dmi ≥ L and thus

∑
i≤dmi ≥ dγ. The queries identified

in (i),(ii) plus
∑
i≤dmi is approximately the lower bound stated in Theorem 5. The extra constant −5 is to

account for the hyperrectangles that are formed with queries that are either near the boundary of [0, 1]d or near∏
i≤d Ji.

The proof for the δ > 2−dγe case is much simpler. Fix any cube J =
∏
i≤d Ji of diameter δ. For each i ∈ [d],

there are at least log(δ/ε) queries about Xi inside of Ji. Outside of J there are at least 2dγ queries to ensure
that the information set contains at least L hyperrectangles. The proof is similar to the previous case and is
therefore omitted.

5 Discussion on Federated Learning

In the Introduction we briefly discussed the application of our work to Federated Learning. In this section we
investigate this example in more depth.

Before explaining how the Private Sequential Learning model applies in this context, we briefly review the basic
mechanisms of Federated Learning. In Federated Learning, a central learner trains a global model by interacting
with a large pool of users U . Suppose a central learner aims to estimate the optimal model parameter that
minimizes the population risk, i.e., θ∗ ∈ arg minθ L(θ) where L(θ) = E`(Z, θ), ` denotes the loss function and the
average is taken with respect to the underlying data distribution F of Z. Each user u ∈ U has access to a local

dataset {Zj , j ∈ Su} where Zj
i.i.d.∼ F . A typical Federated Learning training process is sequential in nature and

is outlined below (see e.g. [7, Algorithm 1]).

Algorithm 4: A Federated Learning framework known as FederatedAveraging

Initialize θ0;
for iteration i = 1, 2, ... do

Sample a subset of users Ui ⊂ U ;
for user u ∈ Ui do

Define local loss function `u(θi) := 1
|Su|

∑
j∈Su

`(Zj , θi);

Train local model update θui , for example by running one, or multiple steps of gradient descent on `u(·)
from θi;

Aggregate θui across all u ∈ Ui to produce θi+1;

When training with thousands of users, as the learner lacks enough administrative power over those external
workers, the Federated Learning system is highly vulnerable to eavesdropping attacks [5]. An honest-but-curious
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adversary can participate in the training stage by pretending to be an user, and eavesdrop on the sequence of
broadcasted model parameters. Simply by taking the last set of model parameters, the adversary can approximate
the learner’s final model fairly well. Sophisticated models can be worth millions. The eavesdropper can use the
stolen model to profit or even leverage them for illicit purposes [3]. It not only saves the eavesdropper from
investing the tremendous amounts of funding into training the model, but it could also devalue the learner’s
model. Therefore, it is of paramount importance to protect the learner’s privacy from eavesdropping attacks 3.
This consideration prompts us to investigate whether we can offer provable guarantees on the learner’s privacy
against the eavesdropping attack in Federated learning.

There are several potential techniques to conceal the model parameters from the users in Federated Learning,
such as restricting each user to run the local computation inside a Trusted Executation Envrionments (TEE) [14]
or encrypting the model parameters under a homomorphic encryption scheme before broadcasting it to the
users [8]. Unfortunately, as pointed out by the recent survey [5, Section 4.3.3], TEEs may not be generally
available across all workers especially when these workers represent end-devices such as smartphones. Moreover,
TEEs and homomorphic encryption are often costly to implement and incurs large overhead. There is an
emerging line of research on preventing model theft in the evaluation stage, where an adversary attempts to
extract the deployed model by repeatedly querying the model and obtaining estimation on the input feature
vectors [15, 12, 13, 17, 3, 11, 10, 6]. However, this line of work does not address the unique challenge of
concealing the model parameters from the users during the training stage in Federated Learning.

By investigating the binary search model, we aim to address the following two natural but fundamental questions:

1. Can the learner arrive at an accurate model, while ensuring that the eavesdropping adversary cannot learn
the same model with a high level of accuracy?

2. What is the minimal number of iterations needed in the training process, for accurate and private learning?

At a high level, when the model parameters are in one dimension, here is how we associate the Federated Learning
framework with the binary search model. The optimal model parameter θ∗ corresponds to the true unknown
value the learner aims to learn. The model parameter θi is viewed as a query. The queries are broadcasted to the
participating users, and is therefore assumed to be accessed by the adversary. The binary variable 1{θ∗ > θi},
or its noisy variant, is associated with to the model updates the learner receives from the users. It is reasonable
to assume that the adversary does not observe the responses. That is because in order to observe the responses,
the adversary would have to access the updates generated by all users in the system, a formidable task that is
not realistic for an adversary that only controls up to a small subset of the users. To be clear, we do not claim
that the binary search model that we consider in the paper covers the general family of Federated Learning
frameworks. But it is an idealized abstraction in one dimension, if we view the aggregated model updates as
providing information on the direction of θ∗ relative to the current broadcasted model parameter θi. To be more
specific, consider the two special cases below.

1. Suppose the local model updates θui are obtained by running one step of gradient descent, i.e. θui =
θi − η∇`u(θi). This implementation of Federated Learning is known as FederatedSGD, or FedSGD [7]. By
averaging over the model updates across all users in the i’th iteration, the learner obtains the weighted
average

ĝ(θi) :=
∑
u∈Ui

wu∇`u(θi) =
∑
u∈Ui

1

|Su|
∑
j∈Su

∇`(Zj , θi) =
1∑

u∈Ui |Su|
∑
u∈Ui

∑
j∈Su

∇`(Zj , θi),

where the weights wu = |Su|/
∑
u∈Ui |Su| are defined proportional to the size of the users’ local datasets.

As the total number of data points
∑
u∈Ui |Su| grows to infinity, with adequate regularity conditions, ĝ(θi)

converges almost surely to E[∇`(Z, θi)] = ∇L(θi) by the strong law of large numbers. If the loss function `
is convex, then L is also convex, and therefore

sign (ĝ(θi))→ 1 {∇L(θi) > 0} = 1 {θ∗ < θi} .
3Although in Federated Learning the final trained model is usually released for all users to access, the learner often

chooses to keep the model parameters in the central server and only allows users to perform evaluation tasks.



When the total number of data points
∑
u∈Ui |Su| is small, sign (ĝ(θi)) can be viewed a noisy version of the

true directional information 1{θ∗ < θi}. By viewing sign(ĝ(θi)) as the response, the learner can apply the
querying strategies developed in this paper and achieve private learning.

2. If the local model updates are obtained by running multiple steps of gradient descent, it is likely that the
direction of the local updates indicate the direction of the optimal model parameter under the local loss
function. To be more specific, suppose sign(θui − θi) = sign(θu∗ − θi), where θu∗ ∈ arg minθ `u(θ).

As a special case, suppose ` is the `1 loss `(Z, θ) = |Z − θ|. Then θ∗ ∈ arg minθ L(θ) is the (population)
median of F , and θu∗ is the sample median over user u’s local dataset {Zj}j∈Su

. Ignoring the complication
surround non-unique medians, we have

P {θu∗ ≥ θ∗} = P

∑
j∈Su

1{Zj ≥ θ∗} ≥
|Su|

2

 =
1

2
,

where the last equality is because
∑
j∈Su

1{Zj ≥ θ∗} ∼ Bin(|Su|, 1/2). As a result, for all θi ≤ θ∗,

P {sign (θu∗ − θi) = 1} = P {θu∗ ≥ θi} ≥ 1/2.

Similarly, for all θi > θ∗, P{sign(θu∗ − θi) = 1} ≤ 1/2. Therefore the majority vote of sign(θui − θi) can
be viewed as a deterministic, or noisy version of 1{θ∗ ≥ θi}, depending on the number of users |Ui|. The
majority vote corresponds to the response ri under the binary search model.

Following similar arguments, it is easy to check that under the `2 loss function, the majority vote of sign(θui −
θi) is also positively correlated with 1{θ∗ ≥ θi}, with the additional assumption that F is a symmetric
distribution.

We remark that in Federated Learning, communication bandwidth is a scarce resource, as the data transmission
between the external workers and the learner typically suffers from high latency and low throughput. Thus, de-
termining the optimal query complexity (i.e. the minimum communication rounds) is of fundamental importance
in both theory and practice. The rigorous study we carry out offers a complete understanding on the trade-off
between accuracy, privacy and query complexity under the binary search model, and is likely to yield valuable
insights and provide guidance for algorithm design under the general Federated Learning framework.
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[15] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In 25th {USENIX} Security Symposium ({USENIX} Security 16), pages 601–618,
2016.

[16] John N Tsitsiklis, Kuang Xu, and Zhi Xu. Private sequential learning. Forthcoming in Operations Research,
2020. arXiv:1805.02136.

[17] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in machine learning. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 36–52. IEEE, 2018.

[18] Kuang Xu. Query complexity of Bayesian private learning. In Advances in Neural Information Processing
Systems, pages 2431–2440, 2018.

[19] Kuang Xu. Query complexity of bayesian private learning. arXiv preprint arXiv:1911.06903, 2019.


