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A BI-MAML Algorithm

Algorithm 2 Biphasic MAML (BI-MAML)

Input: Loss functions {f;(w)}ie[as], MAML parameter
«, step size [, tolerance level &g, €.

1: initialize w(0) € R? arbitrarily

2: for t e NU{0} do
if |V (w(t))]] > 2 then
4 w(t+1) + w(t) — fVf(w(t))
5 else
6 w(t+1) « w(t) — BVE(w(t))
T end if
8
9:

return w(t+ 1) if ||[VF(w(t))|| <e
end for

B Proof of Proposition 3.1
Proof. Recall the MAML algorithm with update Eq. (3.1), i.e.,
wt =w— BVF(w),
and that VF;(w) = (Iz — aV2fi(w))V fi(w — aV f;(w)). Expand the terms to get
VE(w) = Eivp[(la — aV2 fi(w)) Vfi(w — aV fi(w))]
=Eivy Vfi(w — aVfi(w)) — aEiv, V2 fi(w)V fi(w — aV fi(w))
=Eip(Ia — oV f;(0;))V fi(w) — a i V2 fi(w) (Ig — oV f3(@;))V f;(w)
= Einp(la — aV2 fi(w))(La — aV? fi(@0:))V fi(w)
= Einp Ai(w)Ai (@0:)V fi(w),

where the first equality follows from definition, the third equality follows from mean value theorem. Here w; is a
value between w and w — o'V f;(w) such that mean value theorem holds. The formula can be further recast into

VF(w) =Eiwp[Vfi(w) — a(Vfi(w) + V2 f;(0:))V fi(w) + &® V2 f;(w)V? £ (0;) V f; (w)]
= Vf(w) = Eip[((V? fi(w) + V2 fi(0:)) — ®V? f;(w) V? fi(04)) V fi(w)].

If we think of the infinitesimal step size 5 — 0, we obtain an ODE that represents the gradient flow on F(w):

w=—-VF(w)
= —Vf(w) + Einp[(a(V? fi(w) + V2 f;(0:)) — oV fi(w) V2 fi(04)) V fi(w)].
Bi(w)
We define a shorthand B;(w) for notational convenience. O

C Proof of the Convergent Upper Bound

Lemma C.1. If the loss function f;(w) satisfies Assumptions 3.2 and 3.3 and o < i, then it holds that

Y (0)2 () Eong B (0)V )] < L2 + 2120 +2) |V F(w)| + 5 (C.1)

2

Proof. Another upper bound for the third term on the right-hand side of Eq. (3.6) can be derived through
relaxing its difference with the quadratic form

V() V2 f (w) Einp [ Bi(w)V fi(w)] = Vf(w) TV f(w) Eirp [ Bi (w)]V f (w)

= By [V ()T f(0) Bi(w) (Y fiw) = ¥ ()]
5 By [ Bi(w) V27 ()7 (@) + 5 Biny [V filw) = V()P

IN
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where the last inequality follows from Young’s inequality. This provides yet another upper bound after rearrang-
ing the terms as follows:

V() V2 f(w) Binp [ Bi(w)V fi(w)] < Vf(w)TV2f(w) Birep [ Bi(w)]V f (w)

L o’
+ & max 1Bi(w)[|*[|V f (w)]|* + >
L2 0'2

< (L 1B )+ 2 ma B, ) |2 9 50+ -

The first and second inequality are due to Assumptions 3.2 and 3.4. Recall that
Bz(w) = a(szz(w) + VQfZ(tDZ)) - a2V2fl(w)V2fl(wZ),
and it is not hard to see that max; || B;(w)|| < 2aL + o?L?. Hence we conclude that

2

2 g
V()79 () iy [Bi(w)V fi(w)] < (L | BaCw) | + = ma [ Bu(w) )V ()P + &

N

2
< %LQQ(La +2)(L3a® + 2L%a + 2) ||V f(w)|? + %

0.2
Y

2

IN

5

iLQOz(L?’a2 +2L%a + 2)||V f(w)||* +
where the last inequality follows from o < ﬁ O
Proof of Lemma 3.7

Proof. Plug Eq. (C.1) into Eq. (3.6) to get

a1
dt 2

02

IV F@)IF <~V F@)TVf @)V f(w) + S La(L%? + 2L% + 2)| 9 f(w) | + 5

0.2

5
< —(n-Jra(L2a? +20% +2)) IV f () + 2

Theorem C.2. If it holds that

Vel 2 s [ L e, L
a<m1n{ 15u L , 15u L~ 15,uL ,

then ||V f(w(t))||* under (3.2) is upper bounded by a function y(t) that is exponentially convergent to

o? o?

< J—
21— 2L2a(L3a? 4+ 2L2a +2)  p

ast — o0.

Proof. If y(t) is the solution of an 1vP
. 59 3.2 2 o’
7y < —(,u— ZL a(L’a® +2L a—|—2)>y—|—7

with initial condition y(0) = ||V f(w(0))||?, then ||V f(w(t))||* < y(t) for any t > 0. Moreover, it is an ODE of the
following form: ¢ = —(y + 7y, which is a simple first-order separable ODE that permits a family of solutions

y(t) = (<) 4 4)/¢
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under the condition y(0) > v/¢. In our case, ( = u — 2L2a(L3a? + 2L%a +2), v = %2, and the constant cg
depends on initial condition y(0). Consequently, we have y converges to v/ exponentially whenever ¢ > 0. The

following theorem provides sufficient conditions for convergence.

We derive sufficient conditions for the quadratic inequality %,u — 3L20¢(L3a2 +2L%a+2) >0, d.e.,

5
%0 < E.

5 3 M D
S <= SLY%? <
e o 5 5

B
4 6" 2 6’

The sufficient conditions reduce to
. s/ 2 1/37-5/3 | L 90— /1 -2
il / =,/ —
a<m1n{ 15u L , 15u L™=, 15,uL

o?/2  o?

w2 o

and we have

i
- <
¢

O

Lemma C.3. Suppose the loss function fi(w) satisfies Assumptions 3.2 and 3./, then for any w € R? such that
|V f(w)|| <G, it holds that ||[VF(w)|| < (1+2aL + a*L?*)G + (2aL + o*L?)o.

Proof. Recall that VF;(w) = A;(w)V f;(w — aV f;(w)). Apply mean value theorem to V f;(w — oV f;(w)) to get

Vfilw = aVfi(w)) = V fi(w) — aV?f(@,)V fi(w)
= Ay(

w;)V fi(w), (©2)

where @; lies between w and w — oV f;(w). Consequently, VF;(w) = A;(w)A;(0;)V fi(w). Further notice that

IVE(w)|| = || Einp VEF(w)]|
= [ Einp[Vfi(w) + (VFi(w) = V fi(w))]|
S [ Einp VSi(w)|| + [ Einp[( — Ai(w) Ai (@) V fi(w)]|
<AVF) 4 EinplllIa — Ai(w) Ai (@) |||V fi (w)]I],
The second equality follows from separating the difference between VF(w) and V f(w). The third inequality is
due to Eq. (C.2) and triangular inequality. The last inequality is due to Cauchy-Schwarz inequality, and the

product of the two norms can be handled seperately. Expand A;(w), A;(w;) and bound the first term by a
constant to get

1 1g — Ai(w)A; (@;)|| = | V2 fi(w) V2 f; () — aV2 f;(w) — aV2 f;(@)|| < 2oL + o*L2.
The remaining term can be bounded by variance o and gradient norm ||V f(w)]|:
Einp [V fi(w)| < [[Binp V fi(w)[| + Einp [V fi(w) = Einpy V fi(w)]l]

< IV f(w)ll + \/Ein[IIVfi(w) = V()]
< IV ()l + 0.

The second inequality follows from Jenson inequality. Combining the upper bounds together yields

IVF(w)|| < (14 2aL + o*L?)|Vf(w)| + (2oL + o*L*)o.
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Proof of Theorem 4.1
Proof. Since the expected loss f is p-strongly convex, we always have in the first stage that

LIV T = V7 () TV ()i
= V)V () (w)
< VS ()P

where w = —V f(w). It reaches a tolerant level at |V f(w)]| < eo, as long as

1 IV £ (w(0)]”
= ([P0

2
€0

2 (IIVf(w(O))Il2> |

2
H €0

Let us denote
ty =min {t : [Vf(w®)|* <&},

By Lemma C.3 and the assumption a < QL we have

L
[VE(w(t))|| < (1+2aL +a®L?*)eg + (2aL + o*L?)o

< 9 +5
74?30 40.

Let us denote K = 9o + 20, and Theorem 3.8 implies that if o < min{3-, m} the MAML loss F'(w)
n

is £-strongly convex at w, and the MAML ODE (3.2) after time ¢, is a gradient flow on a £-strongly convex loss
F(w). This dynamics then converges exponentially fast to an approximate stationary point @ where ||VF(0)]| <
g. Similar to the proof of Theorem 3.6, a sufficient condition for the approximate stationary point w writes

e MT/8||VF (w(t1))||? < &, which means w(7 +t;) is an approximate stationary point if

s 2 g (2D

> 2
16 <9€0 + 50’)
=—log|—— .
W 4e
Combine two parts together to get the major result that the BI-MAML ODE converges to an approximate stationary

point w(t) within
1= L0 g (2 - 5TOD Y]
1% 4606

D Proof of Strong Convexity

Lemma D.1. Suppose the loss function fi(w) satisfies Assumptions 3.2 and 3./, then for any w € R? such that

|[VF(w)|| € K and a < -, it holds that |V f(w)| < ¥ K + 0.

Proof. Notice that
IV ()l = [ Einp fi(w)]
= [Eicp[VE(w) + (Vfi(w) = VE(w))]|
SIVE@)I + [ Einp(La — Ai(w) Ai(@:))V fi(w)]|
< IVE@)|| + Einyp (g = Ai(w) Ai(@3)[[[[V fi(w)]]
S IVE@W)| + (2aL + a*L?) Eirop |V fi(w)l],
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where the first inequality follows from triangular inequality and the third inequality is due to Assumption 3.2.
Similarly, we have

Einp Vi) | <V (@)l + Einp [V fi(w) = Vf(w)]
<[Vi(w)ll +o,

where the first inequality is due to triangular inequality and the second one is due to Assumption 3.4. Rearrange
the terms under the assumption a < ﬁ to get

1 2aL + o?L?
<— - ||VF T 5.7 373
IVl < 5 = IVE@I+ 50— ez
16 9
< =K+ —o.

O

Lemma D.2. Suppose f;(w) satisfies Assumptions 3.2, 3.3 and 3.5. For any a < min{5-, &=} and w €
U(G) = {w e R?: |V f(w)|| < G}, we have &£1; < Hess(F(w)) = 2£1,.

Proof. Consider w,u € U(G), we have
IVE(w) = VF(u)|| = [A(w)V f(w — aV f(w)) = A(u)V f(u— aV f(u))]
< [[(A(w) = A(u))V f(w — aV f(w))]|
+ [[A(u)(Vf(w — aV f(w)) = Vf(u—aVfu)l,
where the inequality follows from triangular inequality. For the first term, we have an upper bound

[(A(w) = A(w))V f(w — oV f(w))[| < [[A(w) = A@W)[|[[V f(w — oV f(w))]]
= a||[V2f(w) = V2 f(W)[[[IV f(w — aV f(w))|
< akfw —ul|[Vf(w —aVf(w)]

akllw — ul[[[A(@D) f (w)]]

ak|w — ull[[A(@)]|[|f (w)]]

a(l — ap)kGllw — ul]

<
<

where the first inequality is due to Cauchy-Schwarz inequality, the second inequality is due to Assumption 3.5,
and the second equality follows from mean value theorem, and the last inequality is due to the fact that ||A(w)|| =
[ Is — aV2f(@)]| <1 — au. Similarly, we bound the second part as

[AW)(Vf(w —aVf(w)) = Vf(u—aVfu))l
< AWV f(w = aV f(w)) = Vf(u—aVf(u)]
< (1 —ap)Vf(w—aVf(w) = Vf(u—aVfu))
< (1= ap)Llj(w—aVf(w)) = (u—aVf(u)l
< (1 - ap)*Lijw — ull,
where the last inequality follows from mean value inequality. Putting the pieces together to get, when a <
min{5r, s¥z},
IVE(w) = VE(u)|| < a(l — ap)rGllw —ull + (1 — ap)’Lijw — ul|
< anGllw —ul + (1 - ap)’Ljjw — |
< (5+L) w—ul
9L

< Fllw - ull,

and therefore Hess(F(w)) < 3£1,.
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The corresponding lower bound similarly follows from triangular inequality where

IVF(w) = VE(u)[| = [A()V f(w — aV f(w)) = A(w)V f(u = aV f(u))]|
> [[AW)(Vf(w = aV f(w)) = Vf(u—aV i)l
— [(A(w) = A(u))Vf(w — aV f(w))]].

When a < min{57, g%}, the first term is lower bounded as

[A(W)(Vf(w = aVf(w)) = Vf(u—aVfu))]

> (1— aL)|[Vf(w— aV f(w)) — Vf(u—aV f(u)]
> (1 - aLyull(w - a¥V f(w)) - cu—an<>m

> (1= aLyu(|lw - ull - o|Vf(w) - V()]

> (1 - aL)ulw —u

> L —ul),

where the first inequality follows from Apin(A(u)) > 1 — aL, the second inequality follows from Assumption 3.3,
the third inequality is due to triangular inequality, and the last inequality follows from a < i Hence, it holds
that

IVE(w) = VE(u)]|

Y

[A()(Vf(w = aVf(w)) = Vf(u—aVfw)]
— [(A(w) = A(W))V f(w — aV f(w))]]

1
2 7w —ul = a(l - ap)sGllw - u|
poop
>(E_E —
= (4 8) o =l
= Gllw —ull.
8
where the last inequality follows from a < g&=. Thus we obtain Hess(F(w)) > & O
Proof of Theorem 3.8
Proof. Combining Lemmas D.1 and D.2 shows that
L
%Id = Hess(F(w)) < %Id’
if we U(K) and
L 7
< —_— .
« mm{QL 8% 16K+90}
O

E Proof of Theorem 3.9
For K > 0, we define U(K) == {w € R?: |[VF(w)|| < K} and V(K) = {w € R¢: f(w) — f(z*) < K} where z*

is the unique global minimizer of f (recall that f is u-strongly convex). Let Crit(F') denote the set of critical
points of F'. The convexity of f implies that V(K) is convex. All critical points of F' are contained in U(K) for
any K > 0; in other words

Crit(F) CU(K), VK >0.

Lemma E.1. If the loss function f;(w) satisfies Assumptions 3.2 to 3.4, a < then we have

4L7

UK)CV (9;u (16K + 90)2> .
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Proof. Let us pick w € R? such that ||VF(w)|| < K. Lemma D.1 implies that there exists a constant C; =
LK + 2o such that |V f(w)|| < Cy. Since f is p-strongly convex, we have

1
f(w) < fl2) + V(@) (w—=)+ ZHVJ”(W) V@I, vw.
Setting z to the global minimizer x* of f yields

1 1 1
< * - 2 * 2 * - 2 )
fw) < fl@*) + 2M||Vf(w)\| < f(@") + 2ucl fa®)+ o5 (16K 4 90)
Therefore, we have

1 2
\% 16K +9 .
w e (98u ( +90) )

O
Lemma E.2. Under Assumptions 3.2 to 3.4, we have
V(K)CU (a + 2LK)) .
Proof. Let us rewrite |[VF(w)]|| as below
IVE(w)]| = | Einp(La — aV? fi(w))V fi(w — afs(w))]

= | Einp(la — aV? fi(w))(La — aV? fi(@)) V fi(w)]|

< Binyp [V fi(w) ]|

< (Einp IV fi(w) = Fw)[| + [V (w)]]) (E-1)

< \/]EM IV fi(w) = f(w)[* + [V f(w)]

<o+ Vi),

where the second inequality is because of the mean value theorem. Since f is L-smooth, we have
1
fw) = f(2) + V(@) (@ = 2) + |V (w) - Vi@)P, vVoeRe.
Since f is p-strongly convex, there exists a unique global minimum x* with V f(z*) = 0. Therefore, we obtain

Flw) > )+ 52 IV 5w

Combining the above inequality and (E.1) yields

IVF(w)|l < o+ v2L(f(w) — f(z*)).

If we V(K), we get
|F(w)| < o+ V2LK .

Combining Lemmas E.1 and E.2 gives the following corollary.

Corollary E.3. For any K >0, if a < ﬁ, we have the following inclusion relations

. 1 2 L 16K + 90
- - — - _— .
Crlt(F)_U(K)_V(QSM(16K+90)>_U(J+“M - )
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Corollary E.4. For any K' > (%\/%—I— 1) o, ifa< ﬁ, we have the following inclusion relations

'—o +7 " g)2 )
Crit(F) C U 16(\/ ) c ((K2L)>QU(K)

Lemma E.5. Under Assumption 3.3, if a < 4L, we have Crit(F) is non-empty.
Proof. First we show that F' is bounded from below. Since every f; is strongly convex, it is bounded from below.

Recall that F(w) = Eivp fi(w — aV fi(w)). Therefore F is also bounded from below. Let F* := inf,cga F(w).
Pick any v(0) € R? and consider the dynamic defined by

do(t)
T VF(v(t)).
Let E(t) = F(v(t)) — F*. We have
dE(t) _ 2
= = VE@)?.
Therefore, we get
t min HVF ) < / IVF(v(s))||*ds = E(0) — E(t) < E(0).
Thus we obtain
£(0)

min [VF@@)]* < =

Define another function

u(t) == v | arg min ||VF(U(t))||2 ,
s€[0,t]
where ties can be broken arbitrarily. Eq. (E.2) implies
E(0
vrum) <22 o,

Pick any K > (%\/%4— 1) o. We have

V@) € UK), vz E

Since f is strongly convex, V' ((KQ_ LU)Z) is convex and non-empty. Thus U(K) is non-empty and closed. Next, we
show that U(K) is bounded. Lemma E.1 implies U(K) CV ( (16K +90) ) = Vp. Since V} is a sublevel set
of f and f is strongly convex, therefore we get the boundedness of Vo, which implies the boundedness of U(K).
Thus U(K) is compact. Define a sequence w,, = u (n + E}?), where n = 1,2,3,.... We have w,, € U(K).

By Bolzano-Weierstrass theorem, there exists a convergent subsequence w,,. Let wg € U(K) be the limit of w,, .
We have

E(0
IVE(wo)|| = lim |VF(wy,)|] < lim _ PO =0.
i—00 i—oo \| m,; + E(O)/K
Therefore we conclude that wq is a critical point of F'. O

2
Proof of Theorem 3.9. Since f is strongly convex, V ((K; L”) ) is convex and non-empty. Theorem 3.8 implies

2
that F is %—Strongly convex on U(K) and therefore %—Strongly convex on its convex subset V ((K; LU) ) (by

Corollary E. 4) Since Crit(F') # @ (by Lemma E.5), there is a unique critical point which is the minimizer of F'

2
onV ((K o)’ ) Corollary E.4 implies no critical point outside V' (%) In fact, the unique critical point is

the global minimizer of F'. O



