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A BI-MAML Algorithm

Algorithm 2 Biphasic maml (bi-maml)
Input: Loss functions {fi(w)}i∈[M ], maml parameter

α, step size β, tolerance level ε0, ε.
1: initialize w(0) ∈ Rd arbitrarily
2: for t ∈ N ∪ {0} do
3: if ‖∇f(w(t))‖ ≥ ε0 then
4: w(t+ 1)← w(t)− β∇f(w(t))
5: else
6: w(t+ 1)← w(t)− β∇F (w(t))
7: end if
8: return w(t+ 1) if ‖∇F (w(t))‖ ≤ ε
9: end for

B Proof of Proposition 3.1
Proof. Recall the maml algorithm with update Eq. (3.1), i.e.,

w+ = w − β∇F (w),

and that ∇Fi(w) = (Id − α∇2fi(w))∇fi(w − α∇fi(w)). Expand the terms to get

∇F (w) = Ei∼p[(Id − α∇2fi(w))∇fi(w − α∇fi(w))]
= Ei∼p∇fi(w − α∇fi(w))− αEi∼p∇2fi(w)∇fi(w − α∇fi(w))
= Ei∼p(Id − α∇2fi(w̃i))∇fi(w)− αEi∼p∇2fi(w)(Id − α∇2fi(w̃i))∇fi(w)
= Ei∼p(Id − α∇2fi(w))(Id − α∇2fi(w̃i))∇fi(w)
= Ei∼pAi(w)Ai(w̃i)∇fi(w),

where the first equality follows from definition, the third equality follows from mean value theorem. Here w̃i is a
value between w and w− α∇fi(w) such that mean value theorem holds. The formula can be further recast into

∇F (w) = Ei∼p[∇fi(w)− α(∇2fi(w) +∇2fi(w̃i))∇fi(w) + α2∇2fi(w)∇2fi(w̃i)∇fi(w)]
= ∇f(w)− Ei∼p[(α(∇2fi(w) +∇2fi(w̃i))− α2∇2fi(w)∇2fi(w̃i))∇fi(w)].

If we think of the infinitesimal step size β → 0, we obtain an ode that represents the gradient flow on F (w):

ẇ = −∇F (w)
= −∇f(w) + Ei∼p[(α(∇2fi(w) +∇2fi(w̃i))− α2∇2fi(w)∇2fi(w̃i))︸ ︷︷ ︸

Bi(w)

∇fi(w)].

We define a shorthand Bi(w) for notational convenience.

C Proof of the Convergent Upper Bound
Lemma C.1. If the loss function fi(w) satisfies Assumptions 3.2 and 3.3 and α < 1

2L , then it holds that

∇f(w)ᵀ∇2f(w)Ei∼p[Bi(w)∇fi(w)] ≤ 5
4L

2α(L3α2 + 2L2α+ 2)‖∇f(w)‖2 + σ2

2 . (C.1)

Proof. Another upper bound for the third term on the right-hand side of Eq. (3.6) can be derived through
relaxing its difference with the quadratic form

∇f(w)ᵀ∇2f(w)Ei∼p[Bi(w)∇fi(w)]−∇f(w)ᵀ∇2f(w)Ei∼p[Bi(w)]∇f(w)
= Ei∼p[∇f(w)ᵀ∇2f(w)Bi(w) (∇fi(w)−∇f(w))]

≤ 1
2 Ei∼p ‖Bi(w)ᵀ∇2f(w)∇f(w)‖2 + 1

2 Ei∼p ‖∇fi(w)−∇f(w)‖2,
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where the last inequality follows from Young’s inequality. This provides yet another upper bound after rearrang-
ing the terms as follows:

∇f(w)ᵀ∇2f(w)Ei∼p[Bi(w)∇fi(w)] ≤ ∇f(w)ᵀ∇2f(w)Ei∼p[Bi(w)]∇f(w)

+ L2

2 max
i
‖Bi(w)‖2‖∇f(w)‖2 + σ2

2

≤
(
Lmax

i
‖Bi(w)‖+ L2

2 max
i
‖Bi(w)‖2

)
‖∇f(w)‖2 + σ2

2 .

The first and second inequality are due to Assumptions 3.2 and 3.4. Recall that

Bi(w) = α(∇2fi(w) +∇2fi(w̃i))− α2∇2fi(w)∇2fi(w̃i),

and it is not hard to see that maxi ‖Bi(w)‖ ≤ 2αL+ α2L2. Hence we conclude that

∇f(w)ᵀ∇2f(w)Ei∼p[Bi(w)∇fi(w)] ≤
(
Lmax

i
‖Bi(w)‖+ L2

2 max
i
‖Bi(w)‖2

)
‖∇f(w)‖2 + σ2

2

≤ 1
2L

2α(Lα+ 2)(L3α2 + 2L2α+ 2)‖∇f(w)‖2 + σ2

2

≤ 5
4L

2α(L3α2 + 2L2α+ 2)‖∇f(w)‖2 + σ2

2 ,

where the last inequality follows from α < 1
2L .

Proof of Lemma 3.7

Proof. Plug Eq. (C.1) into Eq. (3.6) to get

d

dt

1
2 ‖∇f(w)‖2 ≤ −∇f(w)ᵀ∇2f(w)∇f(w) + 5

4L
2α(L3α2 + 2L2α+ 2)‖∇f(w)‖2 + σ2

2

≤ −
(
µ− 5

4L
2α(L3α2 + 2L2α+ 2)

)
‖∇f(w)‖2 + σ2

2 .

Theorem C.2. If it holds that

α < min
{

3

√
2
15µ

1/3L−5/3,

√
1
15µ

1/2L−2,

√
1
15µL

−2

}
,

then ‖∇f(w(t))‖2 under (3.2) is upper bounded by a function y(t) that is exponentially convergent to

σ2

2µ− 5
2L

2α(L3α2 + 2L2α+ 2)
<
σ2

µ

as t→∞.

Proof. If y(t) is the solution of an ivp

ẏ ≤ −
(
µ− 5

4L
2α(L3α2 + 2L2α+ 2)

)
y + σ2

2

with initial condition y(0) = ‖∇f(w(0))‖2, then ‖∇f(w(t))‖2 ≤ y(t) for any t ≥ 0. Moreover, it is an ode of the
following form: ẏ = −ζy + γ, which is a simple first-order separable ode that permits a family of solutions

y(t) = (e−ζ(t+c0) + γ)/ζ
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under the condition y(0) > γ/ζ. In our case, ζ = µ − 5
4L

2α(L3α2 + 2L2α + 2), γ = σ2

2 , and the constant c0
depends on initial condition y(0). Consequently, we have y converges to γ/ζ exponentially whenever ζ > 0. The
following theorem provides sufficient conditions for convergence.

We derive sufficient conditions for the quadratic inequality 1
2µ−

5
4L

2α(L3α2 + 2L2α+ 2) > 0, i.e.,

5
4L

5α3 <
µ

6 ,
5
2L

4α2 <
µ

6 ,
5
2L

2α <
µ

6 .

The sufficient conditions reduce to

α < min
{

3

√
2
15µ

1/3L−5/3,

√
1
15µ

1/2L−2,

√
1
15µL

−2

}

and we have

γ

ζ
<
σ2/2
µ/2 = σ2

µ
.

Lemma C.3. Suppose the loss function fi(w) satisfies Assumptions 3.2 and 3.4, then for any w ∈ Rd such that
‖∇f(w)‖ ≤ G, it holds that ‖∇F (w)‖ ≤ (1 + 2αL+ α2L2)G+ (2αL+ α2L2)σ.

Proof. Recall that ∇Fi(w) = Ai(w)∇fi(w− α∇fi(w)). Apply mean value theorem to ∇fi(w− α∇fi(w)) to get

∇fi(w − α∇fi(w)) = ∇fi(w)− α∇2f(w̃i)∇fi(w)
= Ai(w̃i)∇fi(w),

(C.2)

where w̃i lies between w and w − α∇fi(w). Consequently, ∇Fi(w) = Ai(w)Ai(w̃i)∇fi(w). Further notice that

‖∇F (w)‖ = ‖Ei∼p∇Fi(w)‖
= ‖Ei∼p[∇fi(w) + (∇Fi(w)−∇fi(w))]‖
≤ ‖Ei∼p∇fi(w)‖+ ‖Ei∼p[(I −Ai(w)Ai(w̃i))∇fi(w)]‖
≤ ‖∇f(w)‖+ Ei∼p[‖Id −Ai(w)Ai(w̃i)‖‖∇fi(w)‖],

The second equality follows from separating the difference between ∇F (w) and ∇f(w). The third inequality is
due to Eq. (C.2) and triangular inequality. The last inequality is due to Cauchy-Schwarz inequality, and the
product of the two norms can be handled seperately. Expand Ai(w), Ai(w̃i) and bound the first term by a
constant to get

‖Id −Ai(w)Ai(w̃i)‖ = ‖α2∇2fi(w)∇2fi(w̃)− α∇2fi(w)− α∇2fi(w̃)‖ ≤ 2αL+ α2L2.

The remaining term can be bounded by variance σ and gradient norm ‖∇f(w)‖:

Ei∼p ‖∇fi(w)‖ ≤ ‖Ei∼p∇fi(w)‖+ Ei∼p[‖∇fi(w)− Ei∼p∇fi(w)‖]

≤ ‖∇f(w)‖+
√
Ei∼p[‖∇fi(w)−∇f(w)‖2]

≤ ‖∇f(w)‖+ σ.

The second inequality follows from Jenson inequality. Combining the upper bounds together yields

‖∇F (w)‖ ≤ (1 + 2αL+ α2L2)‖∇f(w)‖+ (2αL+ α2L2)σ.
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Proof of Theorem 4.1

Proof. Since the expected loss f is µ-strongly convex, we always have in the first stage that
d

dt
‖∇f(w)‖2 = ∇f(w)ᵀ∇2f(w)ẇ

= −∇f(w)ᵀ∇2f(w)∇F (w)
≤ −µ‖∇f(w)‖2,

where ẇ = −∇f(w). It reaches a tolerant level at ‖∇f(w)‖ ≤ ε0, as long as

t ≥ 1
µ

log
(
‖∇f(w(0))‖2

ε2
0

)
= 2
µ

log
(
‖∇f(w(0))‖2

ε2
0

)
.

Let us denote

t1 = min
t

{
t : ‖∇f(w(t))‖2 ≤ ε2

0
}
,

By Lemma C.3 and the assumption α ≤ 1
2L we have

‖∇F (w(t1))‖ ≤ (1 + 2αL+ α2L2)ε0 + (2αL+ α2L2)σ

≤ 9
4ε0 + 5

4σ.

Let us denote K = 9
4ε0 + 5

4σ, and Theorem 3.8 implies that if α ≤ min{ 1
2L ,

7µ
8κ(16K+9σ)} the maml loss F (w)

is µ
8 -strongly convex at w, and the maml ode (3.2) after time t1 is a gradient flow on a µ

8 -strongly convex loss
F (w). This dynamics then converges exponentially fast to an approximate stationary point ŵ where ‖∇F (ŵ)‖ ≤
ε. Similar to the proof of Theorem 3.6, a sufficient condition for the approximate stationary point ŵ writes
e−µτ/8‖∇F (w(t1))‖2 ≤ ε, which means w(τ + t1) is an approximate stationary point if

τ ≥ 8
µ

log
(
‖∇F (w(t1))‖2

ε2

)
= 16

µ
log
(

9ε0 + 5σ
4ε

)
.

Combine two parts together to get the major result that the bi-maml ode converges to an approximate stationary
point ŵ(t) within

t = 1
µ
O
[
log
(

(9ε0 + 5σ)‖∇f(w(0))‖
4ε0ε

)]
.

D Proof of Strong Convexity
Lemma D.1. Suppose the loss function fi(w) satisfies Assumptions 3.2 and 3.4, then for any w ∈ Rd such that
‖∇F (w)‖ ≤ K and α < 1

4L , it holds that ‖∇f(w)‖ ≤ 16
7 K + 9

7σ.

Proof. Notice that

‖∇f(w)‖ = ‖Ei∼p fi(w)‖
= ‖Ei∼p[∇Fi(w) + (∇fi(w)−∇Fi(w))]‖
≤ ‖∇F (w)‖+ ‖Ei∼p(Id −Ai(w)Ai(w̃i))∇fi(w)‖
≤ ‖∇F (w)‖+ Ei∼p ‖Id −Ai(w)Ai(w̃i)‖‖∇fi(w)‖
≤ ‖∇F (w)‖+ (2αL+ α2L2)Ei∼p ‖∇fi(w)‖,
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where the first inequality follows from triangular inequality and the third inequality is due to Assumption 3.2.
Similarly, we have

Ei∼p ‖∇fi(w)‖ ≤ ‖∇f(w)‖+ Ei∼p ‖∇fi(w)−∇f(w)‖
≤ ‖∇f(w)‖+ σ,

where the first inequality is due to triangular inequality and the second one is due to Assumption 3.4. Rearrange
the terms under the assumption α < 1

4L to get

‖∇f(w)‖ ≤ 1
1− 2αL− α2L2 ‖∇F (w)‖+ 2αL+ α2L2

1− 2αL− α2L2σ

≤ 16
7 K + 9

7σ.

Lemma D.2. Suppose fi(w) satisfies Assumptions 3.2, 3.3 and 3.5. For any α ≤ min{ 1
2L ,

µ
8κG} and w ∈

U(G) := {w ∈ Rd : ‖∇f(w)‖ ≤ G}, we have µ
8 Id � Hess(F (w)) � 9L

8 Id.

Proof. Consider w, u ∈ U(G), we have

‖∇F (w)−∇F (u)‖ = ‖A(w)∇f(w − α∇f(w))−A(u)∇f(u− α∇f(u))‖
≤ ‖(A(w)−A(u))∇f(w − α∇f(w))‖

+ ‖A(u)(∇f(w − α∇f(w))−∇f(u− α∇f(u)))‖,

where the inequality follows from triangular inequality. For the first term, we have an upper bound

‖(A(w)−A(u))∇f(w − α∇f(w))‖ ≤ ‖A(w)−A(u)‖‖∇f(w − α∇f(w))‖
= α‖∇2f(w)−∇2f(u)‖‖∇f(w − α∇f(w))‖
≤ ακ‖w − u‖‖∇f(w − α∇f(w))‖
= ακ‖w − u‖‖A(w̃)f(w)‖
≤ ακ‖w − u‖‖A(w̃)‖‖f(w)‖
≤ α(1− αµ)κG‖w − u‖

where the first inequality is due to Cauchy-Schwarz inequality, the second inequality is due to Assumption 3.5,
and the second equality follows from mean value theorem, and the last inequality is due to the fact that ‖A(w̃)‖ =
‖Id − α∇2f(w̃)‖ ≤ 1− αµ. Similarly, we bound the second part as

‖A(u)(∇f(w − α∇f(w))−∇f(u− α∇f(u)))‖
≤ ‖A(u)‖‖∇f(w − α∇f(w))−∇f(u− α∇f(u))‖
≤ (1− αµ)‖∇f(w − α∇f(w))−∇f(u− α∇f(u))‖
≤ (1− αµ)L‖(w − α∇f(w))− (u− α∇f(u))‖
≤ (1− αµ)2L‖w − u‖,

where the last inequality follows from mean value inequality. Putting the pieces together to get, when α ≤
min{ 1

2L ,
µ

8κG},

‖∇F (w)−∇F (u)‖ ≤ α(1− αµ)κG‖w − u‖+ (1− αµ)2L‖w − u‖
≤ ακG‖w − u‖+ (1− αµ)2L‖w − u‖

≤
(µ

8 + L
)
‖w − u‖

≤ 9L
8 ‖w − u‖,

and therefore Hess(F (w)) � 9L
8 Id.
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The corresponding lower bound similarly follows from triangular inequality where

‖∇F (w)−∇F (u)‖ = ‖A(w)∇f(w − α∇f(w))−A(u)∇f(u− α∇f(u))‖
≥ ‖A(u)(∇f(w − α∇f(w))−∇f(u− α∇f(u)))‖
− ‖(A(w)−A(u))∇f(w − α∇f(w))‖.

When α ≤ min{ 1
2L ,

µ
8κG}, the first term is lower bounded as

‖A(u)(∇f(w − α∇f(w))−∇f(u− α∇f(u)))‖
≥ (1− αL)‖∇f(w − α∇f(w))−∇f(u− α∇f(u))‖
≥ (1− αL)µ‖(w − α∇f(w))− (u− α∇f(u))‖
≥ (1− αL)µ(‖w − u‖ − α‖∇f(w)−∇f(u)‖)
≥ (1− αL)2µ‖w − u‖

≥ µ

4 ‖w − u‖,

where the first inequality follows from λmin(A(u)) ≥ 1−αL, the second inequality follows from Assumption 3.3,
the third inequality is due to triangular inequality, and the last inequality follows from α ≤ 1

2L . Hence, it holds
that

‖∇F (w)−∇F (u)‖ ≥ ‖A(u)(∇f(w − α∇f(w))−∇f(u− α∇f(u)))‖
− ‖(A(w)−A(u))∇f(w − α∇f(w))‖

≥ µ

4 ‖w − u‖ − α(1− αµ)κG‖w − u‖

≥
(µ

4 −
µ

8

)
‖w − u‖

= µ

8 ‖w − u‖,

where the last inequality follows from α ≤ µ
8κG . Thus we obtain Hess(F (w)) ≥ µ

8 .

Proof of Theorem 3.8

Proof. Combining Lemmas D.1 and D.2 shows that

µ

8 Id � Hess(F (w)) � 9L
8 Id ,

if w ∈ U(K) and

α ≤ min
{

1
2L,

µ

8κ
7

16K + 9σ

}
.

E Proof of Theorem 3.9
For K > 0, we define U(K) := {w ∈ Rd : ‖∇F (w)‖ ≤ K} and V (K) := {w ∈ Rd : f(w)− f(x∗) ≤ K} where x∗
is the unique global minimizer of f (recall that f is µ-strongly convex). Let Crit(F ) denote the set of critical
points of F . The convexity of f implies that V (K) is convex. All critical points of F are contained in U(K) for
any K > 0; in other words

Crit(F ) ⊆ U(K), ∀K > 0 .

Lemma E.1. If the loss function fi(w) satisfies Assumptions 3.2 to 3.4, α < 1
4L , then we have

U(K) ⊆ V
(

1
98µ (16K + 9σ)2

)
.
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Proof. Let us pick w ∈ Rd such that ‖∇F (w)‖ ≤ K. Lemma D.1 implies that there exists a constant C1 =
16
7 K + 9

7σ such that ‖∇f(w)‖ ≤ C1. Since f is µ-strongly convex, we have

f(w) ≤ f(x) +∇f(x)ᵀ(w − x) + 1
2µ‖∇f(w)−∇f(x)‖2, ∀w, x .

Setting x to the global minimizer x∗ of f yields

f(w) ≤ f(x∗) + 1
2µ‖∇f(w)‖2 ≤ f(x∗) + 1

2µC
2
1 = f(x∗) + 1

98µ (16K + 9σ)2
.

Therefore, we have

w ∈ V
(

1
98µ (16K + 9σ)2

)
.

Lemma E.2. Under Assumptions 3.2 to 3.4, we have

V (K) ⊆ U
(
σ +

√
2LK)

)
.

Proof. Let us rewrite ‖∇F (w)‖ as below

‖∇F (w)‖ = ‖Ei∼p(Id − α∇2fi(w))∇fi(w − αfi(w))‖
= ‖Ei∼p(Id − α∇2fi(w))(Id − α∇2fi(w̃))∇fi(w)‖
≤ Ei∼p ‖∇fi(w)‖
≤ (Ei∼p ‖∇fi(w)− f(w)‖+ ‖∇f(w)‖)

≤
√
Ei∼p ‖∇fi(w)− f(w)‖2 + ‖∇f(w)‖

≤ σ + ‖∇f(w)‖ ,

(E.1)

where the second inequality is because of the mean value theorem. Since f is L-smooth, we have

f(w) ≥ f(x) +∇f(x)ᵀ(w − x) + 1
2L‖∇f(w)−∇f(x)‖2, ∀x ∈ Rd .

Since f is µ-strongly convex, there exists a unique global minimum x∗ with ∇f(x∗) = 0. Therefore, we obtain

f(w) ≥ f(x∗) + 1
2L‖∇f(w)‖2 .

Combining the above inequality and (E.1) yields

‖∇F (w)‖ ≤ σ +
√

2L(f(w)− f(x∗)) .

If w ∈ V (K), we get
‖F (w)‖ ≤ σ +

√
2LK .

Combining Lemmas E.1 and E.2 gives the following corollary.

Corollary E.3. For any K > 0, if α < 1
4L , we have the following inclusion relations

Crit(F ) ⊆ U(K) ⊆ V
(

1
98µ (16K + 9σ)2

)
⊆ U

(
σ +

√
L

µ

16K + 9σ
7

)
.
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Corollary E.4. For any K ′ ≥
(

9
7

√
L
µ + 1

)
σ, if α < 1

4L , we have the following inclusion relations

Crit(F ) ⊆ U

7K ′ − σ
(

9
√

L
µ + 7

)
16
√

L
µ

 ⊆ V ( (K ′ − σ)2

2L

)
⊆ U(K ′)

Lemma E.5. Under Assumption 3.3, if α < 1
4L , we have Crit(F ) is non-empty.

Proof. First we show that F is bounded from below. Since every fi is strongly convex, it is bounded from below.
Recall that F (w) = Ei∼p fi(w − α∇fi(w)). Therefore F is also bounded from below. Let F ∗ := infw∈Rd F (w).
Pick any v(0) ∈ Rd and consider the dynamic defined by

dv(t)
dt

= −∇F (v(t)) .

Let E(t) = F (v(t))− F ∗. We have
dE(t)
dt

= −‖∇F (v(t))‖2 .

Therefore, we get

t min
0≤s≤t

‖∇F (v(t))‖2 ≤
∫ t

0
‖∇F (v(s))‖2ds = E(0)− E(t) ≤ E(0) .

Thus we obtain
min

0≤s≤t
‖∇F (v(t))‖2 ≤ E(0)

t
. (E.2)

Define another function

u(t) := v

(
arg min
s∈[0,t]

‖∇F (v(t))‖2

)
,

where ties can be broken arbitrarily. Eq. (E.2) implies

‖∇F (u(t))‖ ≤
√
E(0)
t

, ∀t ≥ 0 .

Pick any K ≥
(

9
7

√
L
µ + 1

)
σ. We have

‖∇F (u(t))‖ ∈ U(K), ∀t ≥
√
E(0)
K

.

Since f is strongly convex, V
(

(K−σ)2

2L

)
is convex and non-empty. Thus U(K) is non-empty and closed. Next, we

show that U(K) is bounded. Lemma E.1 implies U(K) ⊆ V
(

1
98µ (16K + 9σ)2

)
:= V0. Since V0 is a sublevel set

of f and f is strongly convex, therefore we get the boundedness of V0, which implies the boundedness of U(K).

Thus U(K) is compact. Define a sequence wn = u

(
n+

√
E(0)
K

)
, where n = 1, 2, 3, . . . . We have wn ∈ U(K).

By Bolzano-Weierstrass theorem, there exists a convergent subsequence wni . Let w0 ∈ U(K) be the limit of wni .
We have

‖∇F (w0)‖ = lim
i→∞

‖∇F (wni)‖ ≤ lim
i→∞

√
E(0)

ni +
√
E(0)/K

= 0 .

Therefore we conclude that w0 is a critical point of F .

Proof of Theorem 3.9. Since f is strongly convex, V
(

(K−σ)2

2L

)
is convex and non-empty. Theorem 3.8 implies

that F is µ
8 -strongly convex on U(K) and therefore µ

8 -strongly convex on its convex subset V
(

(K−σ)2

2L

)
(by

Corollary E.4). Since Crit(F ) 6= ∅ (by Lemma E.5), there is a unique critical point which is the minimizer of F
on V

(
(K−σ)2

2L

)
. Corollary E.4 implies no critical point outside V

(
(K−σ)2

2L

)
. In fact, the unique critical point is

the global minimizer of F .


