A BI-MAML Algorithm

```
Algorithm 2 Biphasic MAML (BI-MAML)
Input: Loss functions \(\left\{f_{i}(w)\right\}_{i \in[M]}\), MAML parameter
    \(\alpha\), step size \(\beta\), tolerance level \(\varepsilon_{0}, \varepsilon\).
    initialize \(w(0) \in \mathbb{R}^{d}\) arbitrarily
    for \(t \in \mathbb{N} \cup\{0\}\) do
        if \(\|\nabla f(w(t))\| \geq \varepsilon_{0}\) then
                \(w(t+1) \leftarrow w(t)-\beta \nabla f(w(t))\)
        else
            \(w(t+1) \leftarrow w(t)-\beta \nabla F(w(t))\)
        end if
        return \(w(t+1)\) if \(\|\nabla F(w(t))\| \leq \varepsilon\)
    end for
```


B Proof of Proposition 3.1

Proof. Recall the maml algorithm with update Eq. (3.1), i.e.,

$$
w^{+}=w-\beta \nabla F(w),
$$

and that $\nabla F_{i}(w)=\left(I_{d}-\alpha \nabla^{2} f_{i}(w)\right) \nabla f_{i}\left(w-\alpha \nabla f_{i}(w)\right)$. Expand the terms to get

$$
\begin{aligned}
\nabla F(w) & =\mathbb{E}_{i \sim p}\left[\left(I_{d}-\alpha \nabla^{2} f_{i}(w)\right) \nabla f_{i}\left(w-\alpha \nabla f_{i}(w)\right)\right] \\
& =\mathbb{E}_{i \sim p} \nabla f_{i}\left(w-\alpha \nabla f_{i}(w)\right)-\alpha \mathbb{E}_{i \sim p} \nabla^{2} f_{i}(w) \nabla f_{i}\left(w-\alpha \nabla f_{i}(w)\right) \\
& =\mathbb{E}_{i \sim p}\left(I_{d}-\alpha \nabla^{2} f_{i}\left(\tilde{w}_{i}\right)\right) \nabla f_{i}(w)-\alpha \mathbb{E}_{i \sim p} \nabla^{2} f_{i}(w)\left(I_{d}-\alpha \nabla^{2} f_{i}\left(\tilde{w}_{i}\right)\right) \nabla f_{i}(w) \\
& =\mathbb{E}_{i \sim p}\left(I_{d}-\alpha \nabla^{2} f_{i}(w)\right)\left(I_{d}-\alpha \nabla^{2} f_{i}\left(\tilde{w}_{i}\right)\right) \nabla f_{i}(w) \\
& =\mathbb{E}_{i \sim p} A_{i}(w) A_{i}\left(\tilde{w}_{i}\right) \nabla f_{i}(w),
\end{aligned}
$$

where the first equality follows from definition, the third equality follows from mean value theorem. Here \tilde{w}_{i} is a value between w and $w-\alpha \nabla f_{i}(w)$ such that mean value theorem holds. The formula can be further recast into

$$
\begin{aligned}
\nabla F(w) & =\mathbb{E}_{i \sim p}\left[\nabla f_{i}(w)-\alpha\left(\nabla^{2} f_{i}(w)+\nabla^{2} f_{i}\left(\tilde{w}_{i}\right)\right) \nabla f_{i}(w)+\alpha^{2} \nabla^{2} f_{i}(w) \nabla^{2} f_{i}\left(\tilde{w}_{i}\right) \nabla f_{i}(w)\right] \\
& =\nabla f(w)-\mathbb{E}_{i \sim p}\left[\left(\alpha\left(\nabla^{2} f_{i}(w)+\nabla^{2} f_{i}\left(\tilde{w}_{i}\right)\right)-\alpha^{2} \nabla^{2} f_{i}(w) \nabla^{2} f_{i}\left(\tilde{w}_{i}\right)\right) \nabla f_{i}(w)\right] .
\end{aligned}
$$

If we think of the infinitesimal step size $\beta \rightarrow 0$, we obtain an ODE that represents the gradient flow on $F(w)$:

$$
\begin{aligned}
\dot{w} & =-\nabla F(w) \\
& =-\nabla f(w)+\mathbb{E}_{i \sim p}[\underbrace{\left(\alpha\left(\nabla^{2} f_{i}(w)+\nabla^{2} f_{i}\left(\tilde{w}_{i}\right)\right)-\alpha^{2} \nabla^{2} f_{i}(w) \nabla^{2} f_{i}\left(\tilde{w}_{i}\right)\right)}_{B_{i}(w)} \nabla f_{i}(w)]
\end{aligned}
$$

We define a shorthand $B_{i}(w)$ for notational convenience.

C Proof of the Convergent Upper Bound

Lemma C.1. If the loss function $f_{i}(w)$ satisfies Assumptions 3.2 and 3.3 and $\alpha<\frac{1}{2 L}$, then it holds that

$$
\begin{equation*}
\nabla f(w)^{\top} \nabla^{2} f(w) \mathbb{E}_{i \sim p}\left[B_{i}(w) \nabla f_{i}(w)\right] \leq \frac{5}{4} L^{2} \alpha\left(L^{3} \alpha^{2}+2 L^{2} \alpha+2\right)\|\nabla f(w)\|^{2}+\frac{\sigma^{2}}{2} . \tag{C.1}
\end{equation*}
$$

Proof. Another upper bound for the third term on the right-hand side of Eq. (3.6) can be derived through relaxing its difference with the quadratic form

$$
\begin{aligned}
& \nabla f(w)^{\top} \nabla^{2} f(w) \mathbb{E}_{i \sim p}\left[B_{i}(w) \nabla f_{i}(w)\right]-\nabla f(w)^{\top} \nabla^{2} f(w) \mathbb{E}_{i \sim p}\left[B_{i}(w)\right] \nabla f(w) \\
= & \mathbb{E}_{i \sim p}\left[\nabla f(w)^{\top} \nabla^{2} f(w) B_{i}(w)\left(\nabla f_{i}(w)-\nabla f(w)\right)\right] \\
\leq & \frac{1}{2} \mathbb{E}_{i \sim p}\left\|B_{i}(w)^{\top} \nabla^{2} f(w) \nabla f(w)\right\|^{2}+\frac{1}{2} \mathbb{E}_{i \sim p}\left\|\nabla f_{i}(w)-\nabla f(w)\right\|^{2},
\end{aligned}
$$

where the last inequality follows from Young's inequality. This provides yet another upper bound after rearranging the terms as follows:

$$
\begin{aligned}
\nabla f(w)^{\top} \nabla^{2} f(w) \mathbb{E}_{i \sim p}\left[B_{i}(w) \nabla f_{i}(w)\right] \leq & \nabla f(w)^{\top} \nabla^{2} f(w) \mathbb{E}_{i \sim p}\left[B_{i}(w)\right] \nabla f(w) \\
& +\frac{L^{2}}{2} \max _{i}\left\|B_{i}(w)\right\|^{2}\|\nabla f(w)\|^{2}+\frac{\sigma^{2}}{2} \\
\leq & \left(L \max _{i}\left\|B_{i}(w)\right\|+\frac{L^{2}}{2} \max _{i}\left\|B_{i}(w)\right\|^{2}\right)\|\nabla f(w)\|^{2}+\frac{\sigma^{2}}{2} .
\end{aligned}
$$

The first and second inequality are due to Assumptions 3.2 and 3.4. Recall that

$$
B_{i}(w)=\alpha\left(\nabla^{2} f_{i}(w)+\nabla^{2} f_{i}\left(\tilde{w}_{i}\right)\right)-\alpha^{2} \nabla^{2} f_{i}(w) \nabla^{2} f_{i}\left(\tilde{w}_{i}\right),
$$

and it is not hard to see that $\max _{i}\left\|B_{i}(w)\right\| \leq 2 \alpha L+\alpha^{2} L^{2}$. Hence we conclude that

$$
\begin{aligned}
\nabla f(w)^{\top} \nabla^{2} f(w) \mathbb{E}_{i \sim p}\left[B_{i}(w) \nabla f_{i}(w)\right] & \leq\left(L \max _{i}\left\|B_{i}(w)\right\|+\frac{L^{2}}{2} \max _{i}\left\|B_{i}(w)\right\|^{2}\right)\|\nabla f(w)\|^{2}+\frac{\sigma^{2}}{2} \\
& \leq \frac{1}{2} L^{2} \alpha(L \alpha+2)\left(L^{3} \alpha^{2}+2 L^{2} \alpha+2\right)\|\nabla f(w)\|^{2}+\frac{\sigma^{2}}{2} \\
& \leq \frac{5}{4} L^{2} \alpha\left(L^{3} \alpha^{2}+2 L^{2} \alpha+2\right)\|\nabla f(w)\|^{2}+\frac{\sigma^{2}}{2}
\end{aligned}
$$

where the last inequality follows from $\alpha<\frac{1}{2 L}$.

Proof of Lemma 3.7

Proof. Plug Eq. (C.1) into Eq. (3.6) to get

$$
\begin{aligned}
\frac{d}{d t} \frac{1}{2}\|\nabla f(w)\|^{2} & \leq-\nabla f(w)^{\top} \nabla^{2} f(w) \nabla f(w)+\frac{5}{4} L^{2} \alpha\left(L^{3} \alpha^{2}+2 L^{2} \alpha+2\right)\|\nabla f(w)\|^{2}+\frac{\sigma^{2}}{2} \\
& \leq-\left(\mu-\frac{5}{4} L^{2} \alpha\left(L^{3} \alpha^{2}+2 L^{2} \alpha+2\right)\right)\|\nabla f(w)\|^{2}+\frac{\sigma^{2}}{2}
\end{aligned}
$$

Theorem C.2. If it holds that

$$
\alpha<\min \left\{\sqrt[3]{\frac{2}{15}} \mu^{1 / 3} L^{-5 / 3}, \sqrt{\frac{1}{15}} \mu^{1 / 2} L^{-2}, \sqrt{\frac{1}{15}} \mu L^{-2}\right\}
$$

then $\|\nabla f(w(t))\|^{2}$ under (3.2) is upper bounded by a function $y(t)$ that is exponentially convergent to

$$
\frac{\sigma^{2}}{2 \mu-\frac{5}{2} L^{2} \alpha\left(L^{3} \alpha^{2}+2 L^{2} \alpha+2\right)}<\frac{\sigma^{2}}{\mu}
$$

as $t \rightarrow \infty$.
Proof. If $y(t)$ is the solution of an IVP

$$
\dot{y} \leq-\left(\mu-\frac{5}{4} L^{2} \alpha\left(L^{3} \alpha^{2}+2 L^{2} \alpha+2\right)\right) y+\frac{\sigma^{2}}{2}
$$

with initial condition $y(0)=\|\nabla f(w(0))\|^{2}$, then $\|\nabla f(w(t))\|^{2} \leq y(t)$ for any $t \geq 0$. Moreover, it is an ODE of the following form: $\dot{y}=-\zeta y+\gamma$, which is a simple first-order separable ODE that permits a family of solutions

$$
y(t)=\left(e^{-\zeta\left(t+c_{0}\right)}+\gamma\right) / \zeta
$$

under the condition $y(0)>\gamma / \zeta$. In our case, $\zeta=\mu-\frac{5}{4} L^{2} \alpha\left(L^{3} \alpha^{2}+2 L^{2} \alpha+2\right), \gamma=\frac{\sigma^{2}}{2}$, and the constant c_{0} depends on initial condition $y(0)$. Consequently, we have y converges to γ / ζ exponentially whenever $\zeta>0$. The following theorem provides sufficient conditions for convergence.
We derive sufficient conditions for the quadratic inequality $\frac{1}{2} \mu-\frac{5}{4} L^{2} \alpha\left(L^{3} \alpha^{2}+2 L^{2} \alpha+2\right)>0$, i.e.,

$$
\frac{5}{4} L^{5} \alpha^{3}<\frac{\mu}{6}, \quad \frac{5}{2} L^{4} \alpha^{2}<\frac{\mu}{6}, \quad \frac{5}{2} L^{2} \alpha<\frac{\mu}{6}
$$

The sufficient conditions reduce to

$$
\alpha<\min \left\{\sqrt[3]{\frac{2}{15}} \mu^{1 / 3} L^{-5 / 3}, \sqrt{\frac{1}{15}} \mu^{1 / 2} L^{-2}, \sqrt{\frac{1}{15}} \mu L^{-2}\right\}
$$

and we have

$$
\frac{\gamma}{\zeta}<\frac{\sigma^{2} / 2}{\mu / 2}=\frac{\sigma^{2}}{\mu}
$$

Lemma C.3. Suppose the loss function $f_{i}(w)$ satisfies Assumptions 3.2 and 3.4, then for any $w \in \mathbb{R}^{d}$ such that $\|\nabla f(w)\| \leq G$, it holds that $\|\nabla F(w)\| \leq\left(1+2 \alpha L+\alpha^{2} L^{2}\right) G+\left(2 \alpha L+\alpha^{2} L^{2}\right) \sigma$.

Proof. Recall that $\nabla F_{i}(w)=A_{i}(w) \nabla f_{i}\left(w-\alpha \nabla f_{i}(w)\right)$. Apply mean value theorem to $\nabla f_{i}\left(w-\alpha \nabla f_{i}(w)\right)$ to get

$$
\begin{align*}
\nabla f_{i}\left(w-\alpha \nabla f_{i}(w)\right) & =\nabla f_{i}(w)-\alpha \nabla^{2} f\left(\tilde{w}_{i}\right) \nabla f_{i}(w) \tag{C.2}\\
& =A_{i}\left(\tilde{w}_{i}\right) \nabla f_{i}(w)
\end{align*}
$$

where \tilde{w}_{i} lies between w and $w-\alpha \nabla f_{i}(w)$. Consequently, $\nabla F_{i}(w)=A_{i}(w) A_{i}\left(\tilde{w}_{i}\right) \nabla f_{i}(w)$. Further notice that

$$
\begin{aligned}
\|\nabla F(w)\| & =\left\|\mathbb{E}_{i \sim p} \nabla F_{i}(w)\right\| \\
& =\left\|\mathbb{E}_{i \sim p}\left[\nabla f_{i}(w)+\left(\nabla F_{i}(w)-\nabla f_{i}(w)\right)\right]\right\| \\
& \leq\left\|\mathbb{E}_{i \sim p} \nabla f_{i}(w)\right\|+\left\|\mathbb{E}_{i \sim p}\left[\left(I-A_{i}(w) A_{i}\left(\tilde{w}_{i}\right)\right) \nabla f_{i}(w)\right]\right\| \\
& \leq\|\nabla f(w)\|+\mathbb{E}_{i \sim p}\left[\left\|I_{d}-A_{i}(w) A_{i}\left(\tilde{w}_{i}\right)\right\|\left\|\nabla f_{i}(w)\right\|\right]
\end{aligned}
$$

The second equality follows from separating the difference between $\nabla F(w)$ and $\nabla f(w)$. The third inequality is due to Eq. (C.2) and triangular inequality. The last inequality is due to Cauchy-Schwarz inequality, and the product of the two norms can be handled seperately. Expand $A_{i}(w), A_{i}\left(\tilde{w}_{i}\right)$ and bound the first term by a constant to get

$$
\left\|I_{d}-A_{i}(w) A_{i}\left(\tilde{w}_{i}\right)\right\|=\left\|\alpha^{2} \nabla^{2} f_{i}(w) \nabla^{2} f_{i}(\tilde{w})-\alpha \nabla^{2} f_{i}(w)-\alpha \nabla^{2} f_{i}(\tilde{w})\right\| \leq 2 \alpha L+\alpha^{2} L^{2}
$$

The remaining term can be bounded by variance σ and gradient norm $\|\nabla f(w)\|$:

$$
\begin{aligned}
\mathbb{E}_{i \sim p}\left\|\nabla f_{i}(w)\right\| & \leq\left\|\mathbb{E}_{i \sim p} \nabla f_{i}(w)\right\|+\mathbb{E}_{i \sim p}\left[\left\|\nabla f_{i}(w)-\mathbb{E}_{i \sim p} \nabla f_{i}(w)\right\|\right] \\
& \leq\|\nabla f(w)\|+\sqrt{\mathbb{E}_{i \sim p}\left[\left\|\nabla f_{i}(w)-\nabla f(w)\right\|^{2}\right]} \\
& \leq\|\nabla f(w)\|+\sigma
\end{aligned}
$$

The second inequality follows from Jenson inequality. Combining the upper bounds together yields

$$
\|\nabla F(w)\| \leq\left(1+2 \alpha L+\alpha^{2} L^{2}\right)\|\nabla f(w)\|+\left(2 \alpha L+\alpha^{2} L^{2}\right) \sigma
$$

Proof of Theorem 4.1

Proof. Since the expected loss f is μ-strongly convex, we always have in the first stage that

$$
\begin{aligned}
\frac{d}{d t}\|\nabla f(w)\|^{2} & =\nabla f(w)^{\top} \nabla^{2} f(w) \dot{w} \\
& =-\nabla f(w)^{\top} \nabla^{2} f(w) \nabla F(w) \\
& \leq-\mu\|\nabla f(w)\|^{2}
\end{aligned}
$$

where $\dot{w}=-\nabla f(w)$. It reaches a tolerant level at $\|\nabla f(w)\| \leq \varepsilon_{0}$, as long as

$$
\begin{aligned}
t & \geq \frac{1}{\mu} \log \left(\frac{\|\nabla f(w(0))\|^{2}}{\varepsilon_{0}^{2}}\right) \\
& =\frac{2}{\mu} \log \left(\frac{\|\nabla f(w(0))\|^{2}}{\varepsilon_{0}^{2}}\right) .
\end{aligned}
$$

Let us denote

$$
t_{1}=\min _{t}\left\{t:\|\nabla f(w(t))\|^{2} \leq \varepsilon_{0}^{2}\right\}
$$

By Lemma C. 3 and the assumption $\alpha \leq \frac{1}{2 L}$ we have

$$
\begin{aligned}
\left\|\nabla F\left(w\left(t_{1}\right)\right)\right\| & \leq\left(1+2 \alpha L+\alpha^{2} L^{2}\right) \varepsilon_{0}+\left(2 \alpha L+\alpha^{2} L^{2}\right) \sigma \\
& \leq \frac{9}{4} \varepsilon_{0}+\frac{5}{4} \sigma .
\end{aligned}
$$

Let us denote $K=\frac{9}{4} \varepsilon_{0}+\frac{5}{4} \sigma$, and Theorem 3.8 implies that if $\alpha \leq \min \left\{\frac{1}{2 L}, \frac{7 \mu}{8 \kappa(16 K+9 \sigma)}\right\}$ the mamL $\operatorname{loss} F(w)$ is $\frac{\mu}{8}$-strongly convex at w, and the MAML ODE (3.2) after time t_{1} is a gradient flow on a $\frac{\mu}{8}$-strongly convex loss $F(w)$. This dynamics then converges exponentially fast to an approximate stationary point \widehat{w} where $\|\nabla F(\widehat{w})\| \leq$ ε. Similar to the proof of Theorem 3.6, a sufficient condition for the approximate stationary point \widehat{w} writes $e^{-\mu \tau / 8}\left\|\nabla F\left(w\left(t_{1}\right)\right)\right\|^{2} \leq \varepsilon$, which means $w\left(\tau+t_{1}\right)$ is an approximate stationary point if

$$
\begin{aligned}
\tau & \geq \frac{8}{\mu} \log \left(\frac{\left\|\nabla F\left(w\left(t_{1}\right)\right)\right\|^{2}}{\varepsilon^{2}}\right) \\
& =\frac{16}{\mu} \log \left(\frac{9 \varepsilon_{0}+5 \sigma}{4 \varepsilon}\right)
\end{aligned}
$$

Combine two parts together to get the major result that the BI-MAML ODE converges to an approximate stationary point $\widehat{w}(t)$ within

$$
t=\frac{1}{\mu} \mathcal{O}\left[\log \left(\frac{\left(9 \varepsilon_{0}+5 \sigma\right)\|\nabla f(w(0))\|}{4 \varepsilon_{0} \varepsilon}\right)\right]
$$

D Proof of Strong Convexity

Lemma D.1. Suppose the loss function $f_{i}(w)$ satisfies Assumptions 3.2 and 3.4, then for any $w \in \mathbb{R}^{d}$ such that $\|\nabla F(w)\| \leq K$ and $\alpha<\frac{1}{4 L}$, it holds that $\|\nabla f(w)\| \leq \frac{16}{7} K+\frac{9}{7} \sigma$.

Proof. Notice that

$$
\begin{aligned}
\|\nabla f(w)\| & =\left\|\mathbb{E}_{i \sim p} f_{i}(w)\right\| \\
& =\left\|\mathbb{E}_{i \sim p}\left[\nabla F_{i}(w)+\left(\nabla f_{i}(w)-\nabla F_{i}(w)\right)\right]\right\| \\
& \leq\|\nabla F(w)\|+\left\|\mathbb{E}_{i \sim p}\left(I_{d}-A_{i}(w) A_{i}\left(\tilde{w}_{i}\right)\right) \nabla f_{i}(w)\right\| \\
& \leq\|\nabla F(w)\|+\mathbb{E}_{i \sim p}\left\|I_{d}-A_{i}(w) A_{i}\left(\tilde{w}_{i}\right)\right\|\left\|\nabla f_{i}(w)\right\| \\
& \leq\|\nabla F(w)\|+\left(2 \alpha L+\alpha^{2} L^{2}\right) \mathbb{E}_{i \sim p}\left\|\nabla f_{i}(w)\right\|,
\end{aligned}
$$

where the first inequality follows from triangular inequality and the third inequality is due to Assumption 3.2. Similarly, we have

$$
\begin{aligned}
\mathbb{E}_{i \sim p}\left\|\nabla f_{i}(w)\right\| & \leq\|\nabla f(w)\|+\mathbb{E}_{i \sim p}\left\|\nabla f_{i}(w)-\nabla f(w)\right\| \\
& \leq\|\nabla f(w)\|+\sigma
\end{aligned}
$$

where the first inequality is due to triangular inequality and the second one is due to Assumption 3.4. Rearrange the terms under the assumption $\alpha<\frac{1}{4 L}$ to get

$$
\begin{aligned}
\|\nabla f(w)\| & \leq \frac{1}{1-2 \alpha L-\alpha^{2} L^{2}}\|\nabla F(w)\|+\frac{2 \alpha L+\alpha^{2} L^{2}}{1-2 \alpha L-\alpha^{2} L^{2}} \sigma \\
& \leq \frac{16}{7} K+\frac{9}{7} \sigma
\end{aligned}
$$

Lemma D.2. Suppose $f_{i}(w)$ satisfies Assumptions 3.2, 3.3 and 3.5. For any $\alpha \leq \min \left\{\frac{1}{2 L}, \frac{\mu}{8 \kappa G}\right\}$ and $w \in$ $U(G):=\left\{w \in \mathbb{R}^{d}:\|\nabla f(w)\| \leq G\right\}$, we have $\frac{\mu}{8} I_{d} \preceq \operatorname{Hess}(F(w)) \preceq \frac{9 L}{8} I_{d}$.

Proof. Consider $w, u \in U(G)$, we have

$$
\begin{aligned}
\|\nabla F(w)-\nabla F(u)\|= & \|A(w) \nabla f(w-\alpha \nabla f(w))-A(u) \nabla f(u-\alpha \nabla f(u))\| \\
\leq & \|(A(w)-A(u)) \nabla f(w-\alpha \nabla f(w))\| \\
& \quad+\|A(u)(\nabla f(w-\alpha \nabla f(w))-\nabla f(u-\alpha \nabla f(u)))\|
\end{aligned}
$$

where the inequality follows from triangular inequality. For the first term, we have an upper bound

$$
\begin{aligned}
\|(A(w)-A(u)) \nabla f(w-\alpha \nabla f(w))\| & \leq\|A(w)-A(u)\|\|\nabla f(w-\alpha \nabla f(w))\| \\
& =\alpha\left\|\nabla^{2} f(w)-\nabla^{2} f(u)\right\|\|\nabla f(w-\alpha \nabla f(w))\| \\
& \leq \alpha \kappa\|w-u\|\|\nabla f(w-\alpha \nabla f(w))\| \\
& =\alpha \kappa\|w-u\|\|A(\tilde{w}) f(w)\| \\
& \leq \alpha \kappa\|w-u\|\|A(\tilde{w})\|\|f(w)\| \\
& \leq \alpha(1-\alpha \mu) \kappa G\|w-u\|
\end{aligned}
$$

where the first inequality is due to Cauchy-Schwarz inequality, the second inequality is due to Assumption 3.5, and the second equality follows from mean value theorem, and the last inequality is due to the fact that $\|A(\tilde{w})\|=$ $\left\|I_{d}-\alpha \nabla^{2} f(\tilde{w})\right\| \leq 1-\alpha \mu$. Similarly, we bound the second part as

$$
\begin{aligned}
& \|A(u)(\nabla f(w-\alpha \nabla f(w))-\nabla f(u-\alpha \nabla f(u)))\| \\
\leq & \|A(u)\|\|\nabla f(w-\alpha \nabla f(w))-\nabla f(u-\alpha \nabla f(u))\| \\
\leq & (1-\alpha \mu)\|\nabla f(w-\alpha \nabla f(w))-\nabla f(u-\alpha \nabla f(u))\| \\
\leq & (1-\alpha \mu) L\|(w-\alpha \nabla f(w))-(u-\alpha \nabla f(u))\| \\
\leq & (1-\alpha \mu)^{2} L\|w-u\|
\end{aligned}
$$

where the last inequality follows from mean value inequality. Putting the pieces together to get, when $\alpha \leq$ $\min \left\{\frac{1}{2 L}, \frac{\mu}{8 \kappa G}\right\}$,

$$
\begin{aligned}
\|\nabla F(w)-\nabla F(u)\| & \leq \alpha(1-\alpha \mu) \kappa G\|w-u\|+(1-\alpha \mu)^{2} L\|w-u\| \\
& \leq \alpha \kappa G\|w-u\|+(1-\alpha \mu)^{2} L\|w-u\| \\
& \leq\left(\frac{\mu}{8}+L\right)\|w-u\| \\
& \leq \frac{9 L}{8}\|w-u\|
\end{aligned}
$$

and therefore $\operatorname{Hess}(F(w)) \preceq \frac{9 L}{8} I_{d}$.

The corresponding lower bound similarly follows from triangular inequality where

$$
\begin{aligned}
&\|\nabla F(w)-\nabla F(u)\|=\|A(w) \nabla f(w-\alpha \nabla f(w))-A(u) \nabla f(u-\alpha \nabla f(u))\| \\
& \geq\|A(u)(\nabla f(w-\alpha \nabla f(w))-\nabla f(u-\alpha \nabla f(u)))\| \\
&-\|(A(w)-A(u)) \nabla f(w-\alpha \nabla f(w))\|
\end{aligned}
$$

When $\alpha \leq \min \left\{\frac{1}{2 L}, \frac{\mu}{8 \kappa G}\right\}$, the first term is lower bounded as

$$
\begin{aligned}
& \|A(u)(\nabla f(w-\alpha \nabla f(w))-\nabla f(u-\alpha \nabla f(u)))\| \\
\geq & (1-\alpha L)\|\nabla f(w-\alpha \nabla f(w))-\nabla f(u-\alpha \nabla f(u))\| \\
\geq & (1-\alpha L) \mu\|(w-\alpha \nabla f(w))-(u-\alpha \nabla f(u))\| \\
\geq & (1-\alpha L) \mu(\|w-u\|-\alpha\|\nabla f(w)-\nabla f(u)\|) \\
\geq & (1-\alpha L)^{2} \mu\|w-u\| \\
\geq & \frac{\mu}{4}\|w-u\|
\end{aligned}
$$

where the first inequality follows from $\lambda_{\min }(A(u)) \geq 1-\alpha L$, the second inequality follows from Assumption 3.3, the third inequality is due to triangular inequality, and the last inequality follows from $\alpha \leq \frac{1}{2 L}$. Hence, it holds that

$$
\begin{aligned}
&\|\nabla F(w)-\nabla F(u)\| \geq\|A(u)(\nabla f(w-\alpha \nabla f(w))-\nabla f(u-\alpha \nabla f(u)))\| \\
& \quad-\|(A(w)-A(u)) \nabla f(w-\alpha \nabla f(w))\| \\
& \geq \frac{\mu}{4}\|w-u\|-\alpha(1-\alpha \mu) \kappa G\|w-u\| \\
& \geq\left(\frac{\mu}{4}-\frac{\mu}{8}\right)\|w-u\| \\
&=\frac{\mu}{8}\|w-u\|
\end{aligned}
$$

where the last inequality follows from $\alpha \leq \frac{\mu}{8 \kappa G}$. Thus we obtain $\operatorname{Hess}(F(w)) \geq \frac{\mu}{8}$.

Proof of Theorem 3.8

Proof. Combining Lemmas D. 1 and D. 2 shows that

$$
\frac{\mu}{8} I_{d} \preceq \operatorname{Hess}(F(w)) \preceq \frac{9 L}{8} I_{d}
$$

if $w \in U(K)$ and

$$
\alpha \leq \min \left\{\frac{1}{2 L}, \frac{\mu}{8 \kappa} \frac{7}{16 K+9 \sigma}\right\}
$$

E Proof of Theorem 3.9

For $K>0$, we define $U(K):=\left\{w \in \mathbb{R}^{d}:\|\nabla F(w)\| \leq K\right\}$ and $V(K):=\left\{w \in \mathbb{R}^{d}: f(w)-f\left(x^{*}\right) \leq K\right\}$ where x^{*} is the unique global minimizer of f (recall that f is μ-strongly convex). Let $\operatorname{Crit}(F)$ denote the set of critical points of F. The convexity of f implies that $V(K)$ is convex. All critical points of F are contained in $U(K)$ for any $K>0$; in other words

$$
\operatorname{Crit}(F) \subseteq U(K), \quad \forall K>0
$$

Lemma E.1. If the loss function $f_{i}(w)$ satisfies Assumptions 3.2 to 3.4, $\alpha<\frac{1}{4 L}$, then we have

$$
U(K) \subseteq V\left(\frac{1}{98 \mu}(16 K+9 \sigma)^{2}\right)
$$

Ruitu Xu, Lin Chen, Amin Karbasi

Proof. Let us pick $w \in \mathbb{R}^{d}$ such that $\|\nabla F(w)\| \leq K$. Lemma D. 1 implies that there exists a constant $C_{1}=$ $\frac{16}{7} K+\frac{9}{7} \sigma$ such that $\|\nabla f(w)\| \leq C_{1}$. Since f is μ-strongly convex, we have

$$
f(w) \leq f(x)+\nabla f(x)^{\top}(w-x)+\frac{1}{2 \mu}\|\nabla f(w)-\nabla f(x)\|^{2}, \quad \forall w, x
$$

Setting x to the global minimizer x^{*} of f yields

$$
f(w) \leq f\left(x^{*}\right)+\frac{1}{2 \mu}\|\nabla f(w)\|^{2} \leq f\left(x^{*}\right)+\frac{1}{2 \mu} C_{1}^{2}=f\left(x^{*}\right)+\frac{1}{98 \mu}(16 K+9 \sigma)^{2}
$$

Therefore, we have

$$
w \in V\left(\frac{1}{98 \mu}(16 K+9 \sigma)^{2}\right)
$$

Lemma E.2. Under Assumptions 3.2 to 3.4, we have

$$
V(K) \subseteq U(\sigma+\sqrt{2 L K)})
$$

Proof. Let us rewrite $\|\nabla F(w)\|$ as below

$$
\begin{align*}
\|\nabla F(w)\| & =\left\|\mathbb{E}_{i \sim p}\left(I_{d}-\alpha \nabla^{2} f_{i}(w)\right) \nabla f_{i}\left(w-\alpha f_{i}(w)\right)\right\| \\
& =\left\|\mathbb{E}_{i \sim p}\left(I_{d}-\alpha \nabla^{2} f_{i}(w)\right)\left(I_{d}-\alpha \nabla^{2} f_{i}(\tilde{w})\right) \nabla f_{i}(w)\right\| \\
& \leq \mathbb{E}_{i \sim p}\left\|\nabla f_{i}(w)\right\| \\
& \leq\left(\mathbb{E}_{i \sim p}\left\|\nabla f_{i}(w)-f(w)\right\|+\|\nabla f(w)\|\right) \tag{E.1}\\
& \leq \sqrt{\mathbb{E}_{i \sim p}\left\|\nabla f_{i}(w)-f(w)\right\|^{2}}+\|\nabla f(w)\| \\
& \leq \sigma+\|\nabla f(w)\|,
\end{align*}
$$

where the second inequality is because of the mean value theorem. Since f is L-smooth, we have

$$
f(w) \geq f(x)+\nabla f(x)^{\top}(w-x)+\frac{1}{2 L}\|\nabla f(w)-\nabla f(x)\|^{2}, \quad \forall x \in \mathbb{R}^{d}
$$

Since f is μ-strongly convex, there exists a unique global minimum x^{*} with $\nabla f\left(x^{*}\right)=0$. Therefore, we obtain

$$
f(w) \geq f\left(x^{*}\right)+\frac{1}{2 L}\|\nabla f(w)\|^{2}
$$

Combining the above inequality and (E.1) yields

$$
\|\nabla F(w)\| \leq \sigma+\sqrt{2 L\left(f(w)-f\left(x^{*}\right)\right)}
$$

If $w \in V(K)$, we get

$$
\|F(w)\| \leq \sigma+\sqrt{2 L K}
$$

Combining Lemmas E. 1 and E. 2 gives the following corollary.
Corollary E.3. For any $K>0$, if $\alpha<\frac{1}{4 L}$, we have the following inclusion relations

$$
\operatorname{Crit}(F) \subseteq U(K) \subseteq V\left(\frac{1}{98 \mu}(16 K+9 \sigma)^{2}\right) \subseteq U\left(\sigma+\sqrt{\frac{L}{\mu}} \frac{16 K+9 \sigma}{7}\right)
$$

Corollary E.4. For any $K^{\prime} \geq\left(\frac{9}{7} \sqrt{\frac{L}{\mu}}+1\right) \sigma$, if $\alpha<\frac{1}{4 L}$, we have the following inclusion relations

$$
\operatorname{Crit}(F) \subseteq U\left(\frac{7 K^{\prime}-\sigma\left(9 \sqrt{\frac{L}{\mu}}+7\right)}{16 \sqrt{\frac{L}{\mu}}}\right) \subseteq V\left(\frac{\left(K^{\prime}-\sigma\right)^{2}}{2 L}\right) \subseteq U\left(K^{\prime}\right)
$$

Lemma E.5. Under Assumption 3.3, if $\alpha<\frac{1}{4 L}$, we have $\operatorname{Crit}(F)$ is non-empty.
Proof. First we show that F is bounded from below. Since every f_{i} is strongly convex, it is bounded from below. Recall that $F(w)=\mathbb{E}_{i \sim p} f_{i}\left(w-\alpha \nabla f_{i}(w)\right)$. Therefore F is also bounded from below. Let $F^{*}:=\inf _{w \in \mathbb{R}^{d}} F(w)$. Pick any $v(0) \in \mathbb{R}^{d}$ and consider the dynamic defined by

$$
\frac{d v(t)}{d t}=-\nabla F(v(t))
$$

Let $E(t)=F(v(t))-F^{*}$. We have

$$
\frac{d E(t)}{d t}=-\|\nabla F(v(t))\|^{2}
$$

Therefore, we get

$$
t \min _{0 \leq s \leq t}\|\nabla F(v(t))\|^{2} \leq \int_{0}^{t}\|\nabla F(v(s))\|^{2} d s=E(0)-E(t) \leq E(0)
$$

Thus we obtain

$$
\begin{equation*}
\min _{0 \leq s \leq t}\|\nabla F(v(t))\|^{2} \leq \frac{E(0)}{t} \tag{E.2}
\end{equation*}
$$

Define another function

$$
u(t):=v\left(\underset{s \in[0, t]}{\arg \min }\|\nabla F(v(t))\|^{2}\right)
$$

where ties can be broken arbitrarily. Eq. (E.2) implies

$$
\|\nabla F(u(t))\| \leq \sqrt{\frac{E(0)}{t}}, \quad \forall t \geq 0
$$

Pick any $K \geq\left(\frac{9}{7} \sqrt{\frac{L}{\mu}}+1\right) \sigma$. We have

$$
\|\nabla F(u(t))\| \in U(K), \quad \forall t \geq \sqrt{\frac{E(0)}{K}}
$$

Since f is strongly convex, $V\left(\frac{(K-\sigma)^{2}}{2 L}\right)$ is convex and non-empty. Thus $U(K)$ is non-empty and closed. Next, we show that $U(K)$ is bounded. Lemma E. 1 implies $U(K) \subseteq V\left(\frac{1}{98 \mu}(16 K+9 \sigma)^{2}\right):=V_{0}$. Since V_{0} is a sublevel set of f and f is strongly convex, therefore we get the boundedness of V_{0}, which implies the boundedness of $U(K)$. Thus $U(K)$ is compact. Define a sequence $w_{n}=u\left(n+\sqrt{\frac{E(0)}{K}}\right)$, where $n=1,2,3, \ldots$ We have $w_{n} \in U(K)$. By Bolzano-Weierstrass theorem, there exists a convergent subsequence $w_{n_{i}}$. Let $w_{0} \in U(K)$ be the limit of $w_{n_{i}}$. We have

$$
\left\|\nabla F\left(w_{0}\right)\right\|=\lim _{i \rightarrow \infty}\left\|\nabla F\left(w_{n_{i}}\right)\right\| \leq \lim _{i \rightarrow \infty} \sqrt{\frac{E(0)}{n_{i}+\sqrt{E(0) / K}}}=0
$$

Therefore we conclude that w_{0} is a critical point of F.
Proof of Theorem 3.9. Since f is strongly convex, $V\left(\frac{(K-\sigma)^{2}}{2 L}\right)$ is convex and non-empty. Theorem 3.8 implies that F is $\frac{\mu}{8}$-strongly convex on $U(K)$ and therefore $\frac{\mu}{8}$-strongly convex on its convex subset $V\left(\frac{(K-\sigma)^{2}}{2 L}\right)$ (by Corollary E.4). Since $\operatorname{Crit}(F) \neq \varnothing$ (by Lemma E.5), there is a unique critical point which is the minimizer of F on $V\left(\frac{(K-\sigma)^{2}}{2 L}\right)$. Corollary E. 4 implies no critical point outside $V\left(\frac{(K-\sigma)^{2}}{2 L}\right)$. In fact, the unique critical point is the global minimizer of F.

