A BI-MAML Algorithm

Algorithm 2 Biphasic MAML (BI-MAML)

Input: Loss functions $\{f_i(w)\}_{i \in [M]}$, MAML parameter α , step size β , tolerance level $\varepsilon_0, \varepsilon$. 1: initialize $w(0) \in \mathbb{R}^d$ arbitrarily 2: for $t \in \mathbb{N} \cup \{0\}$ do if $\|\nabla f(w(t))\| \ge \varepsilon_0$ then 3: $w(t+1) \leftarrow w(t) - \beta \nabla f(w(t))$ 4: 5:else $w(t+1) \leftarrow w(t) - \beta \nabla F(w(t))$ 6: 7:end if return w(t+1) if $\|\nabla F(w(t))\| \leq \varepsilon$ 8: 9: end for

 $w^+ = w - \beta \nabla F(w),$

B Proof of Proposition 3.1

and

Proof. Recall the MAML algorithm with update Eq. (3.1), *i.e.*,

that
$$\nabla F_i(w) = (I_d - \alpha \nabla^2 f_i(w)) \nabla f_i(w - \alpha \nabla f_i(w))$$
. Expand the terms to get
 $\nabla F(w) = \mathbb{E}_{i \sim p} [(I_d - \alpha \nabla^2 f_i(w)) \nabla f_i(w - \alpha \nabla f_i(w))]$
 $= \mathbb{E}_{i \sim p} \nabla f_i(w - \alpha \nabla f_i(w)) - \alpha \mathbb{E}_{i \sim p} \nabla^2 f_i(w) \nabla f_i(w - \alpha \nabla f_i(w))$
 $= \mathbb{E}_{i \sim p} (I_d - \alpha \nabla^2 f_i(\tilde{w}_i)) \nabla f_i(w) - \alpha \mathbb{E}_{i \sim p} \nabla^2 f_i(w) (I_d - \alpha \nabla^2 f_i(\tilde{w}_i)) \nabla f_i(w)$
 $= \mathbb{E}_{i \sim p} (I_d - \alpha \nabla^2 f_i(w)) (I_d - \alpha \nabla^2 f_i(\tilde{w}_i)) \nabla f_i(w)$
 $= \mathbb{E}_{i \sim p} A_i(w) A_i(\tilde{w}_i) \nabla f_i(w),$

where the first equality follows from definition, the third equality follows from mean value theorem. Here \tilde{w}_i is a value between w and $w - \alpha \nabla f_i(w)$ such that mean value theorem holds. The formula can be further recast into

$$\nabla F(w) = \mathbb{E}_{i\sim p} [\nabla f_i(w) - \alpha (\nabla^2 f_i(w) + \nabla^2 f_i(\tilde{w}_i)) \nabla f_i(w) + \alpha^2 \nabla^2 f_i(w) \nabla^2 f_i(\tilde{w}_i) \nabla f_i(w)]$$

= $\nabla f(w) - \mathbb{E}_{i\sim p} [(\alpha (\nabla^2 f_i(w) + \nabla^2 f_i(\tilde{w}_i)) - \alpha^2 \nabla^2 f_i(w) \nabla^2 f_i(\tilde{w}_i)) \nabla f_i(w)].$

If we think of the infinitesimal step size $\beta \to 0$, we obtain an ODE that represents the gradient flow on F(w):

$$\dot{w} = -\nabla F(w)$$

= $-\nabla f(w) + \mathbb{E}_{i \sim p}\left[\underbrace{(\alpha(\nabla^2 f_i(w) + \nabla^2 f_i(\tilde{w}_i)) - \alpha^2 \nabla^2 f_i(w) \nabla^2 f_i(\tilde{w}_i))}_{B_i(w)} \nabla f_i(w)\right].$

We define a shorthand $B_i(w)$ for notational convenience.

C Proof of the Convergent Upper Bound

Lemma C.1. If the loss function $f_i(w)$ satisfies Assumptions 3.2 and 3.3 and $\alpha < \frac{1}{2L}$, then it holds that

$$\nabla f(w)^{\mathsf{T}} \nabla^2 f(w) \mathbb{E}_{i \sim p} [B_i(w) \nabla f_i(w)] \le \frac{5}{4} L^2 \alpha (L^3 \alpha^2 + 2L^2 \alpha + 2) \|\nabla f(w)\|^2 + \frac{\sigma^2}{2}.$$
 (C.1)

Proof. Another upper bound for the third term on the right-hand side of Eq. (3.6) can be derived through relaxing its difference with the quadratic form

$$\nabla f(w)^{\mathsf{T}} \nabla^2 f(w) \mathbb{E}_{i \sim p} [B_i(w) \nabla f_i(w)] - \nabla f(w)^{\mathsf{T}} \nabla^2 f(w) \mathbb{E}_{i \sim p} [B_i(w)] \nabla f(w)$$

= $\mathbb{E}_{i \sim p} [\nabla f(w)^{\mathsf{T}} \nabla^2 f(w) B_i(w) (\nabla f_i(w) - \nabla f(w))]$
 $\leq \frac{1}{2} \mathbb{E}_{i \sim p} \|B_i(w)^{\mathsf{T}} \nabla^2 f(w) \nabla f(w)\|^2 + \frac{1}{2} \mathbb{E}_{i \sim p} \|\nabla f_i(w) - \nabla f(w)\|^2,$

where the last inequality follows from Young's inequality. This provides yet another upper bound after rearranging the terms as follows:

$$\begin{split} \nabla f(w)^{\mathsf{T}} \nabla^2 f(w) \, \mathbb{E}_{i \sim p}[B_i(w) \nabla f_i(w)] &\leq \nabla f(w)^{\mathsf{T}} \nabla^2 f(w) \, \mathbb{E}_{i \sim p}[B_i(w)] \nabla f(w) \\ &+ \frac{L^2}{2} \max_i \|B_i(w)\|^2 \|\nabla f(w)\|^2 + \frac{\sigma^2}{2} \\ &\leq \left(L \max_i \|B_i(w)\| + \frac{L^2}{2} \max_i \|B_i(w)\|^2\right) \|\nabla f(w)\|^2 + \frac{\sigma^2}{2}. \end{split}$$

The first and second inequality are due to Assumptions 3.2 and 3.4. Recall that

$$B_i(w) = \alpha(\nabla^2 f_i(w) + \nabla^2 f_i(\tilde{w}_i)) - \alpha^2 \nabla^2 f_i(w) \nabla^2 f_i(\tilde{w}_i),$$

and it is not hard to see that $\max_i ||B_i(w)|| \leq 2\alpha L + \alpha^2 L^2$. Hence we conclude that

$$\begin{aligned} \nabla f(w)^{\mathsf{T}} \nabla^2 f(w) \, \mathbb{E}_{i \sim p} [B_i(w) \nabla f_i(w)] &\leq \left(L \max_i \|B_i(w)\| + \frac{L^2}{2} \max_i \|B_i(w)\|^2 \right) \|\nabla f(w)\|^2 + \frac{\sigma^2}{2} \\ &\leq \frac{1}{2} L^2 \alpha (L\alpha + 2) (L^3 \alpha^2 + 2L^2 \alpha + 2) \|\nabla f(w)\|^2 + \frac{\sigma^2}{2} \\ &\leq \frac{5}{4} L^2 \alpha (L^3 \alpha^2 + 2L^2 \alpha + 2) \|\nabla f(w)\|^2 + \frac{\sigma^2}{2}, \end{aligned}$$

where the last inequality follows from $\alpha < \frac{1}{2L}$.

Proof of Lemma 3.7

Proof. Plug Eq. (C.1) into Eq. (3.6) to get

$$\begin{aligned} \frac{d}{dt} \frac{1}{2} \left\| \nabla f(w) \right\|^2 &\leq -\nabla f(w)^{\mathsf{T}} \nabla^2 f(w) \nabla f(w) + \frac{5}{4} L^2 \alpha (L^3 \alpha^2 + 2L^2 \alpha + 2) \| \nabla f(w) \|^2 + \frac{\sigma^2}{2} \\ &\leq - \left(\mu - \frac{5}{4} L^2 \alpha (L^3 \alpha^2 + 2L^2 \alpha + 2) \right) \| \nabla f(w) \|^2 + \frac{\sigma^2}{2}. \end{aligned}$$

Theorem	C.2.	If it	holds	that
---------	------	-------	-------	------

$$\alpha < \min\left\{\sqrt[3]{\frac{2}{15}}\mu^{1/3}L^{-5/3}, \sqrt{\frac{1}{15}}\mu^{1/2}L^{-2}, \sqrt{\frac{1}{15}}\mu L^{-2}\right\},\$$

then $\|\nabla f(w(t))\|^2$ under (3.2) is upper bounded by a function y(t) that is exponentially convergent to

$$\frac{\sigma^2}{2\mu-\frac{5}{2}L^2\alpha(L^3\alpha^2+2L^2\alpha+2)}<\frac{\sigma^2}{\mu}$$

as $t \to \infty$.

Proof. If y(t) is the solution of an IVP

$$\dot{y} \leq -\left(\mu - \frac{5}{4}L^2\alpha(L^3\alpha^2 + 2L^2\alpha + 2)\right)y + \frac{\sigma^2}{2}$$

with initial condition $y(0) = \|\nabla f(w(0))\|^2$, then $\|\nabla f(w(t))\|^2 \le y(t)$ for any $t \ge 0$. Moreover, it is an ODE of the following form: $\dot{y} = -\zeta y + \gamma$, which is a simple first-order separable ODE that permits a family of solutions

$$y(t) = (e^{-\zeta(t+c_0)} + \gamma)/\zeta$$

under the condition $y(0) > \gamma/\zeta$. In our case, $\zeta = \mu - \frac{5}{4}L^2\alpha(L^3\alpha^2 + 2L^2\alpha + 2)$, $\gamma = \frac{\sigma^2}{2}$, and the constant c_0 depends on initial condition y(0). Consequently, we have y converges to γ/ζ exponentially whenever $\zeta > 0$. The following theorem provides sufficient conditions for convergence.

We derive sufficient conditions for the quadratic inequality $\frac{1}{2}\mu - \frac{5}{4}L^2\alpha(L^3\alpha^2 + 2L^2\alpha + 2) > 0$, *i.e.*,

$$\frac{5}{4}L^5\alpha^3 < \frac{\mu}{6}, \quad \frac{5}{2}L^4\alpha^2 < \frac{\mu}{6}, \quad \frac{5}{2}L^2\alpha < \frac{\mu}{6}$$

The sufficient conditions reduce to

$$\alpha < \min\left\{\sqrt[3]{\frac{2}{15}}\mu^{1/3}L^{-5/3}, \sqrt{\frac{1}{15}}\mu^{1/2}L^{-2}, \sqrt{\frac{1}{15}}\mu L^{-2}\right\}$$

and we have

$$\frac{\gamma}{\zeta} < \frac{\sigma^2/2}{\mu/2} = \frac{\sigma^2}{\mu}.$$

Lemma C.3. Suppose the loss function $f_i(w)$ satisfies Assumptions 3.2 and 3.4, then for any $w \in \mathbb{R}^d$ such that $\|\nabla f(w)\| \leq G$, it holds that $\|\nabla F(w)\| \leq (1 + 2\alpha L + \alpha^2 L^2)G + (2\alpha L + \alpha^2 L^2)\sigma$.

Proof. Recall that $\nabla F_i(w) = A_i(w) \nabla f_i(w - \alpha \nabla f_i(w))$. Apply mean value theorem to $\nabla f_i(w - \alpha \nabla f_i(w))$ to get

$$\nabla f_i(w - \alpha \nabla f_i(w)) = \nabla f_i(w) - \alpha \nabla^2 f(\tilde{w}_i) \nabla f_i(w)$$

= $A_i(\tilde{w}_i) \nabla f_i(w),$ (C.2)

where \tilde{w}_i lies between w and $w - \alpha \nabla f_i(w)$. Consequently, $\nabla F_i(w) = A_i(w)A_i(\tilde{w}_i)\nabla f_i(w)$. Further notice that

$$\begin{split} \|\nabla F(w)\| &= \|\mathbb{E}_{i\sim p} \nabla F_i(w)\| \\ &= \|\mathbb{E}_{i\sim p} [\nabla f_i(w) + (\nabla F_i(w) - \nabla f_i(w))]\| \\ &\leq \|\mathbb{E}_{i\sim p} \nabla f_i(w)\| + \|\mathbb{E}_{i\sim p} [(I - A_i(w)A_i(\tilde{w}_i))\nabla f_i(w)]\| \\ &\leq \|\nabla f(w)\| + \mathbb{E}_{i\sim p} [\|I_d - A_i(w)A_i(\tilde{w}_i)\|\|\nabla f_i(w)\|], \end{split}$$

The second equality follows from separating the difference between $\nabla F(w)$ and $\nabla f(w)$. The third inequality is due to Eq. (C.2) and triangular inequality. The last inequality is due to Cauchy-Schwarz inequality, and the product of the two norms can be handled separately. Expand $A_i(w)$, $A_i(\tilde{w}_i)$ and bound the first term by a constant to get

$$||I_d - A_i(w)A_i(\tilde{w}_i)|| = ||\alpha^2 \nabla^2 f_i(w) \nabla^2 f_i(\tilde{w}) - \alpha \nabla^2 f_i(w) - \alpha \nabla^2 f_i(\tilde{w})|| \le 2\alpha L + \alpha^2 L^2.$$

The remaining term can be bounded by variance σ and gradient norm $\|\nabla f(w)\|$:

$$\mathbb{E}_{i\sim p} \|\nabla f_i(w)\| \leq \|\mathbb{E}_{i\sim p} \nabla f_i(w)\| + \mathbb{E}_{i\sim p}[\|\nabla f_i(w) - \mathbb{E}_{i\sim p} \nabla f_i(w)\|]$$

$$\leq \|\nabla f(w)\| + \sqrt{\mathbb{E}_{i\sim p}[\|\nabla f_i(w) - \nabla f(w)\|^2]}$$

$$\leq \|\nabla f(w)\| + \sigma.$$

The second inequality follows from Jenson inequality. Combining the upper bounds together yields

$$\|\nabla F(w)\| \le (1 + 2\alpha L + \alpha^2 L^2) \|\nabla f(w)\| + (2\alpha L + \alpha^2 L^2)\sigma.$$

Proof of Theorem 4.1

Proof. Since the expected loss f is μ -strongly convex, we always have in the first stage that

$$\begin{aligned} \frac{d}{dt} \|\nabla f(w)\|^2 &= \nabla f(w)^{\mathsf{T}} \nabla^2 f(w) \dot{w} \\ &= -\nabla f(w)^{\mathsf{T}} \nabla^2 f(w) \nabla F(w) \\ &\leq -\mu \|\nabla f(w)\|^2, \end{aligned}$$

where $\dot{w} = -\nabla f(w)$. It reaches a tolerant level at $\|\nabla f(w)\| \leq \varepsilon_0$, as long as

$$\begin{split} t &\geq \frac{1}{\mu} \log \left(\frac{\|\nabla f(w(0))\|^2}{\varepsilon_0^2} \right) \\ &= \frac{2}{\mu} \log \left(\frac{\|\nabla f(w(0))\|^2}{\varepsilon_0^2} \right). \end{split}$$

Let us denote

$$t_1 = \min_t \left\{ t : \|\nabla f(w(t))\|^2 \le \varepsilon_0^2 \right\},$$

By Lemma C.3 and the assumption $\alpha \leq \frac{1}{2L}$ we have

$$\begin{aligned} \|\nabla F(w(t_1))\| &\leq (1+2\alpha L+\alpha^2 L^2)\varepsilon_0 + (2\alpha L+\alpha^2 L^2)\sigma \\ &\leq \frac{9}{4}\varepsilon_0 + \frac{5}{4}\sigma. \end{aligned}$$

Let us denote $K = \frac{9}{4}\varepsilon_0 + \frac{5}{4}\sigma$, and Theorem 3.8 implies that if $\alpha \leq \min\{\frac{1}{2L}, \frac{7\mu}{8\kappa(16K+9\sigma)}\}$ the MAML loss F(w) is $\frac{\mu}{8}$ -strongly convex at w, and the MAML ODE (3.2) after time t_1 is a gradient flow on a $\frac{\mu}{8}$ -strongly convex loss F(w). This dynamics then converges exponentially fast to an approximate stationary point \hat{w} where $\|\nabla F(\hat{w})\| \leq \varepsilon$. Similar to the proof of Theorem 3.6, a sufficient condition for the approximate stationary point \hat{w} writes $e^{-\mu\tau/8}\|\nabla F(w(t_1))\|^2 \leq \varepsilon$, which means $w(\tau + t_1)$ is an approximate stationary point if

$$\tau \ge \frac{8}{\mu} \log\left(\frac{\|\nabla F(w(t_1))\|^2}{\varepsilon^2}\right)$$
$$= \frac{16}{\mu} \log\left(\frac{9\varepsilon_0 + 5\sigma}{4\varepsilon}\right).$$

Combine two parts together to get the major result that the BI-MAML ODE converges to an approximate stationary point $\hat{w}(t)$ within

$$t = \frac{1}{\mu} \mathcal{O}\left[\log\left(\frac{(9\varepsilon_0 + 5\sigma) \|\nabla f(w(0))\|}{4\varepsilon_0 \varepsilon}\right) \right].$$

D Proof of Strong Convexity

Lemma D.1. Suppose the loss function $f_i(w)$ satisfies Assumptions 3.2 and 3.4, then for any $w \in \mathbb{R}^d$ such that $\|\nabla F(w)\| \leq K$ and $\alpha < \frac{1}{4L}$, it holds that $\|\nabla f(w)\| \leq \frac{16}{7}K + \frac{9}{7}\sigma$.

Proof. Notice that

$$\begin{aligned} \|\nabla f(w)\| &= \|\mathbb{E}_{i\sim p} f_i(w)\| \\ &= \|\mathbb{E}_{i\sim p} [\nabla F_i(w) + (\nabla f_i(w) - \nabla F_i(w))]\| \\ &\leq \|\nabla F(w)\| + \|\mathbb{E}_{i\sim p} (I_d - A_i(w)A_i(\tilde{w}_i))\nabla f_i(w)\| \\ &\leq \|\nabla F(w)\| + \mathbb{E}_{i\sim p} \|I_d - A_i(w)A_i(\tilde{w}_i)\| \|\nabla f_i(w)\| \\ &\leq \|\nabla F(w)\| + (2\alpha L + \alpha^2 L^2) \mathbb{E}_{i\sim p} \|\nabla f_i(w)\|, \end{aligned}$$

where the first inequality follows from triangular inequality and the third inequality is due to Assumption 3.2. Similarly, we have

$$\mathbb{E}_{i \sim p} \left\| \nabla f_i(w) \right\| \le \left\| \nabla f(w) \right\| + \mathbb{E}_{i \sim p} \left\| \nabla f_i(w) - \nabla f(w) \right\|$$
$$\le \left\| \nabla f(w) \right\| + \sigma,$$

where the first inequality is due to triangular inequality and the second one is due to Assumption 3.4. Rearrange the terms under the assumption $\alpha < \frac{1}{4L}$ to get

$$\begin{aligned} \|\nabla f(w)\| &\leq \frac{1}{1 - 2\alpha L - \alpha^2 L^2} \|\nabla F(w)\| + \frac{2\alpha L + \alpha^2 L^2}{1 - 2\alpha L - \alpha^2 L^2} \sigma \\ &\leq \frac{16}{7} K + \frac{9}{7} \sigma. \end{aligned}$$

Lemma D.2. Suppose $f_i(w)$ satisfies Assumptions 3.2, 3.3 and 3.5. For any $\alpha \leq \min\{\frac{1}{2L}, \frac{\mu}{8\kappa G}\}$ and $w \in U(G) \coloneqq \{w \in \mathbb{R}^d : \|\nabla f(w)\| \leq G\}$, we have $\frac{\mu}{8}I_d \leq \operatorname{Hess}(F(w)) \leq \frac{9L}{8}I_d$.

Proof. Consider $w, u \in U(G)$, we have

$$\begin{aligned} \|\nabla F(w) - \nabla F(u)\| &= \|A(w)\nabla f(w - \alpha\nabla f(w)) - A(u)\nabla f(u - \alpha\nabla f(u))\| \\ &\leq \|(A(w) - A(u))\nabla f(w - \alpha\nabla f(w))\| \\ &+ \|A(u)(\nabla f(w - \alpha\nabla f(w)) - \nabla f(u - \alpha\nabla f(u)))\|, \end{aligned}$$

where the inequality follows from triangular inequality. For the first term, we have an upper bound

$$\begin{aligned} \|(A(w) - A(u))\nabla f(w - \alpha\nabla f(w))\| &\leq \|A(w) - A(u)\| \|\nabla f(w - \alpha\nabla f(w))\| \\ &= \alpha \|\nabla^2 f(w) - \nabla^2 f(u)\| \|\nabla f(w - \alpha\nabla f(w))\| \\ &\leq \alpha \kappa \|w - u\| \|\nabla f(w - \alpha\nabla f(w))\| \\ &= \alpha \kappa \|w - u\| \|A(\tilde{w})f(w)\| \\ &\leq \alpha \kappa \|w - u\| \|A(\tilde{w})\| \|f(w)\| \\ &\leq \alpha (1 - \alpha \mu)\kappa G\|w - u\| \end{aligned}$$

where the first inequality is due to Cauchy-Schwarz inequality, the second inequality is due to Assumption 3.5, and the second equality follows from mean value theorem, and the last inequality is due to the fact that $||A(\tilde{w})|| = ||I_d - \alpha \nabla^2 f(\tilde{w})|| \le 1 - \alpha \mu$. Similarly, we bound the second part as

$$\begin{aligned} &\|A(u)(\nabla f(w - \alpha \nabla f(w)) - \nabla f(u - \alpha \nabla f(u)))\| \\ &\leq \|A(u)\| \|\nabla f(w - \alpha \nabla f(w)) - \nabla f(u - \alpha \nabla f(u))\| \\ &\leq (1 - \alpha \mu) \|\nabla f(w - \alpha \nabla f(w)) - \nabla f(u - \alpha \nabla f(u))\| \\ &\leq (1 - \alpha \mu) L \|(w - \alpha \nabla f(w)) - (u - \alpha \nabla f(u))\| \\ &\leq (1 - \alpha \mu)^2 L \|w - u\|, \end{aligned}$$

where the last inequality follows from mean value inequality. Putting the pieces together to get, when $\alpha \leq \min\{\frac{1}{2L}, \frac{\mu}{8\kappa G}\}$,

$$\begin{aligned} \|\nabla F(w) - \nabla F(u)\| &\leq \alpha (1 - \alpha \mu) \kappa G \|w - u\| + (1 - \alpha \mu)^2 L \|w - u\| \\ &\leq \alpha \kappa G \|w - u\| + (1 - \alpha \mu)^2 L \|w - u\| \\ &\leq \left(\frac{\mu}{8} + L\right) \|w - u\| \\ &\leq \frac{9L}{8} \|w - u\|, \end{aligned}$$

and therefore $\operatorname{Hess}(F(w)) \leq \frac{9L}{8}I_d$.

The corresponding lower bound similarly follows from triangular inequality where

$$\begin{aligned} \|\nabla F(w) - \nabla F(u)\| &= \|A(w)\nabla f(w - \alpha\nabla f(w)) - A(u)\nabla f(u - \alpha\nabla f(u))\| \\ &\geq \|A(u)(\nabla f(w - \alpha\nabla f(w)) - \nabla f(u - \alpha\nabla f(u)))\| \\ &- \|(A(w) - A(u))\nabla f(w - \alpha\nabla f(w))\|. \end{aligned}$$

When $\alpha \leq \min\{\frac{1}{2L}, \frac{\mu}{8\kappa G}\}$, the first term is lower bounded as

$$\begin{aligned} &\|A(u)(\nabla f(w - \alpha \nabla f(w)) - \nabla f(u - \alpha \nabla f(u)))\|\\ &\geq (1 - \alpha L)\|\nabla f(w - \alpha \nabla f(w)) - \nabla f(u - \alpha \nabla f(u))\|\\ &\geq (1 - \alpha L)\mu\|(w - \alpha \nabla f(w)) - (u - \alpha \nabla f(u))\|\\ &\geq (1 - \alpha L)\mu(\|w - u\| - \alpha \|\nabla f(w) - \nabla f(u)\|)\\ &\geq (1 - \alpha L)^2\mu\|w - u\|\\ &\geq \frac{\mu}{4}\|w - u\|,\end{aligned}$$

where the first inequality follows from $\lambda_{\min}(A(u)) \ge 1 - \alpha L$, the second inequality follows from Assumption 3.3, the third inequality is due to triangular inequality, and the last inequality follows from $\alpha \le \frac{1}{2L}$. Hence, it holds that

$$\begin{aligned} \|\nabla F(w) - \nabla F(u)\| &\geq \|A(u)(\nabla f(w - \alpha \nabla f(w)) - \nabla f(u - \alpha \nabla f(u)))\| \\ &\quad - \|(A(w) - A(u))\nabla f(w - \alpha \nabla f(w))\| \\ &\geq \frac{\mu}{4} \|w - u\| - \alpha(1 - \alpha \mu)\kappa G\|w - u\| \\ &\geq \left(\frac{\mu}{4} - \frac{\mu}{8}\right) \|w - u\| \\ &\quad = \frac{\mu}{8} \|w - u\|, \end{aligned}$$

where the last inequality follows from $\alpha \leq \frac{\mu}{8\kappa G}$. Thus we obtain $\operatorname{Hess}(F(w)) \geq \frac{\mu}{8}$.

Proof of Theorem 3.8

Proof. Combining Lemmas D.1 and D.2 shows that

$$\frac{\mu}{8}I_d \preceq \operatorname{Hess}(F(w)) \preceq \frac{9L}{8}I_d \,,$$

if $w \in U(K)$ and

$$\alpha \le \min\left\{\frac{1}{2L}, \frac{\mu}{8\kappa} \frac{7}{16K + 9\sigma}\right\}.$$

E Proof of Theorem 3.9

For K > 0, we define $U(K) := \{w \in \mathbb{R}^d : \|\nabla F(w)\| \le K\}$ and $V(K) := \{w \in \mathbb{R}^d : f(w) - f(x^*) \le K\}$ where x^* is the unique global minimizer of f (recall that f is μ -strongly convex). Let $\operatorname{Crit}(F)$ denote the set of critical points of F. The convexity of f implies that V(K) is convex. All critical points of F are contained in U(K) for any K > 0; in other words

$$\operatorname{Crit}(F) \subseteq U(K), \quad \forall K > 0.$$

Lemma E.1. If the loss function $f_i(w)$ satisfies Assumptions 3.2 to 3.4, $\alpha < \frac{1}{4L}$, then we have

$$U(K) \subseteq V\left(\frac{1}{98\mu} \left(16K + 9\sigma\right)^2\right)$$
.

Proof. Let us pick $w \in \mathbb{R}^d$ such that $\|\nabla F(w)\| \leq K$. Lemma D.1 implies that there exists a constant $C_1 = \frac{16}{7}K + \frac{9}{7}\sigma$ such that $\|\nabla f(w)\| \leq C_1$. Since f is μ -strongly convex, we have

$$f(w) \le f(x) + \nabla f(x)^{\mathsf{T}}(w-x) + \frac{1}{2\mu} \|\nabla f(w) - \nabla f(x)\|^2, \quad \forall w, x.$$

Setting x to the global minimizer x^* of f yields

$$f(w) \le f(x^*) + \frac{1}{2\mu} \|\nabla f(w)\|^2 \le f(x^*) + \frac{1}{2\mu} C_1^2 = f(x^*) + \frac{1}{98\mu} \left(16K + 9\sigma\right)^2.$$

Therefore, we have

$$w \in V\left(\frac{1}{98\mu} \left(16K + 9\sigma\right)^2\right)$$
.

Lemma E.2. Under Assumptions 3.2 to 3.4, we have

$$V(K) \subseteq U\left(\sigma + \sqrt{2LK}\right)$$
.

Proof. Let us rewrite $\|\nabla F(w)\|$ as below

$$\begin{aligned} \|\nabla F(w)\| &= \|\mathbb{E}_{i\sim p}(I_d - \alpha \nabla^2 f_i(w)) \nabla f_i(w - \alpha f_i(w))\| \\ &= \|\mathbb{E}_{i\sim p}(I_d - \alpha \nabla^2 f_i(w))(I_d - \alpha \nabla^2 f_i(\tilde{w})) \nabla f_i(w)\| \\ &\leq \mathbb{E}_{i\sim p} \|\nabla f_i(w)\| \\ &\leq (\mathbb{E}_{i\sim p} \|\nabla f_i(w) - f(w)\| + \|\nabla f(w)\|) \\ &\leq \sqrt{\mathbb{E}_{i\sim p}} \|\nabla f_i(w) - f(w)\|^2 + \|\nabla f(w)\| \\ &\leq \sigma + \|\nabla f(w)\|, \end{aligned}$$
(E.1)

where the second inequality is because of the mean value theorem. Since f is L-smooth, we have

$$f(w) \ge f(x) + \nabla f(x)^{\mathsf{T}}(w-x) + \frac{1}{2L} \|\nabla f(w) - \nabla f(x)\|^2, \quad \forall x \in \mathbb{R}^d.$$

Since f is μ -strongly convex, there exists a unique global minimum x^* with $\nabla f(x^*) = 0$. Therefore, we obtain

$$f(w) \ge f(x^*) + \frac{1}{2L} \|\nabla f(w)\|^2$$

Combining the above inequality and (E.1) yields

$$\|\nabla F(w)\| \le \sigma + \sqrt{2L(f(w) - f(x^*))}$$

If $w \in V(K)$, we get

$$||F(w)|| \le \sigma + \sqrt{2LK}.$$

Combining Lemmas E.1 and E.2 gives the following corollary.

Corollary E.3. For any K > 0, if $\alpha < \frac{1}{4L}$, we have the following inclusion relations

$$\operatorname{Crit}(F) \subseteq U(K) \subseteq V\left(\frac{1}{98\mu} \left(16K + 9\sigma\right)^2\right) \subseteq U\left(\sigma + \sqrt{\frac{L}{\mu}} \frac{16K + 9\sigma}{7}\right)$$

Corollary E.4. For any $K' \ge \left(\frac{9}{7}\sqrt{\frac{L}{\mu}} + 1\right)\sigma$, if $\alpha < \frac{1}{4L}$, we have the following inclusion relations

$$\operatorname{Crit}(F) \subseteq U\left(\frac{7K' - \sigma\left(9\sqrt{\frac{L}{\mu}} + 7\right)}{16\sqrt{\frac{L}{\mu}}}\right) \subseteq V\left(\frac{(K' - \sigma)^2}{2L}\right) \subseteq U(K')$$

Lemma E.5. Under Assumption 3.3, if $\alpha < \frac{1}{4L}$, we have $\operatorname{Crit}(F)$ is non-empty.

Proof. First we show that F is bounded from below. Since every f_i is strongly convex, it is bounded from below. Recall that $F(w) = \mathbb{E}_{i \sim p} f_i(w - \alpha \nabla f_i(w))$. Therefore F is also bounded from below. Let $F^* := \inf_{w \in \mathbb{R}^d} F(w)$. Pick any $v(0) \in \mathbb{R}^d$ and consider the dynamic defined by

$$\frac{dv(t)}{dt} = -\nabla F(v(t))$$

Let $E(t) = F(v(t)) - F^*$. We have

$$\frac{dE(t)}{dt} = -\|\nabla F(v(t))\|^2 \,.$$

Therefore, we get

$$t \min_{0 \le s \le t} \|\nabla F(v(t))\|^2 \le \int_0^t \|\nabla F(v(s))\|^2 ds = E(0) - E(t) \le E(0)$$

Thus we obtain

$$\min_{0 \le s \le t} \|\nabla F(v(t))\|^2 \le \frac{E(0)}{t} \,. \tag{E.2}$$

Define another function

$$u(t) \coloneqq v \left(\underset{s \in [0,t]}{\operatorname{arg\,min}} \| \nabla F(v(t)) \|^2 \right) \,,$$

where ties can be broken arbitrarily. Eq. (E.2) implies

$$\|\nabla F(u(t))\| \le \sqrt{\frac{E(0)}{t}}, \quad \forall t \ge 0.$$

Pick any $K \ge \left(\frac{9}{7}\sqrt{\frac{L}{\mu}} + 1\right)\sigma$. We have

$$\|\nabla F(u(t))\| \in U(K), \quad \forall t \ge \sqrt{\frac{E(0)}{K}}.$$

Since f is strongly convex, $V\left(\frac{(K-\sigma)^2}{2L}\right)$ is convex and non-empty. Thus U(K) is non-empty and closed. Next, we show that U(K) is bounded. Lemma E.1 implies $U(K) \subseteq V\left(\frac{1}{98\mu}\left(16K+9\sigma\right)^2\right) \coloneqq V_0$. Since V_0 is a sublevel set of f and f is strongly convex, therefore we get the boundedness of V_0 , which implies the boundedness of U(K). Thus U(K) is compact. Define a sequence $w_n = u\left(n + \sqrt{\frac{E(0)}{K}}\right)$, where $n = 1, 2, 3, \ldots$. We have $w_n \in U(K)$. By Bolzano-Weierstrass theorem, there exists a convergent subsequence w_{n_i} . Let $w_0 \in U(K)$ be the limit of w_{n_i} . We have

$$\|\nabla F(w_0)\| = \lim_{i \to \infty} \|\nabla F(w_{n_i})\| \le \lim_{i \to \infty} \sqrt{\frac{E(0)}{n_i + \sqrt{E(0)/K}}} = 0.$$

Therefore we conclude that w_0 is a critical point of F.

Proof of Theorem 3.9. Since f is strongly convex, $V\left(\frac{(K-\sigma)^2}{2L}\right)$ is convex and non-empty. Theorem 3.8 implies that F is $\frac{\mu}{8}$ -strongly convex on U(K) and therefore $\frac{\mu}{8}$ -strongly convex on its convex subset $V\left(\frac{(K-\sigma)^2}{2L}\right)$ (by Corollary E.4). Since $\operatorname{Crit}(F) \neq \emptyset$ (by Lemma E.5), there is a unique critical point which is the minimizer of F on $V\left(\frac{(K-\sigma)^2}{2L}\right)$. Corollary E.4 implies no critical point outside $V\left(\frac{(K-\sigma)^2}{2L}\right)$. In fact, the unique critical point is the global minimizer of F.