Shiyun Xu*, Zhiqi Bu*

Supplement Material for ‘DebiNet: Debiasing Linear Models with
Nonlinear Overparameterized Neural Networks’

A Preliminaries of Partially Linear Models

In this section, we revisit some partially linear models from an algorithmic perspective. The first one is the PLM
with kernel regressions.

Algorithm 3 Partially Linear Model with Kernels (PLM-NW)

Input: Data matrix [D, Z], label y
Estimation of 3:
1. fit y ~ Z via kernel regression to derive E(y|Z);
2. fit D ~ Z via kernel regression to derive E(D|Z);
3. fit y — E(y|Z) ~ D — E(D|Z) via OLS to derive 3;
Estimation of f and Prediction of y:
4. ity — DB ~ Z via kernel regression to derive f and define y = Dﬁ + f(Z)

The kernel regression estimates the conditional expectation as a locally weighted average, using a kernel as a
weighting function. For example, one may use the Nadaraya—Watson (NW) estimator m,(z) to learn E(y|Z) as
follows:

()
Siv (%)

where hy is a bandwidth whose size is related to the dependence of y on Z and (-) is the kernel. Popular choices
of kernels include uniform, triangle, Epanechnikov, Gaussian, quadratic and cosine. We use the Gaussian kernel,
which is also known as the radial basis function (RBF) kernel, throughout the paper.

(A1)

My (z

The second model is the DML with sample-splitting. We take a K-fold random partition {I; };il of the indices

Algorithm 4 Double/Debiased Machine Learning (DML)

Input: Data matrix [D, Z], label y
for j € [K]| do
1. fit y?j ~ ZICj via some machine learning method to learn E(y|Z);

2. fit DICJ_ ~ Zg via some machine learning method to learn E(D|Z);

3. fit yr, —E(y1,1Z1;) ~ Dy, — E(Dy,|Z;;) via OLS to derive B, denoted as BU);
end for A)
4. aggregate the estimators: 8=}, BY) /K.

We note that the DML does not explicitly predict y, hence we add an extra step to accomplish this. Denote the

estimators in step 1 and step 2 as my(,j) and mg). We aggregate the estimates of E(y|Z) and E(D|Z) from the K
estimators and predict

= Zm;ﬂ(Z)/K +D- ng>(Z)/K 8.

DebiNet: Debiasing Linear Models with Nonlinear Overparameterized Neural Networks

We remark that the choice of the machine learning methods to use is flexible. For instance, one may use Lasso if
Z is high dimensional or use the logistic regression if D is categorical.

B Proof of Theorem 1
Denote label as y € R™, data as X € R"*P_ the features selected by Lasso as D € R"*PL and the rest as

Z € R"*PN where pr, 4+ pn = p. Recall that W € RP¥)xm A ¢ RM*(14PL) are the weights in first and second
layers respectively. Here we consider a neural network of the following form.

Wl

F(W,A,z) = Zm:

where w, and A, are the weights corresponding to the r-th neuron in the hidden layer. The input z € RP¥ and
o (+) is the ReLU activation function. To be more clear, we note the s-th dimension of F' as Fs(W, A, z), which
means for s =1,2,---,1+pyg,

F,(W,A,z) = [F(W,A,z) \/_ZATSU w, z) (B.1)

Here A, is a scalar representing the output weight in the second layer. Given the dataset {(Z;, M;)};_, with
the multivariate response M := [y, D]. We aim to minimize

Formally, we consider the gradient flow of the gradient descent defined by:
dw.(t) OL(W(t),A)

F(W,A,Z;) - M.

wli—‘

a— ow.(b)
for r =1,...,m. Simple chain rule gives the MSE loss derivative with respect to each weight vector w, as
n (1+pr)
S(W,AZ;) — M) —————
; ; i)~) ow,.
n (1+pL)

\/_Z Z (W, A, Z;) — M)A, Z1{w]Z; >0}, (B.2)

as the form in (B.1) indicates

OF,(W(t), A, Z; 1
(a“(l?(t)) _ ﬁATSZiH{wI Z; >0} (B.3)

Let us shorthand w;s(t) = Fs(W(¢), A, Z;). The dynamics of each dimension of one prediction is again given by
the chain rule,

dt £ ow,.(t) Tdt
n (1+pL)
OF,(W.A,Z; OF,(W.A.Z,

_Z %az (J\Ijh_Fh(W’A7Zj))%>

r=1 T j=1 h=1 r
e " OF,(W,A,Z;) OFy(W,A.Z;)
- Z Z(Mjh_Fh(Wvszj))Z< ow,) ow, >

h=1 j=1 r=1

(14+pL) n

= D (M — wjn) (Han)i (1). (B.4)

Shiyun Xu*, Zhiqi Bu*

Here we define the n x n matrix H(t) using (B.3) as follows.

(Hsh)ij (t) = Z<8FS(W’ A’ ZZ) , 8Fh(W7 A, ZJ)

r=1

)

aWT awr

_ 1 T - T T

Now we can write the dynamics of the predictions (B.4) in a compact way:

J (1+pr)
us(t) = Y Ho ()M — uy(1))
h=1

1+pr)

(
LM,) = — S Ha(t)(M, - (1)) (B.5)
h=1

dt

Furthermore, we can rewrite (B.5) by concatenating each dimension of the prediction sequentially and denote the
concatenated response in R™PL)X1 a5 M, — Ucone(t). Then the dynamics is equivalent to

d
E(Mconc - uconc(t)) = Hwhole(Mconc — Uconc (t))
with
Hll H12 o Hl,l+pL
H21 H22 e H2,l+pL
Hwhole =
Hitppn Higpro oo Higppagp,

We now consider the NTK matrices corresponding to infinite-width neural network:
(Hsp)® := lim (Hgp) and Hie = Im Hypnore.
m—o0 m—00
We notice that if s = h, since A, is =1, (Hg,)™ is the same as H* in Fact 4.1, which has been proven to be
positive definite. If s # h, we have

(Hsn)is ZEASNunif{—1,1},Ah~unif{—1,1},w~N(0,I)(ZiTZjAsAhH {w'Z;>0,w'Z; >0})
:ZE—ZJ‘E(AS)E(A}I)PW~N(0,I) {WTZi >0,w'Z; > 0})=0

From the initialization of A,s, we get % S Ars = E(A) = 0 as m — oo by the law of large numbers. Hence
we obtain

0 H>® ... 0
whole = : : . :
0 0 <o H™

In summary, we conclude that Ag := Amin(H™®) = Anin(HSS) > 0 and Amin (HS5) = 0 for s # h. Note that the

eigenvalues of the block diagonal matrix HSS, ;. is the same as those of H*, hence Ayin (HSS, 1) = Ao-

To prove Theorem 1, we first show that H,,pne1.(0) is close to HSS and hence is positive definite.

whole

Lemma B.1. If m = Q ("2“;8“)2 log ("2“;”)2)), then we have |Huyhore(0) —HZ, [, < 2 and
Amin(Huwrote(0)) > %)\0 with probability of at least 1 — 6.

DebiNet: Debiasing Linear Models with Nonlinear Overparameterized Neural Networks

Proof. By Hoeffding inequality, we have for each fixed (i, j) pair, we have with probability 1 — ¢’,

2 2
H’UUOEO_ woe< — log —
[Huwnote (0) wholel VmOgé’

For all (4,7), if we set § = n2(1 + pr)%d’, then

2n2(1 +
Hanoe(0) ~ B < /2 log 2202

Hence, if m = Q ("2(1;%”)2 log (nQ(lsz)z)), then

||HWhOlﬁ() HwholeHQ < ||HUIhOIG() Hwhole”F
2
< Z | whole z] - (H’thOlE)?;

L2 (1+pr)?log(2n(1 + pr)?/9)

which leads to)
o 0
”Hwhole(o) - HwholeHQ < X
By the standard matrix concentration bound used in [15], Hypnote(0) has a positive least eigenvalue with high

probability:
A
)\min (Hwhole (0)) 2)\min (Hz;ohole) - ZO .

O

Lemma B.2. If w, are i.i.d generated from N(0,1I) for r € [m], and ||w,(0) — w, |, < n2(i?pL)2

small positive constant ¢, then the following holds with probability at least 1—§ we have |Hynote — Hynote(0)]|2 < /\441
and Amin(Hwhole) >)\%

=: R for some

Proof. First we set
A= (3w [w — w, (0)] < R.I{x]w,(0) > 0} # I {x] w >0}}

Since w, ~ N(0,I), By the anti-concentration inequality of Gaussian we have

P(AL) = Pyuno)(lw] < R) <

i
¥l =

Therefore, for any w, that satisfies the assumption, we have

E[[(Hsn)ij(0) — (Hsn)ijl]
. [
4R

_%i T{arual)] < S

Z]Z;A A, Z +(0)7Z; >0,w,(0)7Z; >0} —1{w/]Z; >0,w]Z; >0})

r=1

Taking the sum over (4,j) we obtain

A(n(1+pL))°R

E (SE T I - () 0)]) < 2022

Furthermore, by Markov’s inequality

A(n(1 +pr))*R

E (S5 N — (Ha)s 0)]) < =2

Shiyun Xu*, Zhiqi Bu*

with probability 1 — §. By matrix perturbation theory we get the bound of H,,xee with initialization,

Huhote — Huwnote(0) |2 <[[Huwhote — Huwnote(0)[|F
(I4pL,1+pL) (n,n)
< > > 1(Han)ij — (Hen)ij (0)]
(s;h)=(1,1) (4,5)=(1,1)
_4n’(L+pr)°R
T V276
Plugging in R,

4n?(1+pr)?R _ A
Amin(Hwhole) 2 Amin(:[_:[whole(o)) - % > ?0

O

Lemma B.3. Assume 0 < t; <t and Apin(H whole(tl)) > —Q Then we have |My — ug(t)||3 < exp(—Xo(1 +
pr)t)[Ms —ug(0)|3 and [[w,.(t) — w,(0)]l, < f)m DIk ||Mh —up(0)[|2 =: R".

Proof.
d
E(Mconc — Uconce (t)) = Hwhole(Mconc — Uconc (t))
Hence,
d 2 T
- ||Mconc - uconc(t)||2 = 2(Mconc - uconc(t)) Hwhole(Mconc - uconc(t))
dt

< — X0lMeone = Uconell3-
Therefore, we can bound the loss
IMeone = eone()15 < exp(=Aot)[Meone — teonc(0)]13-
Hence for each s,
M — uy(t)][3 < exp(—Xot)|[M; — us(0)[3,

which proves the exponentially fast convergence of each dimension and that all dimensions evolve under the same
dynamics.

For 0 <t <t,

n

d +pL
Hd_tlwr(- ‘_ i=1 g Mo =) A Bl {wr (1) 21 2 0} 2
1 n 1+prL
<—=> |Min — win(t1)]
vm i
N i
< = [Mp —ap(te)ll2
vm
1+pr
i
< — = exp (—Aot1/2) [My, —ur(0)[2
vm i
In the end,
t 1+pr
(1)~ w0 O)l, < [T (e)| e < Z My~ w0)]

DebiNet: Debiasing Linear Models with Nonlinear Overparameterized Neural Networks

Lemma B.4. If R’ < R, then for allt > 0, we have Amin(Huyhote(

t)) > %)\0, for allr € Im], [|w,(t)—w,(0)||2 < R
and for all s € [+ pz], ||Ms — us(t) |3 < exp(—Aot)||Ms — us(0)]

3.

Proof. This lemma takes the same form as [15, Lemma 3.4]: given Lemma B.2 and Lemma B.3, the result clearly
follows and we refer the interested readers to [15] for details. |

4
L IMp—us (013

5 1
Tt is sufficient to show that R’ < R is equivalent to m = Q (n Lne 3352) We bound
0

E [||M; — uy(0)[3]

o

s
Il
-

(Mfs + M,E[F, (W(0).A,Z;)] +E [FS (W(0), A, zi)Q])

v

Il
-

(M2 +1) =0(n)

(2

Using the Markov’s inequality, we have |[M, — u4(0)||3 = O(%) with probability at least 1 — J. Hence we have

5

5 6

m:Q(%L).
0

C Proof of Theorem 2

Proof. Recall that in (2.3) we have
Y=y -E(y|Z) = (D - EDI[Z)B +e=X0 +e.
Unfortunately we only observe data with noises
Y=YV+tey=XBtetey=XB—exPB+etey
Hence we can derive (6.1) as the following;:
B (TR
=(XTx)7 AT (??5 —exBte+ 6y)
—B—(XTX) X TexB+(XTX) X (e +ey)
- (1 - ()?T)?)—U?Tex) B+ (XTX) X (ey +¢)
. (m) ;?;EX . (f;z?) XT(ey +¢)

n n

We start with investigating the bias. Since €, €y and e€x are independent of other variables, we have

X7 (ey +€)
n

— 0.

In addition,

XTex XTex+ lex]3
= S E(E2) =021, .
n (ex) = 0¥ PL

Next, we denote the convergence in probability as plim and look at

)?Tf T
— plim

. ExEX 9
+ phmT = Q + UXIPL

xTx

where Q := plim -

exists by the law of large numbers because X is i.i.d. in rows. Therefore, we obtain

3 (Ifag((Q+J§(Im)_1)ﬁ = (1 -R)B

Shiyun Xu*, Zhiqi Bu*

— ST\ 1 =
where R := 0% (Q +0%1, L) - o%plim (XTTX) . We claim that 3 is a consistent estimator of 3 if and only
if mp is consistently approximated (meaning 6% = 0). If mp is not consistently approximated, we can modify

the estimator via R € RPL*PL and the new estimator (I — R)f1 E which is a consistent estimator of 3.

To establish the y/n-consistency, let us consider the asymptotic distribution of the OLS estimator. Multiplying
vnon 8— (I—R)B and taking to the limit, we have

. (XTR) Xt
ﬁW%ﬂ—m@%mm(n) o

and
_ _ T TN (v +0) (X (ev+0) (FTx)
n (ﬁ G- R),@) (,6 - R)ﬁ) — plim | = o o -
Making use of plim (Q) = R/c% and after some calculation, we arrive at

"(E—(I—R)ﬁ) (5—(I—R)5)T%m

Ox

Thus we complete the proof. In addition, the asymptotic normality can be easily derived by applying the central
limit theorem and the Slutsky’s theorem. O

D Details of Experiments and Extra Application

D.1 Data generation for Table 1

In Table 1 and Figure 2, we generate D and y using Z, which is generated by a multivariate standard normal
distribution:

10
D =50 sinZ; + N(0,1)
j=1
10
y=D+> coshZ; +N(0,I)
j=1

Here X € R10000x11 — 1 7] D € R"*!, Z € R10000x10 Though the problem here is non-linear (in fact partially
linear), unlike in the debiasing setting in Table 2, it is fair since all other PLMs work on such problem. Our goal
is to demonstrate that PLM-NN is a strong candidate in the PLM family. Here we consider a univaraite D, so
that DML can apply methods including vanilla Lasso to solve this problem. In addition, we design D that is
dependent on Z so that the NW kernel can use a finite bandwidth.

For Table 1, we train the two-layer neural network with Adam, width 10000 and learning rate 0.0002. For and

Figure 2, we train the same network with full-batch gradient descent and learning rate 0.01.

D.2 Data generation for Table 2
In Table 2 and Figure 3, we have
y = X0+ N(0,I) = DB + Z~ + N(0,1)

where 6 = [1,1,...,0] with the first k entries as ones and the rest as zeros. X is generated from a multivariate
standard normal distribution. In the second equality, we have D as the columns from X that are selected by Lasso.
The Lasso penalties are chosen specifically to select a moderate number of features so that OLS is available. Here
D € R1000xkLasso 7, ¢ RI000X(P—kLaseo) wwith kpg4es0 = #4{7 [BLasso]j # 0}. We note that when the dimension

DebiNet: Debiasing Linear Models with Nonlinear Overparameterized Neural Networks

is relatively high or when the sparsity is relatively large, it is impossible to achieve full power (or true positive
rate, or precision), no matter how one carefully tunes the penalty of Lasso. In other words, Lasso must select in
some null signals. This phenomenon, known as the Donoho-Tanner phase transition, motivates our experimental
settings that consider high dimension and/or high sparsity. For Table 2 and Figure 3, we train the two-layer
neural network with Adam, width 1000 and learning rate 0.0002.

D.3 Complementary Experiments to Table 1

In this section, we conduct experiments on more complicated synthetic data to complement Table 1 and
Figure 4. Our new setting is D = sin(Ty) + log(T2 + 1) + 1-‘1-1_Ta + max(0, T4) + T2 + N(0,I) and y =
D + cosh(Ty) + Ta + T3 x Ty + N (0,I). It is clear that PLM-NN again demonstrates high level of performance

in terms of consistency and accuracy, with linear convergence in the training dynamics.

PLMs Est MSE Train Test
(107?) MSE MSE

PLM-NN 4.00 3.81 3.87
PLM-NW 1.26 3.51 3.66
DML Lasso 0.38 4.17 3.99
DML DT 240 8.41 1551

Table 4: Comparison of PLMs in 50 independent runs with new data generation. Here PLMNW denotes the
PLM using NW kernel, DT denotes decision trees at depth of 2.

104

Training MSE loss

T T T T T T
0 1000 2000 3000 4000 5000

Epoch

Figure 5: Same setting as Table 4 except n = 100 and Z is normalized. The loss is in logarithmic scale.

D.4 Adversarial attack on tabular data

Using the knowledge of the impact of a feature on the output, we can design adversarial samples to attack a
potentially strong trained model. The dataset we use is Default of Credit Card Clients Dataset from UCI. The
dataset includes the information on default payments, demographic factors, credit data, history of payment, and
bill statements of credit card clients in Taiwan from April 2005 to September 2005. The whole dataset includes 25
columns and a sample size of 30000. We’ll conduct null value imputation by association rules between categorical
variables.

We preprocess the dataset in the following way: we use the known columns to train logistic regressions and to
predict the missing values in the columns "MARRIAGE’ and 'EDUCATION’. Finally we conduct the standard
scaling for X after one-hot encoding all the categorical columns.

We attack a ReLU activated MLP of three layers with the DebiNet and the traditional OLS. Our attacking
mechanism takes the column with the maximum coefficient magnitude calculated by OLS or some feature selection
methods. Once we find the targeted column, say the j-th column, we perturb the values towards the maximum
or minimum value within the column, depending on the sign of Bj.

The DebiNet is equipped with Lasso or Elastic net. The attacks show the same performance because the most
influencing feature given by all three feature selection methods is identical. We note that the feature under

Shiyun Xu*, Zhiqi Bu*

| Methods Val loss Accuracy AUC score |
MLP Baseline 0.43 0.824 0.77
OLS Attack 0.39 0.840 0.69
DebiNet Attack 3.95 0.008 0.02

Table 5: Adversarial attack on tabular dataset: the Taiwan credit.

perturbation is the first repayment status, indicating that not paying back the first credit bill has a large impact
on the credibility of a client. The perturbing columns selected by OLS and DebiNet are different. OLS fails
to select what DebiNet selects because some features have infinity coefficients, which might caused by model
overfitting and consequently large variances of the parameter estimators. The validation loss, accuracy and AUC
score in Table 5 show that OLS attack is not effective as DebiNet.

E General Losses, Activation Functions and Other Optimizers

We demonstrate the convergence (in log-scale) of two-layer, fully connected, multivariate output neural networks
with the same input distribution and weight initialization as in Figure 2. The baseline is the ReLU activation,
full-batch gradient descent and MSE loss and we change only one element in the baseline at a time.

Similar to the univariate output case, we observe that with sufficiently wide hidden layer and sufficiently small
learning rate, the neural networks may converge to the global minimum at a linear rate with different optimizers,
losses and activation functions. In particular, we note that the performance in this section is not yet supported
by theory and thus suggests that NTK theory may be richer than it currently is. We highlight that advanced
tools from linear algebra are required to analyze the positive definiteness of the NTK matrices incurred by other
activation functions. Moreover, different optimizers lead to different gradient flows and, together with different
losses, to different matrix ordinary differential equations. It would be interesting to investigate the effects of
different dynamics on the convergence under the NTK framework.

E.1 Optimizers besides Gradient Descent

10 104

-
IS

-
Iy

Training MSE loss
Training MSE loss

Training MSE loss

IS

|
—
G
~
|
-
&

o 1000 2000 3000 4000 5000 [2000 4000 6000 8000 10000 0 200 400 600 800 1000

Epoch Epoch Epoch

Figure 6: Left: Adam with learning rate 0.001 and full batch size. Middle: Nesterov-accelarated gradient descent
with learning rate 0.01. Right: SGD with learning rate 0.01 and batch size 8.

In Figure 6, Adam converges to zero loss exponentially fast but the Nesterov-accelarated gradient descent seems
not to. This shows that momentum has a significant impact on the convergence. It is also interesting to note that
SGD converges much faster than the gradient descent, at a linear rate. The plot shows some fluctuations due to
the randomness of sub-sampling and coincides with the dynamics described in the univariate output case.

DebiNet: Debiasing Linear Models with Nonlinear Overparameterized Neural Networks

E.2 General Losses and Activation Functions

Training MSE loss
N ow s O oo N ® ©
Training loss
Training loss

0 5000 10000 15000 20000 25000 30000 35000 40000 0 2500 5000 7500 10000 12500 15000 17500 20000 0 10000 20000 30000 40000 50000

Epoch Epoch Epoch

Figure 7: Left: Huber loss. Middle: Leaky ReLU activation. Right: Tanh activation.

In Figure 7, we empirically illustrate that loss functions play a key role in the training dynamics as they directly
affect the dynamics. While the activation functions may have weaker effects on whether the dynamics converge
to the global minimum, they can influence the rates at which the convergence takes place.

