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A Additional Background

A.1 Properties of Hamiltonian flow

The flow map Φt has the following properties:

1. (Reversibility). ∀ t ∈ R+, the inverse flow map
Φ−1
t satisfies Φ−1

t = R ◦ Φt ◦ R, where R(q, p) =
(q,−p) denotes the momentum reversal operation.

2. (Energy conservation). The Hamiltonian E of the
system satisfies E ◦Φt = E .

3. (Measure preservation). For any t ∈ R+ and A ∈
B(R2d), we have Leb2d (Φt(A)) = Leb2d(A), where
Lebd denotes the Lebesgue measure on Rd.

Together the properties ensures that the Markov kernel
defined by the Hamiltonian flow leaves the extended
target distribution π̄ invariant.

A.2 Properties of leapfrog integration

The numerical flow map Φ̂ε,L enjoys the following two
inequalities due to the simplicity of order-two leapfrog
integrators (Hairer et al., 2006)∥∥∥Φ̂ε,L(q0, p0)− ΦεL(q0, p0)

∥∥∥ ≤ Ca(q0, p0, L)ε2 (17)∥∥∥E (Φ̂ε,L(q0, p0)
)
− E(q0, p0)

∥∥∥ ≤ Cb(q0, p0, L)ε2 (18)

for some positive constants Ca and Cb. These two
inequalities are used in several places through our the-
oretical analysis, e.g. in Section C.2 and Section C.4.

A.3 Coupled RWMH kernel

The coupled RWMH kernel from Heng and Jacob (2019)
used in this paper is shown in Algorithm 3 for com-
pleteness. Note that here we slightly abuse notation,
writing Kσ(X,Y ) to mean denote the probability den-
sity of the probability measure Kσ(X, ·) evaluated at
Y , where X and Y are random variables.

B Additional Algorithmic Details

B.2 Sampling from discrete joints

For completeness, we provide an algorithmic description
of how to sample a pair of indices given their joint
probability matrix in Algorithm 4.

B.3 Debiasing marginal-non-preserving joints

A side effect of using fixed-point iteration solvers or
even approximate solvers (Cuturi, 2013) to solve (9)

Algorithm 3: Coupled RWMH kernel with
maximal coupling (Jacob et al., 2020)
Input: A pair of current states (X0, Y0) and a

RWMH kernel Kσ with variance σ2Id
Output: A pair of next states (X ′, Y ′)

1 Sample X∗ ∼ Kσ(X0, ·) ;
2 Sample w | X ∼ U([0,Kσ(X0, X

∗)]) ;
3 if w ≤ Kσ(Y0, X

∗) then
4 Set Y ∗ = X∗;
5 else
6 repeat
7 Sample Y ∗ ∼ Kσ(Y0, ·) ;
8 Sample w∗ | Y ∗ ∼ U([0,Kσ(Y0, Y

∗)]);
9 until w∗ > Kσ(X0, Y

∗);

10 Sample u ∼ U([0, 1]);
11 Set X = X0 and Y = Y0 ;
12 if u ≤ min{1, π(X∗)/π(X0)} then
13 Set X = X∗

14 if u ≤ min{1, π(Y ∗)/π(Y0)} then
15 Set Y = Y ∗

16 Output (X,Y );

Algorithm 4: Sampling from a discrete joint
J
Input: A M ×N matrix J that represents the

joint of two categorical distributions
Output: A pair of indices (i, j) ∼ J

1 for i = 1, . . . ,M, j = 1, . . . , N do
2 Compute k = M(i− 1) + j;
3 Set uk = (i, j) and vk = Jij ;

4 Sample k ∼ Cat(v);
5 Output uk;

is that the solution does not belong to Γ(µ,ν). We
denote such solutions as J◦, which indicates it is a
joint probability matrix rather than a proper coupling.
Therefore we need a way to ensure that when using
J◦, we still have i ∼ µ and j ∼ ν exactly, which we
refer as a debiasing step. Inspired by the mixture view
of the maximal coupling, the result of our debiasing
algorithm, the debiased W2-coupling γ̂◦, can be as well
viewed as a mixture

γ̂◦ = αJ◦ + (1− α)Jd

where α is the probability of sampling from J◦, and Jd
is the debiasing joint probability matrix. The algorithm
aims to find the maximal probability α such that γ̂◦ ∈
Γ(µ,ν), together with the corresponding debiasing
matrix Jd. First, to find the maximal α, we see that
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Algorithm 5: Maximally sampling from a
joint γ̂ while ensuring marginals to be µ and
ν

1 Input: A K ×K probability matrix γ̂ and two
K-length probability vectors µ,ν to target ;

2 Output: A pair of indices (i, j) with i ∼ µ
and j ∼ ν while maximally using γ̂ ;

3 Compute µ◦ and ν◦ as marginals of γ̂;
4 Compute α according to (20);
5 Sample U ∼ U([0, 1]);
6 if U < α then
7 Sample (i, j) ∼ γ̂ using Algorithm 4;
8 else
9 Compute µd and νd by solving (19);

10 Sample i ∼ µd and j ∼ νd;

11 Output (i, j);

γ̂◦ ∈ Γ(µ,ν) implies

µ = αµ◦ + (1− α)µd, ν = αν◦ + (1− α)νd

(19)
where µ◦ and ν◦ are marginals of J◦ and µd and νd

are marginals of Jd. Since µd and νd are K-length
probability vectors, we have µdi > 0 and νdi > 0 for all
i = 1, . . . ,K, which implies a set of constrains on α

µi ≥ αµ◦i , and νi ≥ αν◦i for all i = 1, . . . ,K

Therefore, the maximal value of α is given by

α = min{1, µ1

µ◦1
, . . . ,

µK
µ◦K

,
ν1

ν◦1
, . . . ,

νK
ν◦K
}. (20)

With α found, we can solve (19) to find µd and νd,
and Jd can be chosen as any coupling of them, i.e.
Jd ∈ Γ(µd,νd), including the independent coupling
that simply samples as i ∼ µd, j ∼ νd. We summarise
in Algorithm 5 a sampling procedure of γ̂◦ resulting
from this debiasing approach. It is not hard to see that
by construction, the approach satisfies (19) and yields
γ̂◦ ∈ Γ(µ,ν), which, as a result, yields a coupled HMC
kernel whose marginal kernels converge to the target.
Also, when there is no bias, i.e. J◦ ∈ Γ(µ,ν), we have
α = 1 from (20) and the algorithm reduces to exact
W2-coupling.

B.4 Sampling from discrete maximal
maximal coupling

For completeness, we provide an algorithmic description
of how to sample a pair if indices from the maximal
coupling of two categorical distribution in Algorithm 6.

Algorithm 6: Maximal coupling of µ and ν

1 Input: Two categorical distributions µ and ν;
2 Output: A pair of indices (i, j) ∼ γ∗ ;
3 Compute ω = 1−DTV(µ,ν) and

Z =
∑
i(µ ∧ ν)i;

4 Sample u ∼ U([0, 1]);
5 if u ≤ ω then
6 Sample i ∼ Cat(µ∧ν

Z ) and set j = i;
7 else
8 Sample i ∼ Cat(µ−(µ∧ν)

1−Z ),
j ∼ Cat(ν−(µ∧ν)

1−Z );

9 Output (i, j);

C Technical Details

C.1 Proof of Lemma 4.1

Proof. Suppose K̄γε,L satisfies Condition 1 on the set
S for some ε̄ > 0, L̄ ∈ N.

First observe that

prγε,L
(∥∥Q1

1 −Q2
1

∥∥ ≤ ρ∥∥Q1
0 −Q2

0

∥∥ | (Q1
0, Q

2
0) = (q1, q2)

)
= EK̄γε,L

[
1
{∥∥Q1

1 −Q2
1

∥∥ ≤ ρ∥∥q1 − q2
∥∥}]

= EP∼N (0,I)

[
E(l1,l2)∼γ

[
1(Rq1,q2,P ) | P

] ]
where we have let Rq1,q2,p denote the set of events
where we have contraction, i.e.

Rq1,q2,p =
{∥∥∥Φ̂◦ε,l1(q1, p)− Φ̂◦ε,l2(q2, p)

∥∥∥ ≤ ρ∥∥q1 − q2
∥∥}

By Condition 1 we know that there exists ω1 ∈ (0, 1)
such that

P(l1,l2)∼γ
(
Rq1,q2,p

)
≥ ω1 (21)

for all (q1, q2, p) ∈ S × S × Lk0(K), where k0 > 0. By
the tower property of expectation, this immediately
implies that

EP∼N (0,I)

[
E(l1,l2)∼γ

[
1(Rq1,q2)1 {K(P ) ≤ k0} | P

] ]
≥ EP∼N (0,I) [ω1 1 {K(P ) ≤ k0}]
= ω1PP∼N (0,I) ({K(P ) ≤ k0})
> 0

where the last inequality follows from the fact that the
level sets Lk0(K) are closed for any k0 > 0 since K is
continuous and bounded and therefore compact, in ad-
dition to having positive Lebesgue measure. Since (21)
holds for all (q1, q2, p) ∈ S × S × Lk0(K) with ω1 > 0,
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we have

inf
q1,q2∈S

prγε,L
( {∥∥Q1

1 −Q2
1

∥∥ ≤ ρ∥∥Q1
0 −Q2

0

∥∥}
∩ {K(P ) ≤ k0} | (Q1

0, Q
2
0) = (q1, q2)

)
≥ ω1ω2

> 0

(22)

where we have let ω2 = PP∼N (0,I) (K(P ) ≤ k0).

In words, for any initial points (q1, q2) ∈ S×S, a single
application of the kernel K̄γε,L decreases the distance
with non-zero probability. Equipped with this, proving
the desired statement is just a matter of ensuring that
we can indeed apply (22) repeatedly to get the states
sufficiently close to each other. A straightforward ap-
proach to this is to simply choose the stepsize to be
sufficiently small such that even when taking the re-
quired number of steps to get within the desired δ-ball,
every step taken is still within a set where (22) holds.
This is exactly the approach taken in Heng and Jacob
(2019) and so the rest of the proof is essentially identi-
cal to the last paragraph in the proof of Proposition 1
in Heng and Jacob (2019).

Consider u0 > infq∈S U(q), and u1 < supq∈S U(q) with
u0 < u1, and let A` := L`(US) × Lu1−`(K) ⊂ Lu1(E)
for ` ∈ (u0, u1). Since continuity and convexity of
US imply that this is a closed function, its level sets
L`(US) are closed. Moreover, under the assumptions
on U and S, it follows that these level sets are com-
pact with positive Lebesgue measure. Note that if
(q, p) ∈ A`, due to energy conservation and conti-
nuity of U , the mapping t 7→ Φ◦t (q, p) imply that
Φ◦t (q, p) ∈ Lu1

(US) for any t ∈ [−T, T ]. Due to
time discretization, using (18) and compactness of A`
we can only conclude that there exists η0 > 0 such
that Φ̂◦ε,l(q, p) ∈ Lu1+η0(U) for all (q, p) ∈ A` and
l = Lb, ..., Lf . Let n0 = min {n ∈ N : ρnB ≤ δ}, where
B := supq1,q2∈S

∥∥q1 − q2
∥∥. By choosing v0 ∈ (u0, u1),

k0 > 0, and η0 > 0 small enough such that

v0 + (n0 + 1)k0 + n0η0 < u1

holds, we have Q1
k, Q

2
k ∈ S for all k = 1, . . . , n0. Hence,

by repeated application of (22),

inf
q1,q2∈S0

prε,L
(∥∥Q1

n0
−Q2

n0

∥∥ ≤ δ | (Q1
0, Q

2
0) = (q1, q2)

)
> 0

with S0 = Lv0(US), exactly as in Proposition 4.1.

C.2 Proof of Lemma 4.2

Lemma C.1. Suppose that the potential U satisfies
Assumptions 1 and 2. For any compact set A ⊂ S×S×
Rd, there exists a trajectory length T > 0 and a step size

ε1 > 0 s.t. for any ε ∈ (0, ε1] and any t ∈ [−T, T ] \ {0}
with l := t/ε ∈ Z, there exists ρ ∈ [0, 1) satisfying∥∥∥Φ̂◦ε,l(q

1
0 , p0)− Φ̂◦ε,l(q

2
0 , p0)

∥∥∥ ≤ ρ∥∥q1
0 − q2

0

∥∥ (23)

for all (q1
0 , q

2
0 , p0) ∈ A.

Proof. As the leapfrog integrator is of order two (Hairer
et al., 2006; Bou-Rabee et al., 2020), for any sufficently
small step size ε and number of step l states above, we
have

∥∥∥Φ̂ε,l(q0, p0)− Φt(q0, p0)
∥∥∥ ≤ C1(q0, p0, t)ε

2 and
similar for its position-projected correspondence∥∥∥Φ̂◦ε,l(q0, p0)− Φ◦t (q0, p0)

∥∥∥ ≤ C1(q0, p0, t)ε
2 (24)

where C1(q0, p0, t) is some constant that only depends
on q0, p0 and t.

By (Lemma 1, Heng and Jacob, 2019), with some fixed
T , we have ρ′ ∈ [0, 1) satisfying∥∥Φ◦t (q

1
0 , p0)− Φ◦t (q

2
0 , p0)

∥∥ ≤ ρ′∥∥q1
0 − q2

0

∥∥ (25)

for any t ∈ (0, T ] and all (q1
0 , q

2
0 , p0) ∈ A. Since

Φ◦t (q
1
0 ,−p0) = Φ◦−t(q

1
0 , p0), applying (Lemma 1, Heng

and Jacob, 2019) again with the momentum variable
negated, we have (25) for t ∈ [−T, 0). Therefore (25)
holds for t ∈ [−T, T ] \ {0}.

With these two intermediate results, we can now bound
the left-hand side (LHS) of (13) for any t ∈ [−T, T ]\{0}
with l = t/ε ∈ Z and all (q1

0 , q
2
0 , p0) ∈ A∥∥∥Φ̂◦ε,l(q

1
0 , p0)− Φ̂◦ε,l(q

2
0 , p0)

∥∥∥
=‖Φ̂◦ε,l(q1

0 , p0)− Φ◦t (q
1
0 , p0)−

Φ̂◦ε,l(q
2
0 , p0) + Φ◦t (q

2
0 , p0) + Φ◦t (q

1
0 , p0)− Φ◦t (q

2
0 , p0)‖

≤
∥∥∥Φ̂◦ε,l(q

1
0 , p0)− Φ◦t (q

1
0 , p0)

∥∥∥+∥∥∥Φ̂◦ε,l(q
2
0 , p0)− Φ◦t (q

2
0 , p0)

∥∥∥+
∥∥Φ◦t (q

1
0 , p0)− Φ◦t (q

2
0 , p0)

∥∥
≤
(
C(q1

0 , p0, t) + C(q2
0 , p0, t)

)
ε2 + ρ′

∥∥q1
0 − q2

0

∥∥
where the third line is a result of the triangle inequality
and the last line comes from (24) and (25) respectively.
As limε→0

(
C(q1

0 , p0, t) + C(q2
0 , p0, t)

)
ε2 = 0, for any

ρ ∈ (ρ′, 1), there exists a step size ε1 > 0 such that for
any ε ≤ ε1, (13) holds.

C.3 Proof of Proposition C.1

For the sake of presentation, in this section we only
consider Condition 1 for m = 1. To prove that γ∗ satis-
fies Condition 1 for m > 1 follows the exact reasoning
since (13) in Lemma 4.2 still holds when both sides are
raised to some positive power m.
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Proposition C.1. Suppose that U satisfies Assump-
tions 1 and 2. For any compact set A ⊂ S × S × Rd
and any parallel-in-time joint J‖ ∈ RK×K , there exists
a trajectory length T > 0, a step size ε1 > 0 s.t. for any
ε ∈ (0, ε1] and any L1, L2 ∈ N with L1 + L2 = K − 1
and εL1, εL2 < T , there exists ρ̃ ∈ (0, 1) satisfying

E(i,j)∼J‖
[∥∥∥Φ̂◦ε,li(q

1, p)− Φ̂◦ε,lj (q
2, p)

∥∥∥] ≤ ρ̃∥∥q1 − q2
∥∥

(26)
for all (q1, q2, p) ∈ A, where lk is the k-th entry of the
vector [−L1, . . . , 0, . . . , L2].

Proof. By definition, J‖ has only diagonal entries, thus
(i, j) ∼ J‖ is equivalent to (i, i) with i ∼ diag(J‖).
Denote the left-hand side of (26) as A1, expanding and
rearranging A1 and applying Lemma 4.2, we have

A1 =

L1+L2+1∑
k=0

P(i = k)×
∥∥∥Φ̂◦ε,lk(q1, p)− Φ̂◦ε,lk(q2, p)

∥∥∥
=

∑
k 6=L1+1

P(i = k)×
∥∥∥Φ̂◦ε,lk(q1, p)− Φ̂◦ε,lk(q2, p)

∥∥∥
+ P(i = L1 + 1)×

∥∥∥Φ̂◦ε,0(q1, p)− Φ̂◦ε,0(q2, p)
∥∥∥

≤
∑

k 6=L1+1

P(i = k)× ρlk ×
∥∥q1 − q2

∥∥
+ P(i = L1 + 1)×

∥∥q1 − q2
∥∥

= Ei [ρli ]×
∥∥q1 − q2

∥∥
:= ρ̃

∥∥q1 − q2
∥∥

where we let ρ0 = 1. As ρl ∈ (0, 1) for l 6= 0 and
ρ0 = 1, Ei [ρli ] =

∑
k P(i = k) × ρlk ∈ (0, 1) by the

property of convex combination. In other words, we
have ρ̃ ∈ (0, 1).

C.4 Proof of Proposition 4.2

Proof. For two length-K Hamiltonian trajectories t1

and t2, denote x = [E(t1
1), . . . , E(t1

K)] and y =
[E(t2

1), . . . , E(t2
K)] as vectors of the Hamiltonian en-

ergy of all phasepoints. With the softmax function
σ(x)i = exp(−xi)/

∑
i′ exp(−xi′), the entries of µ and

ν can be expressed as

µi = σ(x)i νj = σ(y)j

By the Cauchy–Schwarz inequality, we have
‖σ(x)− σ(y)‖1 ≤

√
K‖σ(x)− σ(y)‖. With this,

we can then upper-bound DTV(µ,ν) as

DTV(µ,ν) = DTV(σ(x), σ(y))

=
1

2
‖σ(x)− σ(y)‖1

≤ 1

2

√
K‖σ(x)− σ(y)‖

Denote the energy of the initial phasepoints in each tra-
jectory (q1

0 , p0) and (q2
0 , p0) as E1

0 and E1
0 and let E1

i :=
xi and E1

j := yj ; note that for some i0 ∈ {1, . . . ,K}
we have E(tci0) = Ec0 for c = 1, 2, i.e. i0 represents the
initial time-index which is shared between the two. As
the leapfrog integrator is of order two (Hairer et al.,
2006; Bou-Rabee et al., 2020), for any sufficiently small
step size ε = T/L, we have

|Ec0−E(tci ))| ≤ C2(qc0, p0) ti ε
2 ≤ C2(qc0, p0)T ε2 (27)

for c = 1, 2, where ti denotes the corresponding integra-
tion time for the i-th phasepoint from the first phase-
point. Denote the energy differences as ∆1

i = E(t1
i )−E

1
0

and ∆1
j = E(t2

j )− E
2
0 and observe that

σ(x) = σ([∆1
1, . . . ,∆

1
K ]) σ(y) = σ([∆2

1, . . . ,∆
2
K ])

Using the fact that the softmax function is 1-Lipschitz
(Gao and Pavel, 2018) and applying (27), we have

‖σ(x)− σ(y)‖ =
∥∥σ([∆1

1, . . . ,∆
1
K ])− σ([∆2

1, . . . ,∆
2
K ])
∥∥

≤
∥∥[∆1

1, . . . ,∆
1
K ]− [∆2

1, . . . ,∆
2
K ]
∥∥

≤

√√√√ K∑
k=1

C2(q1
0 , p0)C2(q2

0 , p0)T 2 ε4

=
√
KC2(q1

0 , p0)C2(q2
0 , p0)T ε2

Substituting back into our bound on DTV(µ,ν),

DTV(µ,ν) ≤ 1

2
K
√
C2(q1

0 , p0)C2(q2
0 , p0)T ε2

Since T is fixed, ε = T/L and K = L+ 1, we have

DTV(µ,ν) ≤ 1

2

√
C2(q1

0 , p0)C2(q2
0 , p0)T 3 L+ 1

L2

≤
√
C2(q1

0 , p0)C2(q2
0 , p0)T 3 L−1

≤
√
C2(q1

0 , p0)C2(q2
0 , p0)T 2 ε.

(28)

Finally, note that the upper-bound decreases in with ε
and T , hence for any given δ > 0, there exists ε0 > 0,
L0 ∈ N such that DTV(µ,ν) ≤ δ for all ε ∈ (0, ε0) and
L ∈ N satisfying εL < ε0L0 = T .

C.5 Proof of Lemma 4.3

Similarly to in Appendix C.3 we only consider Con-
dition 1 with m = 1 as the case of m > 1 follows
similarly.

To prove Lemma 4.3 we first restate a more detailed
version of the lemma, which we then prove.

Lemma C.2. Suppose that the potential U satisfies
Assumptions 1 and 2. For a maximal coupling γ∗,
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there exists a trajectory length T > 0 and a step size
ε2 > 0 such that for any ε ∈ (0,min{ε1, ε2}] and any
t ∈ [−T, T ] \ {0} with l := t/ε ∈ Z, there exists ρ2 ∈
(0, 1) satisfying

E(l1,l2)∼γ∗
[∥∥∥Φ̂◦ε,l1(q1, p)− Φ̂◦ε,l2(q2, p)

∥∥∥] ≤ ρ∥∥q1 − q2
∥∥

(29)
for all (q1, q2) ∈ S×S, where K̄∗ε,l is the coupled kernel
in Algorithm 2 with (i) shared momentum, (ii) shared
forward and backward simulation steps and (iii) (i, j) ∼
γ∗ for intra-trajectory sampling.

Proof. We first decompose γ∗ into its "diagonal" and
"non-diagonal" components

γ∗ = ωJ‖ + (1− ω)J∦

where 1 − ω = P(i 6= j) and J∦ is defined to be the
residual with normalization. Thus we have

A2 := ωEJ‖
[∥∥∥Φ̂◦ε,li(q

1, p)− Φ̂◦ε,lj (q
2, p)

∥∥∥]
+ (1− ω)EJ∦

[∥∥∥Φ̂◦ε,li(q
1, p)− Φ̂◦ε,lj (q

2, p)
∥∥∥]

≤ ωρ̃
∥∥q1 − q2

∥∥
+ (1− ω)EJ∦

[∥∥∥Φ̂◦ε,li(q
1, p)− Φ̂◦ε,lj (q

2, p)
∥∥∥]

(30)

for T > 0, ε ∈ (0, ε1] and ρ̃ ∈ (0, 1) in Proposi-
tion C.1. As EJ∦

[∥∥∥Φ̂◦ε,li(q
1, p)− Φ̂◦ε,lj (q

2, p)
∥∥∥] is fi-

nite, by Proposition 4.2, the limit of the upper bound
goes to ρ̃

∥∥q1 − q2
∥∥ as ε → 0. In other words, for any

ρ ∈ (ρ̃, 1), there exists a step size ε2 > 0 such that for
any ε ∈ (0,min{ε1, ε2}],

A2 ≤ ρ
∥∥q1 − q2

∥∥
which is exactly what we wanted to prove.

D Additional Experimental Details

D.1 Target distributions

We follow the pre-processing steps in Heng and Jacob
(2019) for the German credit dataset (Asuncion and
Newman, 2007) and the Finnish pine saplings dataset
(Møller et al., 1998) used in logistic regression and
log-Gaussian Cox point process respectively.

Bayesian logistic regression We combine features
in the German credit dataset with all of their stan-
dardized pairwise interactions, resulting in a design
matrix in R300×1,000. Denoting an Exponential dis-
tribution with rate λ as Exp(λ), the Bayesian logis-
tic regression follows the following generative process:
s2 ∼ Exp(λ), a ∼ N (0, s2), b ∼ N 300, where the vari-
ance s2 ∈ R, the intercept a ∈ R and the coefficients
b ∈ R300, giving a total dimension d = 302.

Log-Gaussian Cox point process Firstly, the plot
of the forest is discretized into an n × n grid. For
i ∈ {1, . . . , n}2, the number of points in each grid cell
yi ∈ N is assumed to be conditionally independent given
a latent intensity variable Λi and follows a Poisson dis-
tribution with mean aΛi, where a = n−2 is the area of
each cell. We denote the logarithm of Λ as X and put a
Gaussian process prior with mean µ ∈ R and exponen-
tial covariance function Σi,j = s2 exp (−|i− j|/(nb))
on it, where s2, b and µ are hyperparameters. The gen-
erative process of the number of grid cell points follows
X ∼ GP(µ,Σ), ∀ i ∈ {1, . . . , n}2 : Λi = exp(Xi), yi ∼
Poisson(aΛi). Following (Møller et al., 1998), we use a
dataset of 126 Scot pine saplings in a natural forest in
Finland, and adapt the parameters s2 = 1.91, b = 1/33
and µ = log(126)− s2/2.

E Additional Experimental Results

E.1 Robustness: meeting time with more
parameter sweeps

Figure 3, 4 and 5 provide a wider range of parameter
sweep under the same experimental setup as Section 5.1.

E.2 Toy examples

We first study how proposed methods behave on multi-
modal distributions. Specifically, we want to know if
the coupled chains can meet in a short time given the
target is multi-modal. We consider a mixture of Gaus-
sians on R2 with three components N ([−1,−1], 0.252I),
N ([0, 0], 0.252I), N ([1, 1], 0.252I) weighted by 0.25,
0.4 and 0.35 respectively. We initialise chains from
U([0, 1]2), covering two of the modes. We simulate
R = 500 pairs of chains and check if they meet within
100 iterations. Denoting the number of chains which
meet as Nτ , we report iτ = Nτ/R as a measure of
efficiency in meeting. Regarding the choice of ε, L,
it is known that HMC is sensitive to the total tra-
jectory length εL in multi-modal distributions: it re-
quires the Hamiltonian simulation long enough to al-
low jumps between modes. Therefore, starting with
(ε, L) = (0.1, 10), we consider two ways of increasing
εL: sweeping ε ∈ {0.1, 0.15, . . . , 0.3} and sweeping
L ∈ {10, 15, . . . , 30}, equivalently providing a range of
total lengths between 1 and 3. While both means in-
crease the trajectory length, the first approach doesn’t
introduce additional computation but might lead to
larger simulation errors, which may then affect the
overall performance. Figure 6 provides iτ under such
changes of total trajectory lengths for all methods.
First, by increasing εL, our proposed methods overall
improve the meeting efficiency, which is not the case
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Figure 3: Averaged meeting time τ̄ with different ε and L for 1,000D Gaussian.
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Figure 4: Averaged meeting time τ̄ with different ε and L for logistic regression.
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Figure 5: Averaged meeting time τ̄ with different ε and L for log-Gaussian Cox point process.

for coupled Metropolis HMC. This can be explained by
the following: for coupled Metropolis HMC, meetings
can only happen if two chains are proposed to the same
mode. However, for coupled multinomial HMC, as
long as the trajectories explore common modes, there
is a chance for meeting. Especially with W2-coupling,
this chance is further increased by utlizing the actual
distances between pairs to find coupling, making it the
best in the figure. Second, regarding the two ways of
increasing εL, for our proposed methods, increasing L
appears to be better as we expected. That said, the gap
is relatively small – coupled multinomial HMC tends

to be robust against large ε, which is practically useful
as it allows the use of a smaller amount of computation
comparing to increasing L. Note that we do not claim
or indicate our methods improve the mixing in multi-
modal distributions, which by itself is an important
and unsolved issue for HMC. Second, to examine the
proposed methods on highly non-convex distributions,
we consider a banana-shaped distribution on R2, of
which the potential is given by the Rosenbrock func-
tion U(x1, x2) = (1− x1)2 + 10(x2 − x2

1)2 (x1, x2 ∈ R).
As it is done in (Heng and Jacob, 2019), we also take
this chance to study the effect of other methods for
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Figure 6: Meeting efficiency on the mixture of Gaussians target with the total trajectory length εL increasing.
Solid lines are from increasing ε and dashed ones from increasing L.

Momentum Metropolis Maximal W2

Shared 136.6± 95.8 112.4± 74.9 103.8± 76.5
Contractive 39.7± 18.9 81.3± 56.3 77.2± 48.1

Table 2: Effect of different momentum coupling methods on meeting time for the Banana target.

coupling the initial momentums rather than simply
sharing them. Specifically, we consider the contractive
coupling from (Bou-Rabee et al., 2020), in which the
initial momentums P 1, P 2 are sampled based on the
current positions Q1, Q2 as follow

P 1 ∼ N (0, I),

P 2 =

P 1 + κ∆ with prob.
N(∆̄>P 1+κ|∆|;0,1)
N(∆̄>P 1;0,1)

P 1 − 2(∆̄>P 1)∆̄ otherwise

where κ > 0 is a tuning parameter, ∆ = Q1−Q2 is the
difference in position space and ∆̄ is the correspond-
ing normalised difference. With initial states sampled
from U([0, 1]2), we simulated R = 500 pairs of coupled
chains with (ε, L) = (1/50, 50) for maximally 500 iter-
ations with two momentum coupling methods: shared
momentum and contractive coupling with κ = 1. We
summarise means and standard deviations of τ from
R runs in Table 2.

First of all, all method with two momentum coupling
methods can meet within 150 iterations in such high
non-convex setup, except approximate W2-coupling
with contractive momentum. Also, it can be seen that
our methods can also benefit from contractive coupling,
even though it is derived as a maximal coupling (Tho-
risson, 2000) for Metropolis HMC. This is the reason
why coupled Metropolis HMC is largely improved by
it. That is to say, contractive coupling is an orthogo-
nal method of ours rather than a replacement. Note
that the table should not be used to compare coupled
multinomial HMC against coupled Metropolis HMC
in terms of meeting time because they have different
optimal parameters for meeting in this target.


