
Faster Kernel Interpolation for Gaussian Processes

Supplementary Appendices

A Reformulation of SKI as Bayesian Linear Regression – Omitted Details

A.1 Exact Inference for GSGP

For completeness we derive the exact GSGP inference equations for Fact 2.

Proof of Fact 2. GSGP is a standard linear basis function model and it is well known (see e.g., (Neal, 2011)) that
the posterior mean and covariance of θ given y are given by

E[θ|y] =
1

σ2
·
[
K−1G +

1

σ2
WTW

]−1
·WTy. (4)

and

Var(θ|y) =

[
K−1G +

1

σ2
WTW

]−1
. (5)

Using that for invertible A,B, (AB)−1 = B−1A−1 we can write:

1

σ2
·
[
K−1G +

1

σ2
WTW

]−1
=

1

σ2
·
[
I +

1

σ2
KGW

TW

]−1
KG = (KGW

TW + σ2I)−1KG.

Plugging back into the posterior mean equation (4) gives

E[θ|y] = (KGW
TW + σ2I)−1KGW

Ty = z̄.

By linearity since f(x) = wT
xθ, this gives the GSGP posterior mean equation, µf |D(x) = wT

x z̄. Similarly, plugging
back into the posterior variance equation (5) gives:

Var(θ|y) = σ2(KGW
TW + σ2I)−1KG = C̄.

Again by linearity this gives the GSGP posterior variance equation kf |D(x,x′) = wT
x C̄wx′ .

Finally, it is well known (Neal, 2011) that the log likelihood of y under the GSGP linear basis function model is
given by:

log p(y) = −1

2

[
n log(2π) + n log(σ2) + log detKG − log det(C̄) +

1

σ2
yTy − z̄T C̄−1z̄

]
We can split log det(C̄) = log det(σ2(KGW

TW +σ2I)−1KG) = m log σ2− log det(KGW
TW +σ2I)+log det(KG),

and canceling this gives:

log p(y) = −1

2

[
n log(2π) + (n−m) log σ2 + log det(KGW

TW + σ2I) +
1

σ2
yTy − z̄T C̄−1z̄

]
(6)

Additionally we can write:

z̄T C̄−1z̄ =
1

σ2
z̄TK−1G (KGW

TW + σ2I)(KGW
TW + σ2I)−1KGW

Ty =
1

σ2
z̄TWTy.

Thus we have 1
σ2 yTy − z̄T C̄−1z̄ = yT (y−W z̄)

σ2 . Plugging back into (6) yields the log likelihood formula of Fact 2,
completing the proof.



Mohit Yadav, Daniel Sheldon, Cameron Musco

A.2 Equivalence of GSGP Exact Inference and SKI

Theorem 1, which states that the GSGP and SKI inference equations are identical, follows directly from Claim
1, as GSGP is a Gaussian process whose kernel is exactly the approximate kernel used by SKI. For illustrative
purposes, we also give a purely linear algebraic proof of Theorem 1 below:

Theorem 1. The inference expressions of Fact 2 are identical to the SKI approximations of Def. 1.

Linear Algebraic Proof of Theorem 1. The equivalence between the expressions for the posterior mean and
posterior variance is a standard manipulation to convert between the “weight space” and “function space”
view of a GP with an explicit feature expansion, e.g., Eqs. (2.11), (2.12) of (Rasmussen, 2004). We provide details
with our notation for completeness. The correspondence between the two expressions for the log-likelihood is due
to the same correspondence between “weight space” and “function space” views, though we are not aware of a
specific reference that provides the formula in Fact 2.

First, recall these definitions from Def. 1 and Fact 2:

K̃X = WKGW
T

z̃ =
(
WKGW

T + σ2I
)−1

y

z̄ = (KGW
TW + σ2I)−1KGW

Ty

Mean: The two mean expressions are wxKGW
T z̃ (Def. 1) and wxz̄ (Fact 2). Expanding these, it suffices to

show that

KGW
T
(
WKGW

T + σ2I
)−1

=
(
KGW

TW + σ2I
)−1

KGW
T . (7)

This follows from the following claim:

Claim 5. Let A ∈ Rm×n and B ∈ Rn×m. Then

A(BA+ σ2In)−1 = (AB + σ2Im)−1A

as long as BA+ σ2In and AB + σ2Im are both invertible.

Proof. Observe that (AB + σ2Im)A = A(BA+ σ2In) = ABA+ σ2A. If the matrices AB + σ2Im and BA+ σ2In
are invertible the result follows by left- and right-multiplying by the inverses.

We obtain (7) from Claim 5, applied with A = KGW
T and B = W . As required by the claim, we have that

both KGW
TW + σ2I and WKGW

T + σ2I are invertible. For σ > 0, WKGW
T + σ2I is positive definite, which

implies invertibility. KGW
TW is similar to the positive semidefinite matrix K1/2

G WTWK
1/2
G , and thus has all

non-negative eigenvalues. Thus, for σ > 0, KGW
TW + σ2I has all positive eigenvalues (in particular, it has no

zero eigenvalue) and so is invertible.

Covariance: The two expressions for covariance are wxC̃wx (Def. 1) and wxC̄wx (Fact. 2) with

C̃ = KG −KGW
T (WKGW

T + σ2I)−1WKG

C̄ = σ2
(
KGW

TW + σ2I
)−1

KG

So it suffices to show that C̃ = C̄. Using Eq. 7, we have that

C̃ = KG − (KGW
TW + σ2I)−1KGW

TWKG.

Now, factor out KG and simplify to get:

C̃ = [I − (KGW
TW + σ2I)−1KGW

TW ]KG

= [(KGW
TW + σ2I)−1 · (KGW

TW + σ2I −KGW
TW )]KG

= σ2(KGW
TW + σ2I)−1KG = C̄



Faster Kernel Interpolation for Gaussian Processes

Log likelihood: By matching terms in the two expressions and using the definition of K̃X , it suffices to show
both of the following:

yT z̃ =
yT (y −W z̄)

σ2
, (8)

log det(WKGW
T + σ2I) = log det(KGW

TW + σ2I) + (n−m) log σ2. (9)

For Eq. (8), we first observe that by our argument above that z̄ = KGW
T z̃, we have

yT (y −W z̄)

σ2
=

yT (y −WKGW
T z̃)

σ2
=

yT (I −WKGW
T (WKGW

T + σ2I)−1)y

σ2
. (10)

We have:

(I −WKGW
T (WKGW

T + σ2I)−1) = [WKGW
T + σ2I −WKGW

T ](WKGW
T + σ2I)−1

= σ2(WKGW
T + σ2I)−1.

Thus we can simplify (10) to:

yT (y −W z̄)

σ2
= yT (WKGW

T + σ2I)−1y = yT z̃. (11)

It remains to prove Eq. 9. This follows from the general claim:

Claim 6. Let A ∈ Rm×n and B ∈ Rn×m. Then:

det(BA+ σ2In) = (σ2)n−m det(AB + σ2Im)

Proof. The claim generalizes the Weinstein-Aronszajn identity, which states that det(BA+ In) = det(AB + Im).

It can be proven using the block determinant formulas in (Gubner, 2015). Let C =

[
σIm −A
B σIn

]
. We have:

det(C) = det(σIm) · det(B(σIm)−1A+ σIn) = det(σIm) · det

(
1

σ
(BA+ σ2In)

)
= det(σIm) · det

(
1

σ
In

)
· det(BA+ σ2In)

and similarly

det(C) = det(σIn) · det(A(σIn)−1B + σIm) = det(σIn) · det

(
1

σ
(AB + σ2Im)

)
= det(σIn) · det

(
1

σ
Im

)
· det(AB + σ2Im)

Thus,

det(σIm) · det

(
1

σ
In

)
· det(BA+ σ2In) = det(σIn) · det

(
1

σ
Im

)
· det(AB + σ2Im)

det(BA+ σ2In) = σ2(n−m) · det(AB + σ2Im),

giving the claim.

Applying Claim 6 with A = KGW
T and B = W gives that det(W̃KGW

T +σ2I) = (σ2)n−m det(KGW
TW +σ2I)

which in turn gives that log det(WKGW
T + σ2I) = log det(KGW

TW + σ2I) + (n−m) log σ2 and so completes
Eq. (9) and the theorem.



Mohit Yadav, Daniel Sheldon, Cameron Musco

A.3 Symmetric Reformulation of GSGP

Recall that directly replacing the SKI approximate inference equations of Definition 1 with the GSGP inference
equations of Fact 2 reduces per-iteration cost from O(n + m logm) to O(m logm). However, the matrix
KGW

TW + σ2I is asymmetric, which prevents the application of symmetric system solvers like the conjugate
gradient method with strong guarantees.

Here we describe a symmetric reformulation of GSGP that doesn’t compromise on per-iteration cost. We write the
matrix (KGW

TW +σ2I)−1, whose application is required in both the posterior mean and covariance computation
as:

(KGW
TW + σ2I)−1 = (KGW

TWKGK
−1
G + σ2KGK

−1
G )−1

= KG(KGW
TWKG + σ2KG)−1.

Applying the above matrix requires a symmetric solve in (KGW
TWKG+σ2KG)−1, along with a single O(m logm)

time MVM with KG. Our per-iteration complexity thus remains at O(m logm) – the matrix vector multiplication
time for KGW

TWKG + σ2KG. However, this matrix is no longer of the ‘regularized form’ A+ σ2I, and may
have worse condition number than WKGW

T + σ2I, possibly leading to slower convergence of iterative solvers
like CG as compared to SKI.

We can similarly symmetrize the logdet computation in the likelihood expression by writing

log det(KGW
TW + σ2I) = log det(KGW

TWKG + σ2KG)− log det(KG).

Again however, it is unclear how this might affect the convergence of iterative methods for logdet approximation

B Factorized Iterative Methods – Omitted Details

B.1 Proofs for Factorized Update Steps

We give proofs of our fundamental factorized update steps described in Claims 3 and 4.

Claim 3. For any zi ∈ Rn with zi = W ẑi + ciz0,

(WKGW
T + σ2I)zi = W ẑi+1 + ci+1z0,

where ẑi+1 = (KGW
TW + σ2I)ẑi + ciKGW

T z0 and ci+1 = σ2 · ci. Call this operation a factorized update
and denote it as (ẑi+1, ci+1) = A(ẑi, ci). If the vector KGW

T z0 is precomputed in O(n + m logm) time, each
subsequent factorized update takes O(m logm) time.

Proof. We have:

(WKGW
T + σ2I)zi = (WKGW

T + σ2I)W ẑi + ci(WKGW
T + σ2I)z0

= W (KGW
TW + σ2I)ẑi + ciW (KGW

T z0) + ci · σ2 · z0
= W

[
(KGW

TW + σ2I)ẑi + ciKGW
T z0
]

+ ci · σ2 · z0.

which completes the derivation of the update.

As discussed in Sec. 3.1, it takes O(n+m logm) time to precompute KGW
T z0, after which: it takes O(m logm)

time to compute (KGW
TW +σ2I)ẑi, it takes O(m) time to add in ciKGW

T z0, and it takes O(1) time to update
ci, for a total of O(m logm) time for each update.

Claim 4. For any zi,yi ∈ Rn with zi = W ẑi + ciz0 and yi = W ŷi + diy0,

zTi yi = ẑTi W
TW ŷi + diẑ

T
i W

Ty0 + ciŷ
T
i W

T z0 + cidiy
T
0 z0.

We denote the above operation by 〈(ẑi, ci), (ŷi, di)〉.



Faster Kernel Interpolation for Gaussian Processes

Proof. We have:

zTi yi = (W ẑi + ciz0)T (W ŷi + diy0) = ẑTi W
TW ŷi + diẑ

T
i W

Ty0 + ciŷ
T
i W

T z0 + cidiy
T
0 z0,

giving the claim.

Algorithm 3 Efficiently Factorized Conjugate Gradient (EFCG)

1: procedure EFCG(KG,W,b, σ,x0, ε)
2: New Iterates:
3: v̂k =

[
KGW

TW + σ2I
]
r̂k,ûk = WTW r̂k

4: ẑk =
[
KGW

TW + σ2I
]
p̂k, ŝk = WTW p̂k

5: r0 = b− K̃x0, r̂0 = 0, cr0 = 1
6: p̂0 = 0, cp0 = 1, x̂0 = 0, cx0 = 0
7: v̂0 = 0, û0 = 0
8: ẑ0 = 0, ŝ0 = 0
9: for k = 0 to maxiter do
10: αk =

ûT
k r̂k+c

r
kc

r
k‖r0‖+2cri (r̂

T
i W

T r0)

ŝTk ẑk+czkc
p
k‖r0‖+c

p
k(ẑ

T
kW

T r0)+czk(r̂
T
kW

T r0)

11: (x̂k+1, c
x
k+1) = (x̂k, c

x
k) + αk · (p̂k, cpk)

12: (r̂k+1, c
r
k+1) = (r̂k, c

r
k)− αk · (ẑk + cpk · (KGW

T r0), σ2cpk)
13: [v̂k+1, ûk+1] = B(r̂k+1)
14: if ûTk+1r̂k+1 + crk+1c

r
k+1 ‖r0‖+ 2crk+1(r̂Tk+1W

T r0) ≤ ε exit loop
15: βk =

ûT
k+1r̂k+1+c

r
k+1c

r
k+1+2crk+1(r̂

T
k+1W

T r0)

ûT
k r̂k+crkc

r
k‖r‖0+2crk(r̂

T
kW

T r0)

16: (p̂k+1, c
p
k+1) = (r̂k+1, c

r
k+1) + βk · (p̂k, cpk)

17: ŝk+1 = ûk+1 + βk · ŝk
18: ẑk+1 = v̂k+1 + βk · ẑk
19: return xk+1 = W x̂k+1 + cxk+1 · r0 + x0

B.2 Efficiently Factorized Conjugate Gradient Algorithms

We now present Efficiently factorized conjugate gradient (EFCG) (Algorithm 3), which improves on our basic
Factorized CG algorithm (Algorithm 2) by avoiding any extra multiplication with W and WTW . The central idea
of EFCG is to exploit the fact that each time we perform a matrix-vector multiplication with the GSGP operator
KGW

TW + σ2I, we also must perform one with WTW . We can save the result of this multiplication to avoid
repeated work. In particular, this lets us avoid extra MVM costs associated with WTW present in factorized
inner products steps of Algorithm 2. Similar to Algorithm 2, Algorithm 3 also maintains iterates CG (Algorithm
1) exactly in the same compressed form xk = W x̂k + cxkr0 + x0, rk = W r̂k + crkr0, and pk = W p̂k + cpkr0.

We let [v,u] = B(x) denote the operation that returns v =
[
KGW

TW + σ2I
]
x and u = WTWx. Since u

must be computed as in intermediate step in computing v, this operation has the same cost as a standard
matrix-vector-multiplicaiton with

[
KGW

TW + σ2I
]
. Notice that Algorithm 3 performs just one B(x) operation

per iteration, requiring a single matrix vector multiplication with each of KG and WTW per iteration. Both
KGW

T r0 and WT r0 are precomputed.

In addition to B(x) operation, the superior efficiency of the EFCG Algorithm 3 over CG and Factorized CG can
mainly be attributed to following facts:

• It uses four new iterates: v̂k =
[
KGW

TW + σ2I
]
r̂k, ûk = WTW r̂k, ẑk =

[
KGW

TW + σ2I
]
p̂k and

ŝk = WTW p̂k. Given these iterates all factorized inner products can be computed without any extra
multiplication with WTW .

• In case, the initial solution x0 = 0, which is the most common choice in practice for CG, K̃x0 multiplication
can be avoided. Also, observe that in SKI mean and covariance approximation (Definition 1), we only need
WTxk+1 which is equal to WTW x̂k+1 +WT r0 +WTx0. Since, WT r0 is pre-computed and WTx0 = 0, no
extra multiplication with W or WTW is required other than computing KGW

T r0 and WT r0.



Mohit Yadav, Daniel Sheldon, Cameron Musco

In Algorithm 4, we present a further simplified variant on EFCG for the case when initial residual r0 is in the
span of W , to directly compute WTxk+1, where xk+1 is the final solution returned by the EFCG algorithm.
Observe SKI mean and covariance expressions of SKI definition (i.e., Definition 1), we always need to post-process
xk+1 as WTxk+1 to estimate them. Unlike EFCG, simplified EFCG (i.e., Algorithm 4) maintains a compressed
form for rk using r̂k (as rk = W r̂k) and doesn’t maintain pk. In addition to that, Algorithm 4 also maintains
another iterate x̂dk+1 such that WTxk+1 = x̂dk+1 +WTx0.

Algorithm 4 Simplified EFCG – Initial residual (i.e., r0) is in span of W

1: procedure EFCG(KG,W, r̂0, σ, ε)
2: New Iterates:
3: v̂k =

[
KGW

TW + σ2I
]
r̂k,ûk = WTW r̂k

4: ẑk =
[
KGW

TW + σ2I
]
p̂k, ŝk = WTW p̂k

5: x̂d0 = 0
6: v̂0, û0 = B(r̂0)
7: ẑ0 = v̂0, ŝ0 = û0

8: for k = 1 to maxiter do
9: αk =

ûT
k r̂k

ŝTk ẑk

10: x̂dk+1 = x̂dk + αk · ŝk
11: r̂k+1 = r̂k − αk · ẑk
12: v̂k+1, ûk+1 = B(r̂k+1)
13: if ûTk+1r̂k+1 ≤ ε exit loop
14: βk =

ûT
k+1r̂k+1

ûT
k r̂k

15: ŝk+1 = ûk+1 + βk · ŝk
16: ẑk+1 = v̂k+1 + βk · ẑk
17: return x̂dk+1

The requirement of initial residual r0 to be in the span of W can be met in two ways. For example, for SKI
posterior mean inference, we set x0 = 1

σ2 ·y implying r0 = y−
[
WKGW

T + σ2I
]

1
σ2 ·y = − 1

σ2 ·WKGW
Ty, which

lies in the span of W . Consequently, we initiate Algorithm 4 with r̂0 = − 1
σ2 ·KGW

Ty ∈ Rm×1 and following
the invariance of simplified EFCG algorithm, compute transformed solutions as WTxk+1 = x̂dk+1 + 1

σ2 ·WT y.
Notice that simplified EFCG (unlike EFCG) does not require pre-computations of terms KGW

T r0 and WT r0.
In fact, simplified ECFG requires only multiplication with WT , i.e., to obtain WT y which is sufficient for
both, initialization of r0 and also to compute the transformation of final solution WTxk+1 (which is equal to

WT
(
K̃X + σ2I

)−1
y). As a result, simplified EFCG can compute SKI posterior mean using only sufficient

statistics (WTW and WTy).

A second way to meet the requirement of the initial residual r0 being in the span of W , is by setting x0 = 0
when ŷ is provided such that y = W ŷ. This is the case, e.g., in posterior covariance approximation. The final
transformed solution WTxk+1 in this setting reduces to x̂dk+1. Notice for this setting also, we need only WTW
and do not require the matrix W .

Consquently, simplified EFCG can compute both SKI posterior mean and covariance function using onlyt he
sufficient statistics (WTW and WTy) and without even realizing W matrix in memory.

B.3 Factorized Lanczos Algorithms

The Lanczos algorithm can be utilized to factorize a symmetric matrix A ∈ Rn×n as QTQT such that T ∈ Rn×n
is a symmetric tridiagonal matrix and Q ∈ Rn×n is orthonormal matrix. Previously, it has been used with
k iterations (i.e. Algorithm 5) to compute low-rank and fast approximations of SKI covariance matrix and
log-likelihood of the data. For further details, we refer readers to (Pleiss et al., 2018; Dong et al., 2017).

Similar to Factorized CG, we derive factorized Lanczos algorithm (FLA) using factorized inner products and
matrix vector multiplication, as described in Algorithm 6. We maintain all iterates in Rm×1 similar to Factorized
CG, in particular, Q:,i ∈ Rn×1 vectors are maintained in compressed form such that Q:,i = WQ̂:,i + di · b. The



Faster Kernel Interpolation for Gaussian Processes

Algorithm 5 Lanczos Algorithm (LA)

1: procedure LA(KG,W,b, σ, k)
2: q0 = 0,q1 = b, β1 = 0
3: Q:,1 = q1

4: for i = 1 to k do
5: qi+1 = K̃qi − βi · qi−1
6: αi = qTi qi+1

7: Ti,i = αi
8: if i == k then exit loop
9: qi+1 = qi − αi · qi
10: qi+1 = qi+1 − [Q:,1, ..., Q:,i]

(
[Q:,1, ..., Q:,i]

T
qi+1

)
11: βi+1 = ‖qi+1‖
12: Ti,i+1 = Ti,i+1 = βi+1

13: qi+1 = 1
βi+1
· qi+1

14: Q:,i+1 = qi+1

15: return Q, T

Algorithm 6 Factorized Lanczos Algorithm (FLA)

1: procedure FLA(KG,W,b, σ, k)
2: q̂0 = 0, cq0 = 0, q̂1 = 0, cq1 = 1, β1 = 0

3: Q̂:,1 = q̂1,Λ = 0 ∈ Rk×1,d = 0 ∈ Rk×1
4: for i = 1 to k do
5: (q̂i+1, c

q
i+1) = (q̂i, c

q
i )− βi · A(q̂i−1, c

q
i−1)

6: αi = 〈(q̂i, cqi ), (q̂i+1, c
q
i+1)〉

7: Ti,i = αi; di = cqi
8: if i == k then exit loop
9: (q̂i+1, c

q
i+1) = (q̂i, c

q
i )− αi · (q̂i, c

q
i )

10: Λj = 〈(Q̂:,j , c
q
j), (q̂i+1, c

q
i+1)〉; ∀j ∈ {1, ..., i}

11: q̂i+1 = q̂i+1 − Q̂:,1:iΛ1:i; cqi+1 = cqi+1 − dT1:iΛ1:i

12: βi+1 =
√
〈(q̂i+1, c

q
i+1), (q̂i+1, c

q
i+1)〉

13: Ti,i+1 = Ti,i+1 = βi+1

14: q̂i+1 = 1
βi+1
· q̂i+1; cqi+1 =

cqi+1

βi+1

15: Q̂:,i+1 = q̂i+1

16: return Q̂, T , d



Mohit Yadav, Daniel Sheldon, Cameron Musco

T ∈ Rk×k matrix of Lanczos algorithm is retained as it is in FLA. Next, in a manner similar to EFCG, we derive
efficient factorized algorithm (EFLA) as shown in Algorithm 7. Specifically, EFLA relies on two new iterates:
P̂:,i = WTWQ̂:,i and ŝi =

[
KGW

TW + σI
]
q̂i and maintains iterates of Lanczos algorithm as Q:,i = WQ̂:,i+di ·b,

similar to FLA. Notice that EFLA only requires one B(x) operation per loop thereby avoiding any extra MVMs
with W and WTW , except one time pre-computations of KGW

Tb and WTb.

Algorithm 7 Efficiently Factorized Lanczos algorithm (EFLA)

1: procedure EFLA(KG,W,b, σ, k)
2: New Iterates:
3: P̂:,i = WTWQ̂:,i and ŝi =

[
KGW

TW + σI
]
q̂i

4: q̂0 = 0, cq0 = 0, q̂1 = 0, cq1 = 1, β1 = 0

5: Q̂:,1:k = [0, ...,0] ∈ Rm×k, P̂:,1:k = [0, ...,0] ∈ Rm×k

6: Q̂:,1 = q̂1,Λ = 0 ∈ Rk×1, ŝi = 0 ∈ Rm×1,d = 0 ∈ Rk×1
7: for i = 1 to k do
8: q̂i+1 = ŝi + cqi ·KGW

Tb− βi · q̂i−1
9: cqi+1 = σ2cqi − βic

q
i−1

10: αi = P̂T:,iq̂i+1 + cqi c
q
i+1 +

(
cqi · q̂i+1 + cqi+1 · q̂i

)T
WTb

11: Ti,i = αi; di = ci
12: if i == k then exit loop
13: (q̂i+1, c

q
i+1) = (q̂i, c

q
i )− αi · (q̂i, c

q
i )

14: Λ1:i = P̂T:,1:iq̂i+1 +
(
cqi+1 + q̂Ti+1W

Tb
)
· c1:i + cqi+1 · Q̂T:,1:iWTb

15: q̂i+1 = q̂i+1 − Q̂:,1:iΛ1:i; cqi+1 = cqi+1 − dT1:iΛ1:i

16: ŝi+1, P̂:,i+1 = B(q̂i+1)

17: βi+1 =
√
P̂T:,i+1q̂i+1 + cqi+1c

q
i+1 + 2cqi+1q̂

T
i+1W

Tb

18: Ti,i+1 = Ti,i+1 = βi+1

19: q̂i+1 = 1
βi+1
· q̂i+1; cqi+1 =

cqi+1

βi+1

20: ŝi+1 = 1
βi+1
· ŝi+1; P̂:,i+1 = 1

βi+1
· P̂:,i+1

21: Q̂:,i+1 = q̂i+1

22: return Q̂, T , d

C Experiments – Omitted Details and Additional Results

C.1 Hardware and hyper-parameters details

We run all of our experiments on Intel Xeon Gold 6240 CPU @ 2.60GHz with 10 GB of RAM. In all experimental
settings, our kernels are squared exponential kernels wrapped within a scale kernel (Wilson and Nickisch, 2015;
Dong et al., 2017). Therefore, our hyper-parameters are σ, length-scales and output-scale as also presented in
Table 2. Length-scales are specific to each dimension for multi-dimensional datasets. For sine and sound datasets,
we have utilized GPytorch to optimize hyper-parameters. For precipitation and radar datasets, we have considered
previously optimized parameters in (Dong et al., 2017) and in (Angell and Sheldon, 2018), respectively.

Dataset σ Length-scale Output-scale
Sine 0.074 0.312 1.439
Sound 0.009 10.895 0.002
Radar 50.000 [0.250, 0.250, 200] 3.500
Precipitation 3.990 [3.094, 2.030, 0.189] 2.786

Table 2: Hyper-parameters used for all datasets. Length-scale is of size d of each dataset.



Faster Kernel Interpolation for Gaussian Processes

C.2 Results: Synthetic sine dataset

Figure 6 depicts the number of iteration and pre-processing time taken by GSGP and SKI for synthetic sine
dataset wrt number of sample, for the setting on which Figure 3 reports the results. The number of iterations for
GSGP and SKI are always close and possibly differ only due to finite precision.

103 104 105 106 107

n
20

30

40

50

60

70

Nu
m

 It
er

at
io

ns

SKI m= n
GSGP m= n
SKI m= n

16
GSGP m= n

16
SKI m= √n
GSGP m= √n

Figure 6: Number of iterations taken by SKI and GSGP on synthetic dataset. Results are averaged over 8 trials.

C.3 Results: Precipitation dataset

104 105 106

m
100

101

102

103

Pr
oc

es
sin

g 
(in

 se
cs

)

SKI
GSGP

104 105 106

m
100

101

102

103

In
fe

re
nc

e 
(in

 se
cs

)

SKI
GSGP

104 105

m
100

101

102

103

Lo
g-

de
t (

in
 se

cs
)

SKI
GSGP

104 105

m
100

101

102

103

Lo
g-

de
t (

in
 se

cs
)

SKI
GSGP

Figure 7: Inference time vs. m for SKI inference tasks on the precipitation data set. From left to right: pre-processing,
mean inference, log-determinant for tol = 0.1 and for tol = 0.01 and using 30 random vectors.

Figure 7 shows running time vs. m for GP inference tasks on precipitation data set of n = 528K (Dong et al.,
2017). We consider m ∈ {12K, 96K, 128K, 528K, 640K}. This is a situation where even for m > n, GSGP is faster
compared to SKI. Pre-processing is up to 6x slower for GSGP due to the need to compute WTW . To perform
only one mean inference, the overall time of GSGP and SKI including pre-processing is similar as some of the
per-iteration gains are offset by pre-processing. However, for the log-determinant computation task (as part of
the log-likelihood computation), several more iterations of linear solvers are required as also demonstrated by
log-det computation in Figure 7. It is worth noting that pre-processing of GSGP is required only once which can
be performed initially for the log-det computation and later be utilized for the posterior mean and covariance
inference. Therefore, overall, GSGP is more effective than SKI for all inference tasks.


